
Merging and Merge-sort in a Single Hop Radio
Network?

Marcin Kik
kik@im.pwr.wroc.pl

Institute of Mathematics and Computer Science,
Wrocław University of Technology

ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract. We present two merging algorithms on a single-channel single-hop
radio network without collision detection. The simpler of these algorithms merges
two sorted sequences of length n in time 4n with energetic cost for each station
≈ lg n. The energetic cost of broadcasting is constant. This yields the merge-
sort for n elements in time 2n lg n, where the energetic cost for each station is
1
2

lg2 n + 7
2

lg n (the energetic cost of broadcasting is only 2 lg n), which seems
to be suitable for practical applications due to its simplicity and low constants.
We also present algorithm for merging in time O(n lg∗ n) with energetic cost
O(lg∗ n).

1 Introduction

A radio network consists of processing units (called stations) which communicate with
each other by broadcasting radio messages. There are two important complexity mea-
sures of the radio network algorithms: time and energy consumption. Most of energy is
consumed by broadcasting and listening to messages. The stations are often powered
by batteries. If a single station fails due to battery exhaustion, then the whole task per-
formed by the network may also fail. Therefore we want to implement algorithms in
such a way that the maximal energy used by a single station is minimized. There are
many problems concerning self-organization of the network (such as leader election and
initialization [8], [5], [6]) that are nontrivial even in the single-hop networks. We may
also need to process or organize data distributed among the stations (for example some
measurements made by the stations). Some of the typical examples of such problems
are finding minimum, maximum, median [10], average value [7], or sorting [11].

We consider a network of n numbered stations s1, . . . , sn communicating through
a single radio channel. Each station si knows the value n, its own number i and stores
a single key in its variable key[si]. We want to sort the keys within the network. (The
keys are sorted if, for each pair of stations, the station with a lower number holds the
lower key.) All stations are synchronized. Time is divided into slots. Within a single
time slot a single message can be broadcast. We consider single-hop network: Message
broadcast by any station can be received by any other station. A single message contains
? Partially supported by KBN, grant number 3T11C 011 26 in year 2004 and by the European

Union within the 6th Framework Programme under contract 001907 (DELIS).



O(max{B, lg n}) bits, where B is the number of bits of a single key. (Typically B =
Θ(lg n).) Broadcasting and listening in a single time slot requires a unit of energetic
cost. Each station has limited memory. It can contain a constant number of words of
O(max{B, lg n}) bits each. By energetic cost of the algorithm we mean the maximal
energy dissipated by a single station. We do not assume the existence of the “wake up
mechanism” with a low power paging channel, as described in [10], [11]. Each station
predicts its next time slot for listening or broadcasting using only its internal clock and
state.

There exists an algorithm [9] that sorts n elements in time O(n) with energetic cost
of broadcasting O(1). However the energetic cost of listening in this algorithm is Θ(n).
A comparator network can also be transformed into algorithm for single-hop networks:
each comparator is simulated in two consecutive time slots, when two endpoints of the
comparator exchange their values. The time of such algorithm (in single channel) is two
times the number of comparators, and the energetic cost is not greater than two times
the depth of the network. Thus the AKS sorting network [1] can be transformed into
(impractical) sorting algorithm with time O(n lg n) and energetic cost O(lg n) and the
Batcher networks [2] can be transformed into sorting algorithms with time O(n lg2 n)
and energetic cost O(lg2 n). However, in radio network, a single message can be lis-
tened by many stations and the messages may contain other information besides the
keys. Singh and Prasanna [10], [11] proposed algorithm sorting in time O(n lg n) with
energetic cost O(lg n) by implementing quick-sort and selecting the median as the par-
titioning element in each recursive call with energetically balanced implementation of
asymptotically optimal selection algorithm [3]. It is sophisticated and the constants in-
volved are large (although not as large as in the AKS network) (see simulation results
in [11]).

