
Correcting Sorted Sequences in a Single Hop

Radio Network⋆

Marcin Kik
Marcin.Kik@pwr.wroc.pl

Institute of Mathematics and Computer Science,
Wroc law University of Technology

Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland

Abstract. By k-disturbed sequence we mean a sequence obtained from a
sorted sequence by changing the values of at most k elements. We present
an algorithm for single-hop radio networks that sorts a k-disturbed se-
quence of length n (where each station stores single key) in time 4n + k ·

(⌈lg k⌉2+⌈lg(n−k+1)⌉+6⌈lg k⌉)−2 with energetic cost 3·⌈ (⌈lg k⌉+1)(⌈lg k⌉+2)
2⌊n/k⌋

⌉+

4 · ⌈ ⌈lg k⌉
⌊n/k⌋

⌉+ 10. If (⌈lg k⌉+1)(⌈lg k⌉+2)
2

+ ⌈lg k⌉ ≤ ⌊n/k⌋ then the energetic
cost is bounded by 14.

1 Introduction

By k-disturbed sequence we mean a sequence obtained from a sorted sequence by
changing the values of at most k elements. We consider the problem of sorting
k-disturbed sequence of length n, for a relatively small value of k. We call it
k-correction problem. Our model of computation is a single hop radio network.
Such network consists of n stations s0, . . . , sn−1 communicating with each other
by exchanging short radio messages. The stations are synchronized. Time is
divided into slots. Within a single time slot a single message can be broadcast.
During each time slot each station is either listening or sending or idle. If it
is sending or listening then it dissipates a unit of energy. We assume that the
stations are powered by batteries. Therefore we want to minimize energetic cost

of the algorithm, i.e. the maximum over all stations of non-idle time slots. We
consider single hop network: Each station is in the range of any other station.
If two or more stations send messages simultaneously, then a collision occurs.
Since our algorithm is avoiding collisions, we do not need to state precisely what
happens during the collisions and whether they are detectable.

Algorithm for k-correction can be applied whenever we want to keep sorted
a sequence of values that can change infrequently. As one example consider the
following scenario: The stations are deployed in some area and equipped with
sensors measuring some relatively stable value (e.g. temperature or air pressure).
We want to keep the measured values sorted. Thus our algorithm can be invoked
periodically, if we expect that the number of values changed within each period
is substantially lower than n.

⋆ This work has been supported by MNiSW grant N N206 1842 33



The naive solution of our problem is to sort the input sequence using one
of the existing sorting algorithms (e.g. [9], [4]). However, the energetic cost of
such algorithms is Ω(log n) and the time of energetically efficient algorithms is
Ω(n · log n). The direct simulation of comparator sorting networks (e.g. [1], [2]),
where each comparator between two positions is simulated in two time slots by
the corresponding two stations, leads to quite efficient sorting algorithms. The
problem of k-correction has also been studied for the comparator networks (e.g
[7], [10]). However, they are practically efficient for very small (sub-polynomial)
and fixed values of k. On the other hand, the algorithms for radio networks can
be adaptive, and we can use the fact that each station can notice the change
of its own key. The value of k in our algorithm can be arbitrary (even as large
as n − 1, although the normal merge-sort (i.e. [4]) is more efficient for k close
to n). The costs of the algorithm (time and energetic cost) are adapted to the

actual value of k. As long as (⌈lg k⌉+1)(⌈lg k⌉+2)
2 + ⌈lg k⌉ ≤ ⌊n/k⌋, the energetic

cost of our algorithm is bounded by 14 and for arbitrary k it is bounded by

3 · ⌈ (⌈lg k⌉+1)(⌈lg k⌉+2)
2⌊n/k⌋ ⌉ + 4 · ⌈ ⌈lg k⌉

⌊n/k⌋⌉ + 10. Moreover, the algorithm uses only a

constant number of variables within each station.

