
More intuitive analysis of bit-reversal scheduling

RBO∗

by Marcin Kik

Marcin.Kik@pwr.wroc.pl or mki1967@gmail.com

May 23, 2014

This document is replacement of mki-seminar_current.pdf from https://sites.google.com/site/rbo-
protocol/rbo-files. It contains more intuitive presentation of the analysis of the the RBO (bit-
reversal scheduling protocol) [1], [2], [3], [5], [4]. It will be updated to improve its readability.

First we present the bounds on the tuning costs (i.e. external-energy costs) of the RBO receiver
in the case of reliable and unreliable transmission channel.

Then we present and analyze the algorithm NSI that efficiently computes the next wake-up time-
slot for the RBO receiver.

Introduction

Broadcast scheduling: There is a single server (broadcaster) that broadcasts a set of messages
and a dynamic set of clients (receivers). Each receiver wants to receive some specified subset of
the messages. Each message has a key and we assume that the keys are from some linearly ordered
universe.

The broadcaster is unaware of the receivers and what are the keys requested by the receivers. He
simply broadcasts the set periodically in so called broadcast cycles . The broadcast cycle is divided
into time-slots and in each time-slot a single message is transmitted.

On the other hand the receiver is initially unaware of the contents of broadcast cycle. He simply
wants to receive all the messages with the keys in some specified interval, say [κ′, κ′′]. The receiver
may start at arbitrary time-slot s during the broadcast cycle and we want it to receive all the
messages with the keys in [κ′, κ′′] transmitted since the time-slot s. Since there is some cost
(usually – energetic) of message reception, we also want to minimize the number of time-slots when
receiver to listens to anything else. We call the number of such time-slots extra energy or tuning
cost of the receiver.

We propose a broadcast scheduling method based on properties of bit-reversal permutation. We
assume that the length of broadcast cycle is n = 2k, for some positive integer k. (Otherwise, we
may duplicate some messages to increase their number to the power of two, since we do not require
that the keys are distinct.)

Preliminaries

Notation:

• bink(x) denotes k-bit binary representation of xmod 2k

(e.g. bin4(5)= (0101))

∗. This document has been written using the GNU TEXMACS text editor (see www.texmacs.org).

1

http://www.texmacs.org

• for x≥ 0, bin(x)= binl(x), where l= ⌈lg2 (x+1)⌉

(e.g. bin(5)= (101), bin(0)= ())

• for a binary representation α, (α)2 denotes the integer represented by α

(e.g. (0101)2=5)

• for a sequence α, revα denotes the reversal of the sequence α

• αβ denotes concatenation of sequences α and β

• αi denotes concatenation of i copies of the sequence α.

• revk(t) is the integer represented by reversal of k-bit representation of tmod 2k, i.e.:

revk(t)= (rev bink(t))2

• Z denotes the set of all integer numbers

• [[a, b]] = [a, b]∩Z

• for S ⊆Z, revkS= {revk(x) |x∈S }

(i.e. image of S under revk)

• For a finite set S, the number of elements of S is denoted by |S |

• For a random variable v, EX[v] denotes the expected value of v.

RBO operation

The length of the broadcast cycle is 2k. Let n denote 2k.

The sequence κ0,	 , κn−1 is the sorted sequence of the keys (i.e. κ0≤	 ≤κn−1).

The broadcast cycle is the sequence: κrevk(0),	 , κrevk(n−1).

Let us define κ−1 and κn as follows: κ−1=−∞ and κn=+∞.

The receiver wishes to receive the keys from the interval [κ′, κ′′].

We assume that κ′≤ κ′′.

Let r ′=min {r : r ∈ [[0, n]]∧ κ′≤ κr } and r ′′=max {r : r∈ [[−1, n− 1]]∧κr≤κ′′}.

Note that:

• 0≤ r ′≤ r ′′+1≤n, and

• {κi : r ′≤ i≤ r ′′}= [κ′, κ′′]∩{κ0,	 , κn−1}, and

• r ′= r ′′+1 implies [κ′, κ′′]∩ {κ0,	 , κn−1}= ∅.

By s we denote the time-slot when the receiver starts. (W.l.o.g. we assume that s≥ 0.)

RBO Broadcaster in time-slot t broadcasts κrevk(t).

2

RBO Receiver requesting for the keys from [κ′, κ′′] starting in time-slot s:

• starts in time slot s with lb=0, ub=n− 1

• In time slot t≥ s:

◦ if lb≤ revk(t)≤ ub then the receiver listens

◦ if the receiver successfully receives the key κ= κrevk(t)

then

− if κ<κ′ then lb← revk(t) + 1

− if κ′′<κ then ub← revk(t)− 1

− if κ′≤ κ≤κ′′ then the receiver reports κ

◦ if ub< lb then the receiver reports absence of the keys from [κ′, κ′′] in the broadcast
cycle and stops

Let lbt denote the value of lb just before time-slot t. (For t≤ s, we have lbt=0.)

Let ubt denote the value of ub just before time-slot t. (For t≤ s, we have ubt=2k− 1.)

The left-side energy used in the set of time-slots Y (denoted: le Y) is the size of the set {t ∈ Y :
lbt≤ revk(t)≤ r ′− 1}.

The right-side energy used in the set of time-slots Y (denoted: re Y) is the size of the set {t∈ Y :
r ′′+1≤ revk(t)≤ ubt}.

Example:

Recall that s is the starting time-slot of the RBO receiver.

If s is such that:

bink(revk(s))= (000111011010011)

then, we present bink(revk(s)) as the following concatenation:

(000)(111)(011)(01)(0)(011).

Note that the sequence bink(revk(s)), bink(revk(s+1)),	 looks as follows:

• (000)(111)(011)(01)(0)(011),

• (100)(111)(011)(01)(0)(011),

• (010)(111)(011)(01)(0)(011),

• 	

• (111)(111)(011)(01)(0)(011),

3

• (000)(000)(111)(01)(0)(011),

• (100)(000)(111)(01)(0)(011),

• 	

• (111)(111)(111)(01)(0)(011),

• (000)(000)(000)(11)(0)(011),

• 	

• (111)(111)(111)(11)(0)(011),

• (000)(000)(000)(00)(1)(011),

• 	

• (111)(111)(111)(11)(1)(011),

• (000)(000)(000)(00)(0)(111),

• 	

• (111)(111)(111)(11)(1)(111),

• (000)(000)(000)(00)(0)(000),

• 	

• (111)(111)(111)(11)(1)(111),

• (000)(000)(000)(00)(0)(000),

• 	

• (111)(111)(111)(11)(1)(111),

• 	

Definitions:

k is fixed positive integer such that the length of the broadcast cycle is n=2k.

Thus, the broadcast cycle is the sequence: κrevk(0),	 , κrevk(2k−1).

s is the time-slot when the RBO receiver starts.

Let the non-negative integer: last and the sequence l0,	 , llast be defined as follows:

If bink(revk(s))= (0)k then last=0 and l0= k, else

if bink(revk(s))= (0)k
′

(1)k−k ′

, for some k ′, 0≤ k ′<k, then last=1, and l0= k ′, and l1= k, else

last and l0,	 , llast are defined so that the following holds:

bink(revk(s))= (0)l0(1)l1−l0((0)(1)l2−l1−1)	 ((0)(1)llast−llast−1−1).

Note that we have always llast= k.

4

For i > last, let li= k.

Let γi=(0)(1)li+1−li−1.

Let γi
′=(1)li+1−li.

Old definitions of βi and αi:

βi= γi
′γi+1	 γlast−1

(0)αi= γi+1	 γlast−1

Note that: revk(s)= ((0)l0γ0
′γ1	 γlast−1)2

← bink(revk(s)) →
← β0 →

← α0 →
0 	 0 1 	 1 0 1 	 1 0 1 	 1 0 α2

← l0 → ← γ0
′ → ← γ1 → ← γ2 →

← l1 →
← l2 →
← l3 →
← k →

Let t0= s.

For i≥ 0, let ti+1= ti+2li.