1.1 Result

We present two merging procedures. The first one merges two sequences of length n
in time O(n) with energetic cost of listening O(lg n) and of broadcasting O(1). It can
be used for implementation of sorting in time O(n lg n) and energetic cost of listening
O(lg2 n) and of broadcasting O(lg n) based on the classical merge-sort algorithm (see
[4]). Although the asymptotic energetic cost of listening for sorting is worse than that
obtained by Singh and Prasanna, it seems to be more suitable for practical implemen-
tations due to the low constants and simplicity. The energetic cost of broadcasting in
merging is only O(1) and in merge-sort is O(lg n). This is important since in prac-
tice broadcasting requires more energy than listening. The second presented merging
algorithm works in time O(n lg∗ n) with energetic cost of listening and broadcasting
O(lg∗ n). To the knowledge of the author it is not known whether there exists merging
algorithm with asymptotically lower energetic cost or whether there is any non-constant
lower bound for energetic cost of merging. This algorithm can also be used for merge-
sorting in time in time O(n lg n lg∗ n) with energetic cost O(lg n lg∗ n). Implementa-
tions of the simulations of these algorithms can be found at [12].

Theorem 1. There exist algorithms that merge two sorted sequences of length m on a
single hop radio network without collision detection:



– in time 4m with energetic cost of listening dlg(m + 1)e+ 1 and of broadcasting 2.
– in time O(m lg∗ m) with energetic cost of listening and broadcasting O(lg∗ m)

2 Merging

1 4 3 5 5 6

6 32 2

4 1

Fig. 1. Tree T6. Right to the nodes are their preorder indexes.

For simplicity of description we assume that all the keys are pairwise distinct. Let
Tm denote a balanced binary tree consisting of the nodes 1, . . . ,m: If m = 2k − 1, for
some integer k > 0, then Tm is a complete binary tree. If m = 2k − 1 − l, for some
positive integer l < 2k−1, then the l rightmost leaves are missing. The nodes are placed
in Tm in the inorder order (i.e. for each node x the nodes in its left subtree are less than x
and the nodes in its right subtree are greater than x). By l(m,x) (respectively r(m,x)),
for 1 ≤ x ≤ m, we denote the left (respectively right) child of node x in Tm. (A non-
existing child is represented by NIL.) By p(m,x) we denote the index of node x in
Tm in preorder ordering. (I.e. the preorder index of the root is 1, then the nodes on the
second level are indexed from left to right, then on the third level, and so on.) We also
assume that p(m,NIL) = NIL. An example of Tm for m = 6 is given in Figure 1.
Note that the height (number of levels) of Tm is min{k : 2k − 1 ≥ m} = dlg(m + 1)e
(where “lg” denotes “log2”). For m ≥ 1, we define a sequence h(m, 0), h(m, 1), . . . as
follows:

h(m, i) =

{

m if i = 0
dlg(h(m, i − 1) + 1)e if i ≥ 1

(1)

Let l∗(m) = min{i : h(m, i) ≤ 2}. Note that l∗(m) = O(lg∗ m). (Note also, that
l∗(m) ≤ 4, for m ≤ 2127 − 1.) The functions l(m,x), r(m,x), p(m,x), h(m, i) and
l∗(m) can be computed internally by each station.

We want to merge two sorted sequences of keys stored in stations 〈a1, . . . , am〉 and
〈b1, . . . , bm〉 into a single sorted sequence of length 2m stored in 〈a1, . . . , am, b1, . . . bm〉.
Procedure Rank (see Algorithm 1) computes the rank of each element of the first se-
quence in the second sequence. (By the rank of ai in 〈b1, . . . , bm〉 we mean the number
of elements bj with key[bj ] < key[ai].) The result of Rank for each ai is in rank[ai].
Note that it is a parallel implementation of the classical bisection algorithm, where
each station ai predicts when its next bisecting key will be broadcast by some bj . The
bisecting keys are broadcast in appropriate order, since in preorder each key is pre-
ceded by all the keys from the higher levels of Tm. The time of Rank is m slots. The



procedure Rank(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
Each station ai does: timer[ai]← 1; rank[ai]← 0;
for time slot d← 1 to m do

let x be such that p(m, x) = d; (* d is preorder index of x *)
station bx broadcasts 〈k〉, where k = key[bx];
each station aj with timer[aj ] = d listens and does:
if key[aj ] < k then

timer[aj ]← p(m, l(m, x)); (* preorder index of left child of x *)

else
timer[aj ]← p(m, r(m, x)); (* preorder index of right child of x *)
rank[aj ]← x;