2 Preliminaries

Each station si initially stores a key in its local variable oldKey[si]. Variable
oldIdx[si] is the index of oldKey[si] in the sorted sequence of keys. (The indexes
are numbered from 0 to n− 1.) The station si also stores a new value of its key
in newKey[si] which is either equal to or different from oldKey[si]. The task of
each si is to compute newIdx[si] which is the index of newKey[si] in the sorted
sequence of the new keys. (The keys remain in their originating stations. We just
compute their positions in the sorted sequence.)

In this paper “lg” denotes “log2”. Whenever we define a permutation π of
{0, . . . , n − 1}, π−1 denotes the permutation reverse to π.

0 3 2 4 4 5

5 21 1

3 0

Fig. 1. The tree of T6.

Let Tm be a balanced binary tree consisting of m nodes, such that the last
level of Tm is filled from left to right (see Figure 1). We define two ways of
indexing of the nodes of Tm:

y-indexing: The y-index of the root is zero and, for each node with y-index
y, the indexes of its left and the right son are l(y) = 2(y + 1) − 1 and



r(y) = 2(y + 1), respectively. For y-index y the level of y in the tree is
lev(y) = ⌊log2(y + 1)⌋ and, if y > 0, then the y-index of its parent is p(y) =
⌊(y − 1)/2⌋.

x-indexing: The x-indexing is obtained by numbering the nodes in the in-order
with the numbers 0, . . . ,m − 1.

On Figure 1: The x-index is printed inside each node and the y-index – to the
right of the node. Binary search ordering bsom is a permutation of {0, . . . ,m−1},

function bsom(x)
if x 6∈ {0, . . . , m− 1} then return x; (* x outside domain *)
y ← 0; (* y-index of the current node. We start from the root. *)
x1 ← ls(m); (* x-index of the root is the size of its left subtree *)
m1 ← m; (* size of the subtree of current node *)
while x1 6= x do

if x < x1 then
y ← l(y); (* y-index of the left child *)
m1 ← ls(m1); (* size of the left subtree *)
x1 ← x1 −m1 + ls(m1); (* x-index of the left child *)

else
y ← r(y); (* y-index of the right child *)
m1 ← rs(m1); (* size of the right subtree *)
x1 ← x1 + ls(m1) + 1; (* x-index of the right child *)

return y;

Algorithm 1: Permutation bsom

such that bsom(x) = y if and only if the node with x-index x has the y-index
equal to y. We define some functions and algorithm that can be used for efficient
computation of bso. The height of Tm is h(m) = ⌈log2(m + 1)⌉. The size of
full binary tree of height h is fs(h) = 2h − 1. Thus the number of missing
leaves on the last level of Tm is ml(m) = fs(h(m)) − m. Let ls(m) be the size
of the left subtree of the root of Tm. If m ≤ 1 then ls(m) = 0 else ls(m) =
fs(h(m) − 1) − max{0,ml(m) − 2h(m)−2}. (The left subtree is full if there are
at most 2h(m)−2 missing leaves in Tm.) Thus the size of the right subtree of
the root of Tm is rs(m) = m − 1 − ls(m). The position of y-index y within its
level is inlev(y) = y − fs(lev(y)). Using these functions we can define efficient
algorithm for computing bso (see Algorithm 1). Note that the while loop in
Algorithm 1 iterates at most h(m) ≈ lg m times and each iteration involves a
constant number of computations of elementary functions. Thus the computation
of bso is efficient.

In the remaining algorithms we also use functions at(l, i) = fs(l) + i (the
y-index of the ith node at level l) and levsizem(l) (the size of the lth level of
Tm). Note that, for 0 ≤ l < h(m) − 1, levsizem(l) = 2l and, for l = h(m) − 1,
levsizem(l) = 2l − ml(m).