Note that: revk(ti) = ((0)li γi
′γi+1	 γlast−1)2 (If i= last− 1, then γi+1	 γlast−1 is empty sequence,

and, if i≥ last, then γi
′γi+1	 γlast−1 is empty sequence.)

Division of the time-slots s, s+1,	 into blocks Yi and sub-blocks Yi,j:

For i≥ 0, let Yi= [[ti, ti+1− 1]].

For i≥ 0, for j ∈ [[0, li]], let Yi,j= [[ti+ ⌊2j−1⌋, ti+2j − 1]].

Note that Yi,0= {ti} and, for j ∈ [[0, li− 1]], Yi,j+1⊆Yi \
(

⋃

j ′=0
j

Yi,j ′

)

.

Sets of keys’ indexes broadcast during blocks Yi and sub-blocks Yi,j:

Let Xi= revk Yi.

Let Xi,j= revk Yi,j.

Subset Xi contains the elements of the following sequence of indexes:

• (rev(binli(0))γi
′ γi+1	 γlast−1)2

• 	

• (rev(binli(2
li− 1))γi

′ γi+1	 γlast−1)2

Note that: For i= last− 1, γi+1	 γlast−1 is an empty sequence and, for i= last, γi
′ γi+1	 γlast−1 is

an empty sequence. If l0=0, then rev(binl0(0)) = rev(binl0(2
l0− 1)) is an empty sequence.

5

We have Xi,0= {(0)liγi
′ γi+1	 γlast−1}.

For 1≤ j ≤ li, subset Xi,j contains the elements of the following sequence of indexes:

• (rev(binj−1(0)) 1 (0)
li−jγi

′ γi+1	 γlast−1)2

• 	

• (rev(binj−1(2
j−1− 1)) 1 (0)li−jγi

′ γi+1	 γlast−1)2

Note that: For j=1, rev(binj−1(0))= rev(binj−1(2
j−1− 1)) is an empty sequence.

Note that: If Xi,j contains more than one element, then j ≥ 2 and the minimal distance between
the elements of Xi,j is 2

k−j+1.

Infinite extensions of Xi and of
⋃

j ′=0

j
Xi,j ′:

For i≥ 0, let Xi= {x · 2k−li+(γi
′γi+1	 γlast−1)2 : x∈Z } and,

for j ∈ [[0, li]], let Xi,j= {x · 2k−j+((0)li−j γi
′γi+1	 γlast−1)2 : x∈Z }.

Note that: Xi=Xi∩ [[0, 2k− 1]] and
⋃

j ′=0
j

Xi,j ′=Xi,j ∩ [[0, 2k− 1]].

Definitions of pi,j
′ , pi

′, xi
′ and pi,j

′′ , pi
′′, xi

′′:

• pi,j
′ =max {x : x∈Xi,j ∧x< r ′}

• xi,j
′ = ⌊pi,j

′ /2k−j⌋ (note that: xi,j
′ ≥−1, since r ′≥ 0)

• pi
′=max {x : x∈Xi∧ x< r ′}

• xi
′= ⌊pi

′/2k−li⌋ (note that: xi
′≥−1, since r ′≥ 0)

• pi,j
′′ =min {x : x∈Xi,j∧ r ′′<x}

• xi,j
′′ = ⌊pi,j

′′ /2k−j⌋ (note that: xi,j
′′ ≤ 2j, since r ′′≤ 2k− 1)

• pi
′′=min {x : x∈Xi∧ r ′′<x}

• xi
′′= ⌊pi

′′/2k−li⌋ (note that: xi
′′≤ 2li, since r ′′≤ 2k− 1)

Note that:

• pi
′=2k−li ·xi

′+(γi
′γi+1	 γlast−1)2

• pi,j
′ =2k−j ·xi,j

′ +((0)li−jγi
′γi+1	 γlast−1)2

• pi
′′=2k−li ·xi

′′+(γi
′γi+1	 γlast−1)2

• pi,j
′′ =2k−j ·xi,j

′′ +((0)li−jγi
′γi+1	 γlast−1)2

6

ENERGY IN RELIABLE NETWORK

In reliable network the receiver successfully receives the key in each time-slot it listens.

LEFT-SIDE ENERGY:

Let lbt denote the value of lb just before time-slot t. (For t≤ s, we have lbt=0.)

Note that:

• if t < t′ then lbt≤ lbt′, and

• RBO receiver uses one unit of left-side energy in time-slot t (i.e. le{t}=1) if and only if
revk(t)∈ [[lbt, r

′− 1]] and lbt+1= revk(t) + 1.

• le [[t, t+m]]≤ | [[lbt, r ′− 1]]∩ revk [[t, t+m]] |.

• The left-side energy used in Yi+1 is not greater than the size of [[pi
′ + 1, r ′ − 1]] ∩Xi+1 =

[[pi
′+1, pi+1

′]]∩Xi+1. (I.e. leYi+1≤ | [[pi
′+1, pi+1

′]]∩Xi+1 |.)

• The left-side energy used in Yi,j+1 is not greater than the size of [[pi,j
′ +1, r ′−1]]∩Xi,j+1=

[[pi,j
′ +1, pi,j+1

′]]∩Xi,j+1. (I.e. leYi,j+1≤ | [[pi,j
′ +1, pi,j+1

′]]∩Xi,j+1 |.)

Bounds on r ′:

• pi
′+1≤ r ′≤ pi

′+2k−li

• pi,j
′ +1≤ r ′≤ pi,j

′ +2k−j

Bounds on lb:

After the time-slots
⋃

i′=0
i

Yi′ the value of lb is in [[pi
′+1, r ′]].

After the time-slots
⋃

i′=0
i−1

Yi′∪
⋃

j ′=0
j

Yi,j ′ the value of lb is in [[pi,j
′ +1, r ′]].

(In other words: if t ≥ max Yi + 1, then lbt ∈ [[pi
′ + 1, r ′]] and if t ≥ max Yi,j + 1, then

lbt∈ [[pi,j
′ +1, r ′]].)

Left-energy bound for Yi,0:

The left-side energy used during the time-slots Yi,0 is at most 1, since |Yi,0|= |Xi,0|=1.

Left-energy bound for Yi,j+1:

For 0≤ j ≤ li− 1, the left-side energy used during the time-slots Yi,j+1 is at most 1, since:

• [[pi,j
′ +1, r ′− 1]]∩Xi,j+1⊆ [[pi,j

′ +1, pi,j
′ +2k−j − 1]]∩Xi,j+1, since r ′≤ pi,j

′ +2k−j, and

• [[pi,j
′ +1, pi,j

′ +2k−j− 1]]∩Xi,j+1⊆{pi,j
′ +2k−j−1}.

Left-side energy bound for Y0:

Thus, the left-side energy used during the time-slots Y0 is at most 1+ l0.

7

Lemma 1. (Lemma L0.) leY0≤ 1+ l0.

Left-side energy bound for
⋃

j ′=0

li Yi+1,j ′, where i+1≤ last− 1:

Remark: If i+1= last− 1, then γi+2	 γlast−1 is an empty sequence.

For 0≤ i≤ last−1, the left-side energy used during the time-slots
⋃

j ′=0
li Yi+1,j ′ is at most 1, since:

• [[lbminYi+1
, r ′− 1]]∩

(

⋃

j ′=0
li Xi+1,j ′

)

⊆ [[pi
′+1, pi

′+2k−li− 1]]∩Xi+1,li, and

• pi
′+ 1= 2k−li · xi

′+ (γi
′γi+1	 γlast−1)2+ 1> 2k−li · xi

′+ ((0)li+1−liγi+1
′ γi+2	 γlast−1)2, since

(γi
′γi+1)2> ((0)li+1−liγi+1

′)2, and

• pi
′ + 2k−li − 1 = 2k−li · (xi

′ + 1) + (γi
′γi+1	 γlast−1)2 − 1 < 2k−li · (xi

′ + 2) +

((0)li+1−liγi+1
′ γi+2	 γlast−1)2, and, hence,

• [[pi
′+1, pi

′+2k−li− 1]]∩Xi+1,li⊆{2
k−li · (xi

′+1)+ ((0)li+1−liγi+1
′ γi+2	 γlast−1)2}.