Algorithm 1: Procedure Rank

energetic cost of broadcasting is 1. (Each bi broadcasts once.) The energetic cost of lis-
tening is dlg(m + 1)e, since each ai listens at most once at each level of Tm. Rank can
be used for merging two sorted sequences as in the procedure Merge (Algorithm 2).
The time of Merge(〈a1, . . . , am〉, 〈b1, . . . , bm〉) is 4m. The energetic cost of listen-

procedure Merge(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
Rank(〈a1, . . . , am〉,〈b1, . . . , bm〉);
Rank(〈b1, . . . , bm〉,〈a1, . . . , am〉);
All stations ai and bi do: idx[ai]← i + rank[ai]; idx[bi]← i + rank[bi];
(* for 1 ≤ i ≤ m let ci = ai and cm+i = bi *)
for time slot t← 1 to 2m do

station ci with idx[ci] = t broadcasts 〈k〉, where k = key[ci];
station ct listens and does: new[ct]← k;

Each station ci does: key[ci]← new[ci];
Algorithm 2: Procedure Merge.

ing is dlg(m + 1)e + 1. (Each station listens at most dlg(m + 1)e times in one of the
Rank procedures and once in the “for” loop.) The energetic cost of broadcasting is 2:
Each station broadcasts at most twice (in one of the Rank procedures and in the “for”
loop). Thus the total energetic cost is dlg(m + 1)e + 3. (This could be compared to the
time ≈ 2 · m lg m and energetic cost ≈ 2 lg m of merging procedures obtained by the
transformation of Batcher merging comparator networks [2].) Note that the algorithm
is correct: The key key[ai] is preceded by idx[ai] − 1 = i − 1 + rank[ai] keys in the
sorted sequence of keys from both sequences. (The same holds for each key[bi].) Since
the keys are pairwise distinct, no two elements ci have the same idx[ci] and there are
no transmission collisions in the “for” loop.

2.1 Reducing the asymptotic energetic cost of merging to O(lg∗ m)

We reduce the asymptotic energetic cost of listening. Instead of computing the ranks
of each ai in 〈b1, . . . , bm〉, we first compute the ranks of some stations bj (b-splitters)



in 〈a1, . . . , am〉. The b-splitters split the sequence 〈b1, . . . , bm〉 into blocks (b-blocks)
of size h(m, 1). The energetic cost of computing the rank of each b-splitter is balanced
among all stations in its b-block. Then the stations a1, . . . , am are grouped so that the
stations of each group are ranked in separate b-block. Then we split 〈a1, . . . , am〉 into
a-blocks of size h(m, 2) which compute the rank of their a-splitters (it is enough, to find
the rank of a-splitter in its corresponding b-block) and regroup the stations b1, . . . , bm

into separate a-blocks. We iterate this procedure while the sizes of the blocks decrease
rapidly. We define an auxiliary procedure Regroup (see Algorithm 3). Let g(m, i) =
d m

h(m,i)e and α(m, i, j, k) = (j − 1) · h(m, i) + k. By ci,j,k and di−1,j,k we denote the
stations from {a1, . . . , am} and {b1, . . . , bm} as follows. For 1 ≤ k ≤ h(m, i):

ci,j,k =

{

aα(m,i,j,k) if α(m, i, j, k) ≤ m,
bα(m,i,j,k)−m if α(m, i, j, k) > m.

For 1 ≤ k ≤ h(m, i − 1): for α(m, i − 1, j, k) ≤ m, let di−1,j,k = bα(m,i−1,j,k) and,
for α(m, i − 1, j, k) > m, di,j,k does not exist (it is treated as if key[di,j,k] = +∞).