3 Description of the algorithm

The network performs Algorithm 2. The general idea is to isolate the modified
keys, sort them and merge them with the (sorted) sequence of the unmodified
keys. We also try to balance the energetic costs among almost all the stations
by forcing them to act as virtual workers.

begin
split-and-count;
(* all stations have learned k – the number of changed keys *)
if k ≥ n/3 then

apply sorting algorithm to compute new ranks of keys (e.g. the simple
merge-sort from [4] without permuting the keys between the stations as
is done in [6])

else if k > 0 then
assign-workers;
sort;
final-merge;
Each si does: oldIdx[si]← newIdx[si]; oldKey[si]← newKey[si];

end

Algorithm 2: Correction algorithm.

Initially each station recognizes whether its key is changed. Then the stations
perform the procedure split-and-count (Algorithm 3) that counts the number of
changed keys and computes the initial position of each key either in the sequence
of not changed keys (called a-sequence) or in the sequence of the changed keys
(called b-sequence). Split-and-count is similar to the first phase of the counting
sort algorithm ([3]). The ordering of the keys within a-sequence and within
b-sequence is the same as in the original sorted sequence. Thus the a-sequence
is already sorted.

Then the procedure assign-workers (Algorithm 4) assigns equal number of
stations (workers) to each key (b-key) from the b-sequence. Each real station s
simulates one virtual station vs that is used as a worker.

Next the b-sequence is sorted by a simple merge-sort algorithm ([4]), however
the energy required by each b-key is balanced among all the workers (virtual
stations) assigned to this key. This is done by the procedure sort (Algorithm 5).
Sorting is done by merging neighboring blocks of sorted b-keys of length m into
sorted blocks of length 2m. We start with m = 1 (sorted singletons) and end-up
with m ≥ k. Procedure merge([i1, i2], [i3, i4]) (Algorithm 6) merges the block
of b-keys on positions i1,. . . , i2 with the block of b-keys on positions i3,. . . , i4.

To merge the blocks each b-key from one block learns its rank in the other
block and adds it to its index in the sorted sequence of the b-keys from its own
block. In the procedure rank([i1, i2],〈b0, . . . , bm−1〉,d) (Algorithm 8), each b-key
from the block [i1, i2] learns its rank in the block of keys stored in the stations



procedure split-and-count

Each si does (in parallel): begin
idx[si]← oldIdx[si]; idxa[si]← NIL; idxb[si]← NIL; sum[si]← 0;
key[si]← newKey[si];
if newKey[si] 6= oldKey[si] then changed[si]← 1 else changed[si]← 0;

end

for time slot t← 0 to n− 2 do

Station si with idx[si] = t does: begin
if changed[si] = 1 then idxb[si]← sum[si]
else idxa[si]← idx[si]− sum[si];
si sends msg, where msg = sum[si] + changed[si];

end

Station sj with idx[sj ] = t + 1 receives msg and does: sum[sj ]← msg;

in time slot n− 1: begin

Station si with idx[si] = n− 1 does: begin
if changed[si] = 1 then idxb[si]← sum[si]
else idxa[si]← idx[si]− sum[si];
si sends msg, where msg = sum[si] + changed[si];

end

Each station sj receives msg and does k[sj ]← msg; (* number of changed
keys *)

end

Algorithm 3: Split and count.

procedure assign-workers

(* Each si has the same value k[si] denoted by k. *)
(* The value ⌊n/k⌋ is denoted by gs (group size) *)
for time slot t← 0 to k − 1 do

The station si with idxb[si] = t sends msg, where msg = newKey[si];
Each sj with t · gs ≤ j < (t + 1) · gs, does: begin

sj creates virtual station vst,t′ , where t′ = j mod gs;
vst,t′ receives msg;
key[vst,t′ ]← msg; (* vst,t′ will be the t′th worker for tth changed key *)
rworker[vst,t′ ]← 0; (* initial index of current r-worker *)
iworker[vst,t′ ]← gs− 1; (* initial index of current i-worker *)

end

Algorithm 4: Assigning workers.