Left-side energy bound for Yi+1, where i+1≤ last− 1:

For each j, j > li, the left-side energy used in Yi+1,j is at most 1.

If the left-side energy used during the time-slots
⋃

j ′=0
li+1−1

Yi+1,j ′ is li+1− 1, then

• the left-side energy used during the time-slots
⋃

j ′=0
li Yi+1,j ′ is 1 and

• pi+1,li
′ =2k−li · (xi

′+1)+ ((0)li+1−liγi+1
′ γi+2	 γlast−1)2, and,

• for each j, li+1≤ j ≤ li+1− 1, the left-side energy used during the time-slots Yi+1,j is one

and pi+1,j
′ =2k−li · (xi

′+1)+ ((1)j−li(0)li+1−jγi+1
′ γi+2	 γlast−1)2.

Note that, in this case:

• pi+1,li+1−1
′ =2k−li · (xi

′+1)+ ((1)li+1−1−li 0γi+1
′ γi+2	 γlast−1)2, and

• r ′ ≤ pi
′ + 2k−li = 2k−li · (xi

′ + 1) + (γi
′γi+1	 γlast−1)2 < 2k−li · (xi

′ + 1) +

((1)li+1−liγi+1
′ γi+2	 γlast−1)2, and, hence,

• [[pi+1,li+1−1
′ +1, r ′− 1]]∩Xi+1,li+1

=∅, thus, the left-side energy used in time-slots Yi+1,li+1

is zero.

Thus, the left-side energy used in Yi+1 is at most li+1− li.

Left-side energy bound for
⋃

j ′=0

li Yi+1,j ′, where i+1= last:

Remark: If i+1= last, then γi+1	 γlast−1 is an empty sequence.

For i+1= last, the left-side energy used during the time-slots
⋃

j ′=0
li Yi+1,j ′ is at most 1, since:

• [[lbminYi+1
, r ′− 1]]∩

(

⋃

j ′=0
li Xi+1,j ′

)

⊆ [[pi
′+1, pi

′+2k−li− 1]]∩Xi+1,li, and

• pi
′+1=2k−li · xi

′+(γi
′)2+1> 2k−li ·xi

′+((0)li+1−li)2, since (γi
′)2> ((0)li+1−li)2, and

• pi
′+2k−li− 1= 2k−li · (xi

′+1)+ (γi
′)2− 1< 2k−li · (xi

′+2)+ ((0)li+1−li)2, and, hence,

8

• [[pi
′+1, pi

′+2k−li− 1]]∩Xi+1,li⊆{2
k−li · (xi

′+1)+ ((0)li+1−li)2}.

Left-side energy bound for Yi+1, where i+1= last:

For each j, j > li, the left-side energy used in Yi+1,j is at most 1.

If the left-side energy used during the time-slots
⋃

j ′=0
li+1−1

Yi+1,j ′ is li+1 − 1, then the left-side

energy used during the time-slots
⋃

j ′=0
li Yi+1,j ′ is 1 and pi+1,li

′ = 2k−li · (xi
′ + 1) + ((0)li+1−li)2,

and, for each j, li+ 1≤ j ≤ li+1− 1, the left-side energy used during the time-slots Yi+1,j is one

and pi+1,j
′ =2k−li · (xi

′+1)+ ((1)j−li(0)li+1−j)2. Note that, in this case:

• pi+1,li+1−1
′ =2k−li · (xi

′+1)+ ((1)li+1−1−li 0)2, and

• r ′≤ pi
′+2k−li=2k−li · (xi

′+1)+ (γi
′)2=2k−li · (xi

′+1)+ ((1)li+1−li)2, and, hence,

• [[pi+1,li+1−1
′ +1, r ′− 1]]∩Xi+1,li+1

=∅, thus, the left-side energy used in time-slots Yi+1,li+1

is zero.

Thus, the left-side energy used in Yi+1 is at most li+1− li.

Lemma 2. (Lemma L1.) ∀0≤i≤last−1 leYi+1≤ li+1− li.

Total bound for the left-side energy:

Left-side energy is at most 1+l0+
∑

i=0
last−1 (li+1− li)= 1+ llast=1+ k.

Lemma 3. (Lemma L.) le {t : t∈Z ∧ t≥ s}≤ k+1.

RIGHT-SIDE ENERGY

Let ubt denote the value of ub just before time-slot t. (For t≤ s, we have ubt=2k− 1.)

Note that:

• if t < t′ then ubt≥ ubt′, and

• RBO receiver uses one unit of right-side energy in time-slot t (i.e. re{t}=1) if and only if
revk(t)∈ [[r ′′+1, ubt]] and ubt+1= revk(t)− 1.

• re [[t, t+m]]≤ | [[r ′′+1, ubt]]∩ revk [[t, t+m]] |.

• The right-side energy used in Yi+1 is not greater than the size of [[r ′′+1, pi
′′− 1]]∩Xi+1=

[[pi+1
′′ , pi

′′− 1]]∩Xi+1. (I.e. reYi+1≤ | [[pi+1
′′ , pi

′′− 1]]∩Xi+1 |.)

• The right-side energy used in Yi,j+1 is not greater than the size of [[r ′′ + 1, pi,j
′′ − 1]] ∩

Xi,j+1= [[pi,j+1
′′ , pi,j

′′ − 1]]∩Xi,j+1. (I.e. reYi,j+1≤ | [[pi,j+1
′′ , pi,j

′′ − 1]]∩Xi,j+1 |.)

• For l∈ [[0, li+1]], re
⋃

j ′=0
l

Yi+1,j ′≤ | [[pi+1,l
′′ , pi

′′− 1]]∩Xi+1,l |

9

Bounds on r ′′:

• pi
′′− 2k−li≤ r ′′≤ pi

′′− 1

• pi,j
′′ − 2k−j ≤ r ′′≤ pi,j

′′ − 1

Bounds on ub:

After the time-slots
⋃

i′=0
i

Yi′ the value of ub is in [[r ′′, pi
′′− 1]].

After the time-slots
⋃

i′=0
i−1

Yi′∪
⋃

j ′=0
j

Yi,j ′ the value of ub is in [[r ′′, pi,j
′′ − 1]].

(In other words: if t ≥ max Yi + 1, then ubt ∈ [[r ′′, pi
′′ − 1]] and if t ≥ max Yi,j + 1, then

lbt∈ [[r ′′, pi,j
′′ − 1]].)

Right-energy bound for Yi,0:

The right-side energy used during the time-slots Yi,0 is at most 1, since |Yi,0|= |Xi,0|=1.

Right-energy bound for Yi,j+1:

For 0≤ j ≤ li− 1, the right-side energy used during the time-slots Yi,j+1 is at most 1, since:

• [[r ′′+1, ub1+maxYi,j
]]∩Xi,j+1⊆ [[pi,j

′′ − 2k−j+1, pi,j
′′ − 1]]∩Xi,j+1, and

• [[pi,j
′′ − 2k−j+1, pi,j

′′ − 1]]∩Xi,j+1⊆{pi,j
′′ − 2k−j−1}.

Right-side energy bound for Y0:

Thus, the right-side energy used during the time-slots Y0 is at most 1+ l0.

Lemma 4. (Lemma R0.) reY0≤ 1+ l0.

Right-side energy bound for Yi+1, where i + 1 ≤ last, in the case 2k−li · xi
′′ +

(

(0)li+1−liγi+1
′ γi+2	 γlast−1

)

2
≤ r ′′:

Remark: If i+1= last, then γi+1
′ γi+2	 γlast−1= γi+1	 γlast−1 is an empty sequence.

We have:

• 2k−li ·xi
′′+((0)li+1−liγi+1

′ γi+2	 γlast−1)2≤ r ′′, and

• pi
′′=2k−li ·xi

′′+(γi
′γi+1	 γlast−1)2< 2k−li · (xi

′′+1)+ ((0)li+1−liγi+1
′ γi+2	 γlast−1)2.

Thus, [[r ′′+1, pi
′′− 1]]∩Xi,li= ∅.

Since, for j+1∈ [[li+1, li+1]], the right-side energy used in each Yi+1,j+1 is at most one, the total
energy in Yi+1 is at most li+1− li in this case.

