On Symmetries of Non-Plane Trees in a Non-Uniform Model

Jacek Cichoń, Abram Magner, Wojciech Szpankowski, and Krzysztof Turowski

JCI: Wrocław University of Science and Technology, Poland
AMA: University of Illinois at Urbana-Champaign, USA
WSZ: Purdue University, USA
KTU: Gdańsk University of Technology, Poland

SODA/ANALCO, January, 2017
Considered Objects

Class of trees

- We consider non-plane unlabeled binary trees (each node has either zero or exactly two children) [Otter trees]
- Wedderburn–Etherington numbers:

\[a_n \sim 0.3188 \frac{1}{n^{3/2}} \left(\frac{1}{0.4027} \right)^n \]
- W-E numbers count the number of Otter trees with \(n \) leaves

Remark: The numbers \(b_n \) of binary plane trees with \(n \) leaves satisfy

\[b_n \sim \frac{1}{2\sqrt{\pi}} \frac{1}{n^{3/2}} 4^n \]
Each of this plane trees corresponds with one Non-Plane tree

- T_n - set of binary plane trees with n leaves
- S_n - set of binary non-plane trees with n leaves
- $[s]_{\sim} = \{ t \in T_n : t \sim s \}$, for $s \in S_n$
For $t \in T_n$ we have

$$\Pr[T_n = t] = \prod_{v \in t^o} \frac{1}{\Delta(v) - 1}$$

where t^o is the set of interval nodes of t, $\Delta(v)$ is the number of leaves of a tree rooted at v.
Remark: generate randomly binary search tree from random permutation, make ”de-labelization”; we get the same probability model.

Recurrence

If $t = t_1 \star t_2 \in T_n$, then

$$
Pr[T_n = t] = \frac{1}{n-1} Pr[T_{\Delta(t_1)} = t_1] Pr[T_{\Delta(t_2)} = t_2]
$$

where $\Delta(s)$ is the number of leaves in s

Connection between S and T

$$
Pr[S_n = s] = \text{card}([s]_\sim) \cdot Pr[T_n = t], \quad t \in [s]_\sim
$$
Symmetries

Definition

\(\text{sym}(t) = \) the number of non-leaf (internal) nodes \(v \) of tree \(t \) such that the two subtrees stemming from \(v \) are isomorphic.

Basic property

\[\text{card}([s]_\sim) = 2^{n-1 - \text{sym}(s)} \]

Basic recurrence

\[\text{sym}(s_1 \star s_2) = \begin{cases}
\text{sym}(t_1) + \text{sym}(t_2) + 1 & : t_1 = t_2 \\
\text{sym}(t_1) + \text{sym}(t_2) & : t_1 \neq t_2
\end{cases} \]
Generating functions

Two basic generating functions

\[F(u, z) = \sum_{t \in T} \Pr[T = t] u^{\text{sym}(t)} z^{|t|} \]
\[B(u, z) = \sum_{t \in T} \Pr[T = t]^2 u^{\text{sym}(u)} z^{|t| - 1} \]

Theorem

Let \(f(u, z) = \frac{F(u, z)}{z} \). Then

\[\frac{\partial f(u, z)}{\partial z} = f(u, z)^2 + (u - 1) B(u^2, z^2) \]

(Riccati differential equation)
Number of symmetries

Definition

\[\mathcal{E}(z) = \sum_{n \geq 1} \mathbb{E}[\text{sym}(S_n)] z^n \]

Theorem

Let \(B(z) = \sum_{t \in T} \Pr[T = t] 2z^{|t|-1} \) \((= \sum_n b_n z^n). \) Then

\[\mathcal{E}'(z) = \frac{2\mathcal{E}(z)}{z(1-z)} + B(z^2) \]

We should know the behavior of \(B(z) = \sum_n b_n z^n. \) We can calculate \(b_1, b_2, b_3, \ldots : \)

\[
1, 1, \frac{1}{2}, \frac{2}{9}, \frac{13}{144}, \frac{7}{200}, \frac{851}{64800}, \frac{13}{2700}, \frac{1199}{691200}, \frac{2071}{3359232}
\]
Extraction of coefficients of function $B(z)$

We put

$$C(z) = zB(z)$$

Differential equation

$$C(z) - zC'(z) + z^2 C''(z) = C^2(z)$$

Recurrence

$$c_n = \frac{1}{(n - 1)^2} \sum_{k=1}^{n-1} c_k c_{n-k}$$
Solution of recurrence

Recurrence

\[c_n = \frac{1}{(n-1)^2} \sum_{k=1}^{n-1} c_k c_{n-k} \]

Numerical computations: \(b_n = c_{n+1} \approx \left(\frac{1}{3.14} \right)^n \cdot 6n \)
Solution of recurrence

Recurrence

\[c_n = \frac{1}{(n-1)^2} \sum_{k=1}^{n-1} c_k c_{n-k} \]

Numerical computations: \(b_n = c_{n+1} \approx \left(\frac{1}{3.14} \right)^n \cdot 6n \)

SOLUTION !!!

\[b_n = \rho^n \left(6n - \frac{22}{5} + O(n^{-5}) \right) \]

where \(\rho = 0.3183843834378459 \ldots \)
we defined: \(E(z) = \sum_{n \geq 1} E[\text{sym}(S_n)]z^n \)

we know that: \(E'(z) = \frac{2E(z)}{z(1-z)} + B(z^2) \)

we know a lot about \(B(z) = \sum_n b_n z^n \)

Theorem

\[
E[\text{sym}(S_n)] = n \sum_{k=1}^{\lfloor \frac{n+1}{2} \rfloor} \frac{b_k}{(2k-1)k(2k+1)} + (-1)^{n+1} b_{\lfloor \frac{n+1}{2} \rfloor}
\]

hence

\[
E[\text{sym}(S_n)] = n \cdot (0.3725463659 \pm 10^{-10})
\]
We know that $\mathbb{E}[\text{sym}(S_n)] \approx 0.3725 \cdot n$

Simple compression algorithm

If you find a symmetric inner node, replace one of its sub-trees by a pointer. Let $\text{size}(S_n)$ denote the size of generated structure.

$$\mathbb{E}[\text{size}(S_n)] = n \sum_{k=1}^{\left\lfloor \frac{n+1}{2} \right\rfloor} b_k \frac{1}{(2k-1)(2k+1)} \approx 0.4190 \cdot n$$
We know that

- \(H[S_n] = H[T_n] - H[T_n|S_n] \)
- \(H[T_n] = \log_2(n - 1) + 2n \sum_{k=2}^{n-1} \frac{\log_2(k-1)}{k(k+1)} \)
- \(2 \sum_{k=2}^{n-1} \frac{\log_2(k-1)}{k(k+1)} \approx 1.736 \) (for \(n \geq 10^5 \))
- \(H[T_n|S_n] = \ldots = \sum_{s \in S_n} \Pr[S_n = s] \log_2(\text{card}([s]_{\sim})) = \ldots n - 1 - E[\text{sym}(T_n)] \)

Theorem

\[
\lim_{n \to \infty} \frac{H[S_n]}{n} = 1.109\ldots
\]
This is the end

Figure 1: Phylogenetic (evolutionary) Tree

Thank You