For 1 ≤ j ≤ g(m, i), ci,j,1 is jth a-splitter and, for k > 1, ci,j,k is a slave of ci,j,1.
For parameter i > 1, we assume that the stations a1, . . . am are grouped between the
b-splitters di−1,1,1, . . . , di−1,g(m,i−1),1 as follows. For any al and j = group[al]:

– If 1 ≤ j ≤ g(m, i − 1) − 1 then key[di−1,j,1] < key[al] < key[di−1,j+1,1].
– If j = 0 then key[al] < key[b1]. (Note that b1 = di−1,1,1)
– If j = g(m, i − 1), then key[al] > key[di−1,g(m,i−1),1].

Note that, for parameter i = 1, we do not have any assumptions. In this case g(m, i −
1) = 1 and each al has group[al] = 1. The task of Regroup is grouping of the stations
b1, . . . , bm between the splitters ci,1,1, . . . , ci,g(m,i),1.

We divide the code into fragments (phases) and analyze each phase separately. Each
station has a clock variable t, that is increased after each time slot. In Phase 1 the rank
of each splitter ci,j,1 in 〈b1, . . . , bm〉 is computed. Each splitter di−1,j′,1 together with
its slaves forms a binary tree Th(m,i−1). These trees are scanned level by level: first all
the nodes of all the trees at level 1 (i.e. roots), then all the nodes of all the trees at level
2, and so on. The number of levels (the height of Th(m,i−1)) is h(m, i). To compute the
rank of ci,j,1 we have to consider only the tree corresponding to group[ci,j,1]. At level
l each station listens at most once and corrects its rank′ and timer. (The new value
of timer is either NIL or preorder index of some bi′ on the next level.) Between the
levels l and l + 1, after all stations bi′ on level l in all the trees have broadcast their
messages, the collected informations and the task of further computation is transferred
from each ci,j,l to the next slave ci,j,l+1. The time slot of this transfer is known in
advance, since the size of each level is known. The time of Phase 1 is O(m) since
the number of all stations ci,j,k and di−1,j′,k′ is O(m) and in each time slot a different
one of them broadcasts. The energetic cost is O(1), since each ci,j,k listens once and
broadcasts once and each di−1,j′,k′ broadcasts once. After Phase 1 each ci,j,h(m,i)

stores in rank′[ci,j,h(m,i)] the rank of ci,j,1 in 〈b1, . . . , bm〉. (The value rank′[ci,j,1] is
deliberately initiated to 0 at the beginning of Phase 1: If i > 1 and group[ci,j,1] ≥ 1
then key[ci,j,1] is compared to at least one lesser key, since key[di−1,group[ci,j,1],1] <
key[ci,j,1]. If i = 1 or group[ci,j,1] = 0, this ensures that we do not start with too large



procedure Regroup(i, 〈a1, . . . , am〉, 〈b1, . . . , bm〉)
(* Phase 1 *)
Each station ci,j,1 does: begin

group′[ci,j,1]← group[ci,j,1]; key′[ci,j,1]← key[ci,j,1]; timer[ci,j,1]← 1;
rank′[ci,j,1]← 0;

end
for l← 1 to h(m, i) do

(* l denotes level in Th(m,i−1)*)
for v ← 2l−1 to min{2l − 1, h(m, i− 1)} do

(* v – preorder index on level l *)
let x be such that p(h(m, i− 1), x) = v;
for g ← 1 to g(m, i− 1) do

di−1,g,x (if exists) broadcasts 〈k′〉, where k′ = key[di−1,g,x];
Each ci,j,l with group′[ci,j,l] = g and timer[ci,j,l] = v listens and does:
if there was no message or key′[ci,j,l] < k′ then

timer[ci,j,l]← p(h(m, i− 1), l(h(m, i− 1), x));

else
timer[ci,j,l]← p(h(m, i− 1), r(h(m, i− 1), x));
rank′[ci,j,l]← α(m, i− 1, g, x); (* index of di−1,g,x *)

all stations increase clock t;

if l < h(m, i) then
(* not last level – TRANSFER TO THE NEXT SLAVES *)
for j ← 1 to g(m, i) do

ci,j,l broadcasts 〈t′, r′, g, k′〉 where t′ = timer[ci,j,l], r′ = rank′[ci,j,l],
g = group′[ci,j,l], and k′ = key′[ci,j,l];
ci,j,l+1 listens and does: begin

timer[ci,j,l+1]← t′; rank′[ci,j,l+1]← r′; group′[ci,j,l+1]← g;
key′[ci,j,l+1]← k′;

end
all stations increase clock t;