Right-side energy bound for Yi+1, where i + 1 = last, in the case r ′′ < 2k−li · xi
′′ +

(

(0)li+1−liγi+1
′ γi+2	 γlast−1

)

2
:

Remark: If i+1= last, then γi+1
′ γi+2	 γlast−1= γi+1	 γlast−1 is an empty sequence.

10

We have:

• pi
′′− 2k−li≤ r ′′< 2k−li ·xi

′′+((0)li+1−li)2, and,

• since γi
′=(1)li+1−li, pi

′′− 2k−li=2k−li · (xi
′′− 1)+ ((1)li+1−li)2=2k−li ·xi

′′+((0)li+1−li)2− 1.

Thus, r ′′= pi
′′− 2k−li=2k−li · (xi

′′− 1)+ ((1)li+1−li)2 and r ′′+1=2k−li ·xi
′′+((0)li+1−li)2.

Recall that pi
′′− 1= 2k−li ·xi

′′+((1)li+1−li−1(0))2 and Yi+1= Ylast= [[0, 2k− 1]].

Let t′=min {t∈Ylast : revk(t)∈ [[r ′′+1, pi
′′− 1]]}. Note that revk(t

′)= r ′′+1 and, hence, the right-
side energy used in Ylast is at most one in this case. (After t′ the value of ub is r ′′.)

Right-side energy bound for Yi+1, where i+1≤ last− 1, in the case r ′′< 2k−li · xi
′′+

(

(0)li+1−liγi+1
′ γi+2	 γlast−1

)

2
:

We have:

• pi
′′=2k−li ·xi

′′+(γi
′γi+1	 γlast−1)2

• pi
′′− 2k−li≤ r ′′< 2k−li ·xi

′′+((0)li+1−liγi+1
′ γi+2	 γlast−1)2.

Thus:

• pi
′′− 1< 2k−li · (xi

′′+1)+ ((0)li+1−liγi+1
′ γi+2	 γlast−1)2, and

• 2k−li · (xi
′′− 1)+ ((0)li+1−liγi+1

′ γi+2	 γlast−1)2<r ′′+1.

This implies:

• [[r ′′+1, pi
′′+1]]∩Xi+1,li= {2

k−li ·xi
′′+((0)li+1−liγi+1

′ γi+2	 γlast−1)2} and,

• pi+1,li
′′ =2k−li ·xi

′′+((0)li+1−liγi+1
′ γi+2	 γlast−1)2.

Thus the right-side energy used in
⋃

j ′=0
li Yi+1,j ′ is at most one.

Since 2k−li · (xi
′′ − 1) + (γi

′γi+1	 γlast−1)2 = pi
′′ − 2k−li ≤ r ′′, we have 2k−li · (xi

′′ − 1) +

((1)li+1−li−1(0)γi+1
′
	 γlast−1)2 < r ′′ + 1 and, hence, [[r ′′ + 1, pi+1,li

′′]] ∩Xi+1⊆ {2k−li · (xi
′′− 1) +

((1)li+1−liγi+1
′
	 γlast−1)2}. Thus, the right-side energy used in Yi+1 \

(

⋃

j ′=0
li Yi+1,j ′

)

is at most

one.

Hence, the total right-side energy used in Yi+1 is at most two in this case.

The relation between the right-side energy used in Yi+1 and pi+1
′′ :

It follows that

Lemma 5. (Lemma R1.) For 0 ≤ i ≤ last − 1, either the right-side energy used in Yi+1 is at
most li+1− li (i.e. reYi+1≤ li+1− li) or:

• i+1< last, and

• li+1− li=1, and

• the right-side energy used in Yi+1 is two (i.e. reYi+1=2), and

11

• ub1+maxYi+1
+1= pi+1

′′ =2k−li · (xi
′′− 1)+ ((1)li+1−liγi+1

′
	 γlast−1)2.

Compensations for the cases, when the right-side energy used in Yi+1 is two and
li+1− li=1:

In the following, we show that all the cases (except the last one) when the right-side energy used
in Yi+1 is greater than li+1− li must be compensated by using less than li+2+c− li+1+c of right-
side energy in Yi+2+c, for some c≥ 0.

Bound on the right-side energy used in Yi+1 and the values of xi+1
′′ and ub1+maxYi+1

,

in the case when the energy used in Yi+1 is at least li+1 − li and xi+1
′′ ≥

(

bin(xi
′′)(0)li+1−li−1(1)

)

2
:

We show that, in this case, the right-side energy is exactly li+1 − li and xi+1
′′ =

(bin(xi
′′)(0)li+1−li−1(1))2 and ub1+maxYi+1

= pi+1
′′ − 1.

Lemma 6. (Lemma S.) If reYi+1≥ li+1− li and xi+1
′′ ≥ (bin(xi

′′)(0)li+1−li−1(1))2 then

• reYi+1= li+1− li and

• xi+1
′′ =(bin(xi

′′)(0)li+1−li−1(1))2 and

• ub1+maxYi+1
= pi+1

′′ − 1.

Proof:

Since pi+1
′′ ≥ (bin(xi

′′)(0)li+1−li−1(1)γi+1
′ γi+2	 γlast−1)2 and pi+1

′′ − 2k−li+1 ≤ r ′′, we have

(bin(xi
′′)(0)li+1−liγi+1

′ γi+2	 γlast−1)2≤ r ′′.

We also have

r ′′< pi
′′=(bin(xi

′′)(1)li+1−liγi+1γi+2	 γlast−1)2< (bin(xi
′′+1)(0)li+1−liγi+1

′ γi+2	 γlast−1)2.

Hence,

• pi+1,li
′′ =(bin(xi

′′+1)(0)li+1−liγi+1
′ γi+2	 γlast−1)2 and

• [[pi+1,li
′′ , pi

′′− 1]]∩Xi+1,li= ∅ and

• the right-side energy used in
⋃

j ′=0
li Yj ′ is zero and

• pi+1,li
′′ ≥ pi

′′≥ ub1+max Yi
+1= ub1+max Yi+1,li

+1.

Since the right-side energy used in Yi+1 is at least li+1− li and the right-side energy used in each
Yi+1,j is at most one, the right-side energy used in each Yi+1,j+1, for each j + 1 ∈ [[li + 1, li+1]],
must be exactly one.

Thus, for each j+1∈ [[li+1, li+1]], we must have ubi+1,j+1+1= pi+1,j+1
′′ < pi+1,j

′′ .

Note that, pi+1,j+1
′′ ∈{pi+1,j

′′ , pi+1,j
′′ − 2k−j−1}. Thus, for each j+1∈ [[li+1, li+1]], we must have

pi+1,j+1
′′ = pi+1,j

′′ − 2k−j−1.

Since pi+1,li
′′ = (bin(xi

′′ + 1)(0)li+1−liγi+1
′ γi+2	 γlast−1)2, it follows by induction that, for each

j+1∈ [[li+1, li+1]], pi+1,j+1
′′ =(bin(xi

′′)(0)j−li(1)(0)li+1−j−1γi+1
′ γi+2	 γlast−1)2.

Thus, for j+1= li+1, we have pi+1,j+1
′′ =(bin(xi

′′)(0)li+1−li−1(1)γi+1
′ γi+2	 γlast−1)2= pi+1

′′ .

12

Compensation Lemma:

Lemma 7. (Lemma C.) If, for some i∈ [[0, last− 2]],

• xi+1
′′ =(bin(xi

′′− 1)(1))2, and,

• for some d, where i+2+ d≤ last, for each c∈ [[0, d]], the right-side energy used in Yi+2+c

is at least li+2+c− li+1+c,

then, for each c∈ [[0, d]], we have

• li+2+c− li+1+c≤ 2, and

• right-side energy used in Yi+2+c is exactly li+2+c− li+1+c, and

• xi+2+c
′′ =(bin(xi+1

′′)γi+1	 γi+1+c)2, and

• pi+2+c
′′ = ub1+max Yi+2+c

+1.

Proof:

Note that

• pi
′′=(bin(xi

′′)γi
′γi+1	 γlast−1)2, and, hence,

• r ′′≥ pi
′′− 2k−li=(bin(xi

′′− 1)γi
′γi+1	 γlast−1)2.

Since r ′′≥ (bin(xi
′′− 1)γi

′γi+1	 γlast−1)2, we also have, for arbitrary c′∈ [[0, last− 1− i]],

pi+1+c
′′ >r ′′≥ (bin(xi

′′− 1)γiγi+1	 γi+c′γi+c′+1
′ γi+c′+2	 γlast−1)2.

(Note that if c′= last− 2− i, then γi+c′+2	 γlast−1 is an empty sequence, and if c′= last− 1− i,
then γi+c′+1

′ γi+c′+2	 γlast−1 is an empty sequence.)

Hence, we also have

Proposition 8. (Proposition CP.) xi+c′+1
′′ ≥ (bin(xi

′′− 1)γiγi+1	 γi+c′

′)2.

We proof the Lemma 7 (Lemma C) is by induction on c. However, we start by noting that, for
c=−1, we have xi+2+c

′′ =(bin(xi+1
′′))2.

The induction step for c∈ [[0, d]]:

By inductive assumption we have xi+1+c
′′ =(bin(xi+1

′′)γi+1	 γi+c)2.

Case li+2+c − li+1+c=1:

Then γi+1+c=(0) and

pi+1+c
′′ =(bin(xi+1

′′)γi+1	 γi+c(1)γi+c+2	 γlast−1)2,

13

since γi+1+c
′ =(1).

Let p=(bin(xi+1
′′)γi+1	 γi+c(0)γi+c+2

′
	 γlast−1)2.

Note that p∈Xi+2+c and

the minimal element greater than p in Xi+2+c is (bin(xi+1
′′)γi+1	 γi+c(1)γi+c+2

′
	 γlast−1)2,

which is greater than pi+1+c
′′ − 1.

In other words: [[p, pi+1+c
′′ − 1]]∩Xi+2+c= {p}.

We have pi+2+c
′′ ≥ p, since, by Proposition 8 (Proposition CP),

xi+2+c
′′ ≥ (bin(xi+1

′′)γi+1	 γi+cγi+1+c)2=(bin(xi+1
′′)γi+1	 γi+c(0))2.

Since the right-side energy used during Yi+2+c is at least one, we must have

ub1+maxYi+2+c
+1= pi+2+c

′′ = p=(bin(xi+1
′′)γi+1	 γi+c(0)γi+c+2

′
	 γlast−1)2.

Case li+2+c − li+1+c=2:

Then γi+1+c=(01) = (0)li+2+c−li+1+c−1(1).

The right-side energy during Yi+2+c is at least li+2+c− li+1+c and, by Proposition 8 (Proposition
CP),

xi+2
′′ ≥ (bin(xi+1

′′)γi+1	 γi+cγi+1+c)2=(bin(xi+1+c
′′)γi+1+c)2.

Hence, by Lemma 6 (Lemma S),

• the right-side energy during Yi+2+c is exactly li+2+c− li+1+c, and

• ub1+maxYi+2+c
+1= pi+2+c

′′ , and

• xi+2+c
′′ =(bin(xi+1

′′)γi+1	 γi+1+c)2.

Case li+2+c − li+1+c ≥ 2:

Let q= li+2+c− li+1+c− 1.

We have q > 1 and γi+1+c=(0)(1)q.

The right-side energy used in Yi+2+c is at least li+2+c− li+1+c and, by Proposition 8 (Proposition
CP),

xi+2+c
′′ ≥ (bin(xi+1

′′)γi+1	 γi+1+c)2≥ (bin(xi+1+c
′′)(0)q(1))2.

Hence, by Lemma 6 (Lemma S), we have xi+2+c
′′ =(bin(xi+1+c

′′)(0)q(1))2.

However, by Proposition 8 (Proposition CP),

xi+2+c
′′ ≥ (bin(xi+1

′′)γi+1	 γi+1+c)2

= (bin(xi+1+c
′′)(0)(1)q)2

> (bin(xi+1+c
′′)(0)q(1))2,

where the last inequality follows from: q > 1.

Thus we have contradiction and the case li+2+c− li+1+c≥ 2 is impossible.

14

Total right-side energy:

Let i be such that the right-side energy used in Yi+1 is greater than li+1− li.

Then li+1 − li = 1 and the right-side energy used in Yi+1 is two, and ub1+maxYi+1
+ 1 = pi+1

′′ =

2k−li · (xi
′′− 1)+ ((1)li+1−liγi+1

′
	 γlast−1)2.

Thus, xi+1
′′ =(bin(xi

′′− 1)(1))2.

Let d be the maximal integer value such that, i+ 2+ d ≤ last and, for each c ∈ [[0, d]], the right-
side energy used in Yi+2+c is at least li+2+c− li+1+c. (Note that d≥−1.)

Then, by Lemma 7 (Lemma C), for each c∈ [[0, d]], the right-side energy used in Yi+2+c is exactly
li+2+c− li+1+c.

Let i′ be the minimal integer such that i<i′< last and the right-side energy used in Yi′+1 is greater
than li′+1− li′.

It follows that there must be some integer i′′, such that i+2+d< i′′+1<i′+1 and the right-side
energy in Yi′′+1 is at most li′′+1− li′′− 1.

Thus, the total right-side energy is at most:

(1+ l0)+
(
∑

i=0
last−1

li+1− li
)

+1≤ llast+2= k+2.

Lemma 9. (Lemma R.) re {t : t∈Z ∧ t≥ s}≤ k+2.

EXTERNAL ENERGY IN RELIABLE NETWORK:

By Lemma 3 (Lemma L) and Lemma 9 (Lemma R), we have the bound 2k+3 on the total external
energy:

Theorem 10. (Theorem E.) le {t : t∈Z ∧ t≥ s}+ re {t : t∈Z ∧ t≥ s}≤ 2k+3.

15

ENERGY IN UNRELIABLE NETWORK

In unreliable network, in each time-slot when the receiver listens, the receiver successfully receives
the key with some probability p, where 0< p< 1.

For each t∈Z, let successp,t be a random variable such that successp,t=1 with probability p and
successp,t=0 with probability 1− p. Let q denote 1− p.

The receiver successfully receives a key in time-slot t if and only if the receiver listens in time-slot
t and successp,t=1.

Let lbp,t and ubp,t denote the values of variables lb and ub, respectively, just before the time slot t.

Note that, for each t, lbp,t and ubp,t are random variables.

For each t≥ s, we have:

• if revk(t)∈ [[lbp,t, r
′− 1]], then

◦ if successp,t=1, then lbp,t+1= revk(t)+ 1 else lbp,t+1= lbp,t,

and

• if revk(t)∈ [[r ′′+1, ubp,t]] then

◦ if successp,t=1, then ubp,t+1= revk(t)+ 1 else ubp,t+1= ubp,t.

In reliable network we had lbmaxYi,j+1− 1≥ pi,j
′ and ubmaxYi,j+1+1≤ pi,j

′′ .

In unreliable network we can show the corresponding bounds on the expected values of
lbp,maxYi,j+1− 1 and ubp,maxYi,j+1+1:

Lemma 11. (Lemma U1) For i∈ [[0, last]], for j ∈ [[0, li]], we have

• EX[lbp,maxYi,j+1− 1]≥ pi,j
′ −

q

p
· 2k−j and

• EX[ubp,maxYi,j+1+1]≤ pi,j
′′ +

q

p
· 2k−j,

where q= p− 1.

Proof.

We have lbp,maxYi,j+1− 1=max ({lbp,minYi
− 1}∪A), where

A= {revk(t) : t∈
⋃

j ′=0
j

Yi,j ′∧ successp,t=1}∩ [[0, pi,j
′]].

Since
⋃

j ′=0
j

Xi,j ′=Xi,j ∩ [[0, 2k− 1]] and Xi,j= {pi,j
′ +2k−j− d · 2k−j : d∈Z}, we have

revk

⋃

j ′=0

j

Yi,j ′

 =
⋃

j ′=0

j

Xi,j ′

= {pi,j
′ +2k−j− d · 2k−j : d∈Z}∩ [[0, 2k− 1]].