(* Phase 2 *)
Each station ci,j,1 does: winner[ci,j,1]← TRUE;
for j ← 1 to g(m, i) do

ci,j,h(m,i) broadcasts 〈r′〉 where r′ = rank′[ci,j,h(m,i)];
ci,j,1 and (if j > 1) ci,j−1,1 listen;
ci,j,1 does rank[ci,j,1]← r′;
ci,j−1,1 (if exists) does: if rank[ci,j−1,1] = r′ then winner[ci,j−1,1]← FALSE;
all stations increase clock t;

(* Phase 3 *)
Each station bl does: if l = 1 then group[bl]← 0 else group[bl]← NIL;
for l← 1 to m do

if exists ci,j,1 with winner[ci,j,1] = TRUE and rank[ci,j,1] = l − 1 then
ci,j,1 broadcasts 〈j〉;

bl listens and does: if there was a message then bl does group[bl]← j;
all stations increase clock t;

(* Phase 4 *)
for l← 1 to m− 1 do

bl broadcasts 〈g〉 where g = group[bl];
if group[bl+1] = NIL then bl+1 listens and does: group[bl+1]← g;
all stations increase clock t;

Algorithm 3: Procedure Regroup.



rank′[ci,j,1].) In Phase 2 each splitter ci,j,1 learns its rank and computes Boolean
value winner[ci,j,1]. A splitter ci,j,1 is a winner if it is the last splitter with given rank.
Time of Phase 2 is g(m, i) and energetic cost is O(1). In Phase 3 each winner ci,j,1

informs its successor b′ in 〈b1, . . . bm〉 about its block number j (i.e. new group number
for b′). The uninformed stations bl with l > 1 end up with group[bl] = NIL. (b1

ends up with group[b1] = 0 or higher.) The time of Phase 3 is m and energetic cost
is O(1). In Phase 4 each bl with group[bl] = NIL learns its proper group number
from its predecessor. After Phase 4 each station bl with group[bl] = j, knows that it
is ranked somewhere between ci,j,1 and ci,j+1,1. The time of Phase 4 is m − 1 and
energetic cost is O(1). The time of Regroup is O(m) and the energetic cost is O(1),
since the time of each phase is O(m) and energetic cost of each phase is O(1).

procedure Rank’(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
if m ≥ 2 then

Each ai does: group[ai]← 1;
for i← 1 to dl∗(m)/2e+ 1 do

Regroup(2i− 1, 〈a1, . . . , am〉, 〈b1, . . . , bm〉);
Regroup(2i, 〈b1, . . . , bm〉, 〈a1, . . . , am〉);

(* RANK EACH bj IN 〈a1, . . . , am〉 *)
Each station bj does: rank[bj ]← 0;
for i← 1 to m do

ai broadcasts 〈k〉, where k = key[ai];
each bj with group[bj ] = di/2e listens and does:
if k′ < key[bj ] then rank[bj ]← i;
all stations increase clock t;

DO SYMMETRICAL RANKING OF EACH aj IN 〈b1, . . . , bm〉

else a1 and b1 simply compare-exchange their keys
Algorithm 4: Procedure Rank’.

We apply Regroup in the procedure Rank’ (Algorithm 4) that ranks two sorted
sequences of length m in each other in time O(m lg∗ m) with energetic cost O(lg∗ m).
Note that in the last iteration of the first “for” loop we have h(m, 2i− 1) = h(m, 2i) =
2. Thus we only need to rank each element in a block of size 2 of the other sequence.
The number of iterations of the first “for” loop is O(lg∗ m), and hence the time of it
is O(m lg∗ m) and the energetic cost is O(lg∗ m). The time of the remaining part is
O(m) and energetic cost is O(1). By replacing both invocations of Rank in Merge by
a single Rank’(〈a1, . . . , am〉, 〈b1, . . . , bm〉), we obtain an algorithm merging in time
O(m lg∗ m) with energetic cost (of both listening and broadcasting) O(lg∗ m).