Recall that we also have: pi,j
′ <r ′≤ pi,j

′ +2k−j.

16

For t∈
⋃

j ′=0
j

Yi,j ′, let dt=(pi,j
′ +2k−j− revk(t))/2

k−j.

Thus, revk(t)= pi,j
′ +2k−j − dt · 2k−j.

Note that

revk(t) : t∈
⋃

j ′=0

j

Yi,j ′∧dt≥ 1

=

revk(t) : t∈
⋃

j ′=0

j

Yi,j ′∧ revk(t)<r ′

=

⋃

j ′=0

j

Xi,j ′

∩ [[0, r ′− 1]].

Let g=min {d : d∈Z ∧ pi,j
′ +2k−j − d · 2k−j ≤−1}.

Since p′+2k−j ≥ 0, we have g ∈Z, g ≥ 1.

Let d′=min {d : d∈Z ∧ d≥ 1 ∧ pi,j
′ +2k−j− d · 2k−j ≤ lbp,maxYi,j+1− 1}.

We have

EX[lbp,maxYi,j+1 − 1] ≥ pi,j
′ +2k−j −EX[d′] · 2k−j

= pi,j
′ −EX[d′− 1] · 2k−j.

Since lbp,maxYi,j+1− 1≥−1, we have

d′=min

dt : t∈
⋃

j ′=0

j

Yi,j ′∧ dt≥ 1∧ successp,t=1

∪{g}

.

Since pi,j
′ +2k−j− (g − 1) · 2k−j ≥ −1+2k−j ≥ 0, we have

[[1, g − 1]]⊆

dt | t∈
⋃

j ′=0

j

Yi,j ′∧ dt≥ 1

.

Remark: For 0< p< 1, we have
∑

i=1
+∞ (1− p)i−1=

∑

i=0
+∞ (1− p)i=

1

1− (1− p)
=

1

p
.

Thus:

1 =
∑

i=1

+∞

(1− p)i−1 · p

=
∑

i∈[[1,g−1]]

(1− p)i−1 · p+
∑

i=g

+∞

(1− p)i−1 · p

=
∑

i∈[[1,g−1]]

(1− p)i−1 · p+(1− p)g−1 ·
∑

i=1

+∞

(1− p)i−1 · p

=
∑

i∈[[1,g−1]]

(1− p)i−1 · p+(1− p)g−1 · 1.

For i∈ [[1, g− 1]], the probability that d′= i is (1− p)i−1 · p.

If d′∈[[1, g − 1]], then d′= g and this happens with probability (1− p)g−1.

17

Hence, we have

EX[d′] =
∑

i∈[[1,g−1]]

i · (1− p)i−1 · p+ g · (1− p)g−1

=
∑

i∈[[1,g−1]]

i · (1− p)i−1 · p+ g ·
∑

i=g

+∞

(1− p)i−1 · p

≤
∑

i∈[[1,g−1]]

i · (1− p)i−1 · p+
∑

i=g

+∞

i · (1− p)i−1 · p

=
∑

i≥1

i · (1− p)i−1 · p

=
1

p
.

(Last equality is by geometric distribution.)

Thus we have EX[d′− 1]≤
1

p
− 1 and, hence,

EX[lbp,maxYi,j+1 − 1] ≥ pi,j
′ −EX[d′− 1] · 2k−j

≥ pi,j
′ − (

1

p
− 1) · 2k−j

= pi,j
′ −

q

p
· 2k−j.

For last equality, observe that (
1

p
− 1)=

q

p
, where q=1− p.

By analogy: EX[ubp,maxYi,j+1 +1]≤ pi,j
′′ +

q

p
· 2k−j.

�

Let lep,t and rep,t be random variables defined as follows:

• if revk(t)∈ [[lbp,t, r
′− 1]] then lep,t=1 else lep,t=0, and

• if revk(t)∈ [[r ′′+1, ubp,t]] then rbp,t=1 else rbp,t=0.

Note that, for each set of time-slots Y ,

• the left-side energy used in Y is
∑

t∈Y
lep,t, and

• the right-side energy used in Y is
∑

t∈Y
rep,t.

In reliable network we had leYi,j+1≤ 1 and reYi,j+1≤ 1.

We show the corresponding bounds on the expected energy costs for unreliable network:

Lemma 12. (Lemma U2) If j ∈ [[0, li− 1]], then

• EX
[

∑

t∈Yi,j+1
lep,t

]

≤
1

p
+1, and

• EX
[

∑

t∈Yi,j+1
rep,t

]

≤
1

p
+1.

Proof.

18

By Lemma 11 (Lemma U1), we have

EX[lbp,maxYi,j+1− 1] ≥ pi,j
′ −

1− p

p
· 2k−j

= pi,j
′ +2k−j −

1

p
· 2k−j.

We also have r ′− 1< pi,j
′ +2k−j.

Thus EX[r ′− 1− (lbp,maxYi,j+1− 1)]<
1

p
· 2k−j.

Let A= [[lbp,maxYi,j+1, r
′− 1]].

If the receiver listens in time slot t∈Yi,j+1, then revk(t)∈Xi,j+1∩A.

Thus
∑

t∈Yi,j+1
lep,t≤ | revk(Xi,j+1)∩A |.

Recall that the minimal distance between the elements of Xi,j+1 is 2k−(j+1)+1=2k−j.

Let B= {u∈Z : minXi,j+1+ u · 2k−j ∈A}.

Then B= [[⌈(lbp,maxYi,j+1−minXi,j+1)/2
k−j⌉, ⌊((r ′− 1)−minXi,j+1)/2

k−j⌋]].

Since Xi,j+1∩A⊆{x : x=minXi,j+1+u · 2k−j∧ u∈B}, we have:

|Xi,j+1∩A| ≤ |B |

= ⌊((r ′− 1)−minXi,j+1)/2k−j⌋− ⌈(lbp,maxYi,j+1−minXi,j+1)/2k−j⌉+1

≤ (r ′− 1− lbp,maxYi,j+1)/2k−j+1.

Thus:

EX

[

∑

t∈Yi,j+1

lep,t

]

≤ EX[| revk(Xi,j+1)∩A |]

≤ EX[r ′− 1− lbp,maxYi,j+1]/2k−j+1

≤ 1/p+1

By analogy: EX
[

∑

t∈Yi,j+1
rep,t

]

≤ 1/p+1.

�

In reliable network we had le
⋃

j=0
li Yi+1,j ≤ 1 and re

⋃

j=0
li Yi+1,j ≤ 1.

We show the corresponding bounds on the expected energy costs for unreliable network:

Lemma 13. (Lemma U3) If i < last then

• EX
[

∑

t∈[[minYi+1,maxYi+1,li
]]
lep,t

]

≤ 1/p+1 and

• EX
[

∑

t∈[[minYi+1,maxYi+1,li
]]
rep,t

]

≤ 1/p+1.

Proof.

By Lemma 11 (Lemma U1) we have EX[lbp,max Yi,li
+1− 1]≥ pi,li

′ +2k−li−
1

p
· 2k−li.

We also have r ′− 1< pi,li
′ +2k−li.

Thus EX[r ′− 1− lbp,maxYi,li
+1+1]<

1

p
· 2k−li.

19

Note that maxYi,li+1=maxYi+1=minYi+1.

Let A= [[lbp,minYi+1
, r ′− 1]].

If the receiver listens in time slot t∈Yi,j+1, then revk(t)∈ (revk [[min Yi+1,maxYi+1,li]])∩A.

We have revk [[minYi+1,maxYi+1,li]]⊆
⋃

j=0
li Xi+1,j⊂Xi+1,li.

Recall that the minimal distance between elements of Xi+1,li is 2
k−li and

minXi+1=minXi+1,0∈Xi+1,li.

Thus

Xi+1,li∩A = {x | ∃u∈Z x=minXi+1+2k−li ·u}∩A,

and

|Xi+1,li∩A| ≤ ⌊((r
′− 1)−minXi+1)/2

k−j⌋− ⌈(lbp,minYi+1
−minXi+1)/2

k−j⌉+1

≤ (r ′− 1− lbp,minYi+1
)/2k−j+1.

Thus EX[|Xi+1,li∩A|]≤ 1/p+1 and, hence EX
[

∑

t∈[[minYi+1,maxYi+1,li
]]
lep,t

]

≤ 1/p+1.

By analogous reasoning, we have EX
[

∑

t∈[[minYi+1,maxYi+1,li
]]
rep,t

]

≤ 1/p+1.

�

In reliable network we had le [[s, s+2k− 1]]≤ k+1 and re [[s, s+2k− 1]]≤ k+2.

We show the corresponding bounds on the expected energy costs for unreliable network:

Lemma 14. (Lemma U4)

• EX
[

∑

t∈[[minY0,maxYlast]]
lep,t

]

≤ (1/p+1) · (2k+1), and

• EX
[

∑

t∈[[minY0,maxYlast]]
rep,t

]

≤ (1/p+1) · (2k+1).

Proof.

We have |Y0,0|=1< (1/p+1) and, for j ∈ [[1, l0]], by Lemma 12 (Lemma U2), EX
[

∑

t∈Y0,j
let

]

≤

(1/p+1).

Thus

EX

[

∑

t∈Y0

let

]

≤ (1/p+1) · (l0+1).

For i∈ [[0, last− 1]], by Lemma 13 (Lemma U3), EX
[

∑

t∈[[minYi+1,0,maxYi+1,li
]]
lep,t

]

≤ 1/p+1.

For each j ∈ [[li+1, li+1]], by Lemma 12 (Lemma U2), EX
[

∑

t∈Yi+1,j
let

]

≤ (1/p+1).

Thus

EX

[

∑

t∈Yi+1

let

]

≤ (1/p+1) · (li+1− li+1).

20

It follows that

EX

[

∑

t∈[[minY0,maxYlast]]

lep,t

]

= EX

[

∑

i∈[[0,last]]

∑

t∈Yi

let

]

≤ (1/p+1) ·

(

l0+1+
∑

i=1

last

(li− li−1+1)

)

= (1/p+1) · (last+1+ llast)

= (1/p+1) · (2 · k+1).

By analogy: EX
[

∑

t∈[[min Y0,maxYlast]]
ret

]

≤ (1/p+1) · (2k+1).

�

In reliable network we had le {t∈Z : t≥ s+2k}=0 and re {t∈Z : t≥ s+2k}=0.

We show the corresponding bounds on the expected energy costs for unreliable network:

Lemma 15. (Lemma U5)

EX[
∑

t≥s+n
(lep,t+ rep,t)]≤ 2q/p2, where q=1− p.

Proof.

Recall that n=2k is the length of broadcast cycle.

For integer i≥ 1, each of the values r ′− lbp,s+i·n and ubp,s+i·n− r ′′

is a random variable.

For each x∈ [[0, n− 1]], let the event Fi(x) be:

“For each t∈ [[s, s+ i ·n− 1]] such that revk(t)= x, successp,t=0.”

We have revk(x)= revk(x+n) and,

for each integer j, revk [[s+ j ·n, s+(j+1) ·n− 1]] = [[0, n− 1]].

Thus, for each x∈ [[0, n− 1]],

there are exactly i time-slots t in [[s, s+ i ·n− 1]] such that revk(t) =x and

the probability of the event Fi(x) is qi.

By the definition, ubp,s+i·n is the maximal u∈ [[r ′′, n− 1]] such that,

for each x∈ [[r ′′+1, u]], Fi(x) is true.

Hence, the expected value of ubp,s+i·n+1− (r ′′+1)= ubp,s+i·n− r ′′ is not greater than
∑

j≥1 j · (qi)j−1(1− qi)= 1/(1− qi).

By analogy: the expected value of r ′− lbp,s+i·n is not greater than 1/(1− qi).

In time slots t∈ [[s+ i ·n, s+(i+1) · n− 1]],

lep,t=1 (respectively, rep,t=1) implies that

revk(t)∈ [[lbp,s+i·n, r
′− 1]] (respectively, revk(t)∈ [[r ′′+1, ubp,s+i·n]]).

Thus, for i≥ 1,we have

21

EX[
∑

t=[[s+i·n,s+(i+1)·n−1)]]
(lep,t+ rep,t)]≤ 2 · (1/(1− qi)− 1).

Finally, note that

∑

j=1

∞

(1/(1− qj)− 1) =
∑

j=1

∞

(qj/(1− qj))

≤
1

1− q

∑

j=1

∞

qj

= q/(1− q)2

= q/p2.

�

Corollary 16. (Corollary U6)

EX
[
∑

t≥s
lep,t+ rep,t

]

≤ (1/p+1) · (4k+2)+ 2(1− p)/p2.

Proof. From Lemmas 14 and 15 (Lemmas U4 and U5) �

22

Implementation

RBO receiver has to switch on the radio receiver in each time-slot t such that revk(t) – the index
of transmitted key – is between the values of variables lb and ub.

Suppose that, just after the time slot t, the value of lb is r1 and the value of ub is r2.

Then the next the next time slot, when the RBO receiver has to listen is

the minimal t′> t such that revk(t
′)∈ [[r1, r2]].

23

Next wake-up time-slot

Definition of nsik(t, r1, r2):

nsik(t, r1, r2) =min { t′ | t′>t∧ revk(t′)∈ [[r1, r2]] }.

Computation of nsik(t, r1, r2):

1. t′′← t+1

2. l← 0

3. repeat

a) t′← t′′

b) while l < k ∧ t′mod 2l+1=0

do l← l+1

c) x1← revk(t
′)

d) t′′← t′+2l

e) x2← revk(t
′+2l− 1)

4. until r1≤x2 and r2≥ x1 and

⌈(r1− x1)/2
k−l⌉≤ ⌊(r2− x1)/2

k−l⌋

5. c← 2k−1

6. while x1<r1∨x1>r2 do

a) if x1<r1

then x1←x1+ c

else x1← x1− c

b) c← c/2

7. return 2k · ⌊t′/2k⌋+ revk(x1)

24

Example: Figure 1 illustrates the computation of nsik(t, r1, r2), for k=5, t=5, r1=7 and r2=9.

The black square dots are the graph of x= revk(t), where t is vertical dimension increasing down-
wards (representing time-slot), and x is horizontal dimension increasing rightwards (representing
the index of transmitted key).

Let us define the blocks of time-slots Y0, Y1,	 , and the sets of indexes X0,X1,	 , under assumption
that s= t0= t+1=6. (Note that all of them are bellow the time-slot t=5.)

In our example: Y0= {6, 7}, Y1= {8, 9,	 , 15}, Y2= {16, 17,	 , 31}, Y3= {32, 33,	 , 64}.

The lines represent Binary Search Trees on the subsets Xi, where the jth level of each such tree
is the subset Xi,j. To see the correctness of these trees, recall that, for each j ∈ [[1, li]], we have:

•
∣

∣

∣

⋃

j ′=0
j−1

Xi,j ′

∣

∣

∣= |Xi,j |, and

• 2k−(j−1) is the minimal distance between distinct elements of
⋃

j ′=0
j−1

Xi,j ′, and

• 2k−(j−1) is the minimal distance between distinct elements of Xi,j, and

• 2k−j is the minimal distance between distinct elements of
⋃

j ′=0
j

Xi,j ′, and

• minXi,j=
(

⋃

j ′=0
j−1

Xi,j ′

)

+2k−j .

Let i′ be the minimal i, such that Xi intersects the interval [r1, r2].

When the repeat loop finishes, we have: x1=minXi′, x2=maxXi′, t′=minYi′, t′′=maxYi′, and
l= li′.

In our example: i′=2, minXi′=1, maxXi′= 32, minYi′= 16, maxYi′= 31, and li′=4.

In the while loop starting in line 6, we do binary search on the binary search tree on Xi′ until we
enter the interval [r1, r2] for the first time. When the loop finishes, the value of x1 is in [r1, r2] and
y=2k · ⌊t′/2k⌋+ revk(x1) is the minimal time-slot in Yi′ such that revk(y)= x1.