3 Merge-sort

For simplicity, we assume that n = 2k for some positive integer k. The stations c1, . . . , cn

contain initially unsorted sequence of keys 〈key[c1], . . . , key[cn]〉. Merge-Sort (Algo-
rithm 5) sorts the sequence stored in the network. Assume that we apply the first of the



procedure Merge-Sort(〈c1, . . . , cn〉)
if m > 1 then

Merge-Sort(
〈

c1, . . . , cn/2

〉

)
Merge-Sort(

〈

cn/2+1, . . . , cn

〉

)
Merge(

〈

c1, . . . , cn/2

〉

,
〈

cn/2+1, . . . , cn

〉

)

Algorithm 5: Procedure Merge-Sort.

described merging algorithms. The time for merging two sequences of length n/2 is
4n/2 = 2n. On the next level of recursion we have to merge two pairs of sequences of
length n/4 in time 2 ·4n/4 = 2n. And so on. The number of levels is lg n, thus the total
sorting time is 2n lg n. The energetic cost is

∑k−1
l=0 (dlg(2l +1)e+3) = 1

2 lg2 n+ 7
2 lg n.

For example, for n = 213 = 8192, the bounds on time and energetic cost are 212992
and 130, respectively. If we apply the second merging algorithm, then the time of
Merge-sort is O(n lg n lg∗ n) and the energetic cost of listening and broadcasting is
O(lg n lg∗ n).

Remark: The presented algorithms can be parallelized and accelerated Ω(k) times if
we use k channels instead of one, where k is O(

√
n).

Acknowledgment. I would like to thank Mirosław Kutyłowski for helpful comments.

References
1. M. Ajtai, J. Komlós and E. Szemerédi. Sorting in c log n parallel steps. Combinatorica, Vol.

3, pages 1–19, 1983.
2. K. E. Batcher. Sorting networks and their applications. Proceedings of 32nd AFIPS, pages

307–314, 1968.
3. M. Blum., R. W. Floyd, V. Pratt, R. L. Rivest, and Robert E. Tarjan. Time bounds for selec-

tion. Journal of Computer System Sciences, 7(4):448-461, 1973.
4. Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest. Introduction to Algorithms. 1994.
5. T. Jurdziński, M. Kutyłowski, J. Zatopiański. Efficient algorithms for leader election in radio

networks. ACM PODC’2002, 51-57, ACM Press.
6. T. Jurdziński, M. Kutyłowski, J. Zatopiański. Energy-Efficient Size Approximation for Ra-

dio Networks with no Collision Detection. COCOON’2002, LNCS 2387, (Springer Verlag,
Berlin 2002), 279-289,

7. M. Kutyłowski, D. Letkiewicz. Computing average value in ad hoc networks. MFCS’2003,
LNCS 2747, (Springer Verlag, Berlin 2003), 511-520,

8. K. Nakano, S. Olariu. Efficient initialization protocols for radio networks with no collision
detection. ICPP 2000. IEEE Computer Society Press: New York, 2000: 263-270.

9. K. Nakano, S. Olariu. Broadcast-efficient protocols for mobile radio networks with few chan-
nels. IEEE Transactions on Parallel and Distributed Systems, 10:1276-1289, 1999.

10. M. Singh and V. K. Prasanna. Optimal Energy Balanced Algorithm for Selection in Single
Hop Sensor Network. SNPA ICC, May 2003.

11. M. Singh and V. K. Prasanna. Energy-Optimal and Energy-Balanced Sorting in a Single-Hop
Sensor Network. PERCOM, March 2003.

12. Compendium of Large-Scale Optimization Problems. (DELIS, Subproject 3).
http://ru1.cti.gr/delis-sp3/