In our example the final value of x1 is 9 and the value returned by the algorithm is 18.

25

18

t

7 9

6

x

Figure 1. Computation of nsi5(5, 7, 9)

26

Correctness of the NSI algorithm:

For the analysis of the computation of nsik(t, r1, r2), we define:

• t0, t1,	 ,

• l0, l1,	 ,

• last,

• Y0, Y1,	 ,

• X0, X1,	 ,

• the subsets Xi,j,

under the assumption that s= t0= t+1.

Lemma 17. (NSI1) Let 0≤ r1≤ r2≤n− 1.

Then the “repeat” loop of line 3 finishes.

Let x1
′ and x2

′ be the values of variables x1 and x2,

respectively, just after the line 4.

Then x1
′ =minXi′ and

x2
′ =maxXi′,

where i′=min {i : i≥ 0∧Xi∩ [[r1, r2]]=∅}.

Proof. Let the iterations of the “repeat-until” loop be numbered starting from zero.

After the ith iteration, at line 4, we have

• l= li,

• t′= ti,

• x1=minXi= revk(ti),

• t′′= ti+1,

• x2= revk(maxYi) =maxXi.

Thus, the condition

r1≤ x2∧r2≥ x1∧ ⌈(r1− x1)/2
k−l⌉≤ ⌊(r2− x1)/2

k−l⌋

is equivalent to

r1≤maxXi∧r2≥minXi∧ min {j :minXi+2k−li · j ≥ r1}≤max {j :minXi+2k−li · j ≤ r2},

which is equivalent to

Xi∩ [[r1, r2]]=∅,

27

since Xi= {minXi+2k−li · j : j ∈Z}∩ [[0, n− 1]].

We have Xlast= [[0, n− 1]]⊇ [[r1, r2]]=∅, thus the “repeat” loop is finite.

Hence, at line 5, we have x1= revk(ti′)=minXi′, where i′=min {i≥ 0 |Xi∩ [r1, r2]=∅}. �

Lemma 18. (NSI2) Let 0≤ r1≤ r2≤n− 1 and let y ′ be the value returned in the line 7.

We have and y ′∈ Yi′,j ′,

where i′=min {i | i≥ 0∧Xi∩ [[r1, r2]]=∅} and

j ′=min {j | j ∈ [[0, li′]]∧Xi′,j ∩ [[r1, r2]]=∅} and

Xi′,j ′∩ [[r1, r2]] = {revk(y ′)}.

Thus nsik(s
′, r1, r2) = y ′.

Proof.

Let x1,0 (respectively, c0) be the value of x1 (respectively, c) just before the line 6.

Let x1,j (respectively, cj) be the value of x1 (respectively, c)

just after the jth iteration of the “while” loop of line 6.

We have x1,0=minXi′=minXi′,0, where, by Lemma 17 (Lemma NSI1),

i′=min {i≥ 0 |Xi∩ [[r1, r2]]=∅}.

Let j ′ be the number of iterations of the “while” loop.

For 0≤ j ≤ j ′, we have cj=2k−1−j.

We have ∅=Xi′∩ [[r1, r2]]⊆ [[minXi′,minXi′+2k− 1]].

Thus j ′≤ li′ and x1,j ′∈ [[r1, r2]].

For each j ∈ [[0, j ′]], we have x1,j ∈Xi′,j.

If j ′=0, then Xi′,j ′= {minXi′}= {x1,0}⊆ [[r1, r2]] and revk(2
k · ⌊t′/2k⌋+ revk(x1,0))= x1,0.

Let j ′≥ 1.

We can show by induction that, for each j ∈ [[0, j ′− 1]], we have x′ such that

• Xi′,j ∋ x′<r1≤ r2<x′+2k−j ∈Xi′,j and

• x1,j ∈{x′, x′+2k−j} and

• Xi′,j∩ [x′, x′+2k−j] = {x′, x′+2k−j} and

• x1,j+1= x′+2k−j−1.

Thus x1,j ′− 2k−j ′

<r1 and r2<x1,j ′+2k−j ′

.

Hence Xi′,j ′∩ [r1, r2] = {x1,j ′}⊆Xi′,j ′−1.

28

Since (Xi′,j ′ \Xi′,j ′−1)∩ [[0, n− 1]] =Xi′,j ′ and 0≤ r1≤ r2≤n− 1,

we have x1,j ′∈Xi′,j ′ and

(reverse of the returned value) revk(2
k · ⌊t′/2k⌋+ revk(x1,j ′))= x1,j ′. �

Complexity of the NSI algorithm:

Time complexity:

The number of iterations of the “repeat-until” loop is never greater than k+1.

Since l never decreases, the total number of iterations of the internal “while” loop (line 3 b)

in all iterations of the “repeat-until” loop is never grater than k+1.

The total number of iterations of the binary search loop (starting at line 6) is never greater than k.

Complexity of the algorithm:

• memory: constant number of k-bit variables

• time: O(k) elementary operations on k-bit integers

Example implementation in Java:

On Figure 2, we present the implementation in Java language used in the simulation

of RBO on TinyOS (https://github.com/mki1967/rbo-tinyos-java).

It computes and returns the value: nsik(t, r1, r2)mod 2k.

(It uses also revBits(k,t) that computes revk(t).)

We replaced some operations such as e.g. divisions by the powers of two by bit-wise operations
such as shifting and masking operations that should be more efficient on real processors.

We use the following bit-masks, related to the values k and l of the original algorithm:

• twoToK for 2k=(1(0)k)2,

• modMaskK for 2k− 1= ((1)k)2,

• twoToL for 2l=(1(0)l)2,

• stepLMinusOne for 2k−l− 1= ((1)k−l)2,

• stepDivMask for revk(2
l− 1)= ((1)l(0)k−l)2.

Variables: t1, tNext, x1, x2, and s correspond to the variables: t′, t′′, x1, x2 and c of the original
algorithm, respectively.

29

public static int nextIn(int k, int t, int r1, int r2)

// we assume 0<=r1<=r2< 2^k

{

int twoToK=(1<<k); // 2^k

int modMaskK= twoToK-1; // 2^k-1

int t1,x1,x2, stepDivMask;

int twoToL=1;

int stepLMinusOne=modMaskK;

int tNext=((t+1)&modMaskK);

do

{

t1=tNext;

while(twoToL<twoToK && (t1&twoToL)==0)

{

twoToL=twoToL<<1;

stepLMinusOne=stepLMinusOne>>1;

}

tNext=((t1+twoToL)&modMaskK);

stepDivMask=((~stepLMinusOne) & modMaskK);

x1=revBits(k,t1);

x2= (x1 | stepDivMask);

}while(r1>x2 || r2<x1 ||

((r1-x1+stepLMinusOne)&stepDivMask)>((r2-x1)&stepDivMask));

int s= (twoToK>>1); // 2^(k-1)

while(x1<r1 || x1>r2)

{

if(x1<r1) x1=x1+s;

else x1=x1-s;

s=s/2;

}

return revBits(k, x1);

}

Figure 2. Implementation in Java of computation of: nsik(t, r1, r2)mod2k

Bibliography

[1] Marcin Kik. RBO protocol web site. http://sites.google.com/site/rboprotocol/.

[2] Marcin Kik. RBO protocol: broadcasting huge databases for tiny receivers. CoRR, abs/1108.5095, 2011.

[3] Marcin Kik. Notes on bit-reversal broadcast scheduling. CoRR, abs/1201.3318, 2012.

[4] Marcin Kik, Maciej Gebala and Miroslaw Kutylowski. Bit reversal broadcast scheduling for ad hoc systems. In

[6], pages 223–237.

[5] Marcin Kik, Maciej Gebala and Mirosław Kutyłowski. One-side energy costs of the RBO receiver. CoRR,

abs/1209.4605, 2012.

[6] Mukaddim Pathan, Guiyi Wei and Giancarlo Fortino, editors. Internet and Distributed Computing Systems -

6th International Conference, IDCS 2013, Hangzhou, China, October 28-30, 2013, Proceedings, volume 8223

of Lecture Notes in Computer Science. Springer, 2013.

30

31