procedure sort

Each virtual station does: m← 1;
Each vsi,j with j = iworker[vsi,j ] does: idx[vsi,j ]← 0;
while m < k do

for i← 0 to ⌊ k
2m
⌋ − 1 do

merge([2i ·m, (2i + 1)m− 1], [(2i + 1)m, (2i + 2)m− 1]);

if k mod (2m) > m then

merge([i, i + m− 1], [i + m, k − 1]), where i = ⌊ k
2m
⌋ · 2m;

Each virtual station does: m← 2 ·m;

Algorithm 5: Sorting.

procedure merge([i1, i2], [i3, i4])
begin

(* Let bi denote vsi,j with iworker[vsi,j ] = j. *)
rank([i1, i2], 〈bi3 , . . . , bi4〉, 0);
rank([i3, i4], 〈bi1 , . . . , bi2〉, 1);
transfer-indexes([i1, i2]);
transfer-indexes([i3, i4]);

end

Algorithm 6: Merging.

procedure transfer-indexes([i1, i2])
(* For each i ∈ [i1, i2], all vsi,j have the same value of iworker[vsi,j ], denoted
here by iwi. Let iw′

i = (iwi − 1) mod gs.*)
for time slot t← 0 to i2 − i1 do

Let r = i1 + t; vsr,iw sends msg = newIdx[vsr,iw] to vsr,iw′ , and vsr,iw′

does: idx[vsr,iw′ ]← msg.

Each vsi,j , for i1 ≤ i ≤ i2, does: iworker[vsi,j ]← iw′.

Algorithm 7: Transferring indexes.



b0, . . . , bm1
. Each worker can act as an i-worker or as a r-worker. The task of

an i-worker (respectively, r-worker) is to update the current index (respectively,
rank) of its b-key. For stability of sorting and avoiding collisions of indexes, the
parameter d (either zero or one) is used to decide whether the b-key from the
block [i1, i2] should be ranked before or after the equal b-keys from b0, . . . , bm1

.
Each b-key from b0, . . . , bm1

is broadcast only once (by its current i-worker).

procedure rank([i1, i2],〈b0, . . . , bm−1〉,d)
For i1 ≤ i ≤ i2, each vsi,j with j = rworker[vsi,j ] does: rank[vsi,j ]← 0.
for l← 0 to h(m)− 2 do

(* Let ai be the vsi,j with rworker[vsi,j ] = j *)
lrank(l, 〈ai1 , . . . , ai2〉,〈b0, . . . , bm−1〉,d);
transfer-ranks([i1, i2]);

(* Let ai be the vsi,j with rworker[vsi,j ] = j *)
lrank(h(m)− 1, 〈ai1 , . . . , ai2〉,〈b0, . . . , bm−1〉,d); (* on the last level of Tm *)
send-ranks-to-indexes([i1, i2]);

Algorithm 8: Ranking.

Each i-worker knows the index idx of is b-key in the sorted sequence of its block.
These indexes are permuted by the bsom an the keys are transmitted according
to this permutation. Thus, the sorted sequence is transmitted level by level of
the Tm-tree and each b-key (that knows its rank in the previously transmitted
levels) has to listen only once to determine its rank (the newRank) on the
currently transmitted level. In the Tm-tree, each level is interleaved with the
sorted sequence consisting of all the elements above this level. The last level of
Tm may be non-full, therefore in the computation of newRank in the lrank for
the last level we are considering this case by adding the size of the level to the
ranks of the b-keys ranked after it.

procedure lrank(l,〈a0, . . . , al−1〉, 〈b0, . . . , bm−1〉,d);
for time slot r ← 0 to levsizem(l)− 1 do

The unique bj with bsom(idx[bj ]) = at(l, r) sends msg = key[bj ];
Each ai with rank[ai] = r listens and does: begin

if (key[ai] ≤ msg and d = 0) or (key[ai] < msg and d = 1) then
newRank[ai]← 2r;

else
newRank[ai]← 2r + 1;

end

(* The following may happen if l is the last level of the tree Tm of bsom. *)
Each ai with rank[ai] ≥ levsizem(l) does:
newRank[ai]← rank[ai] + levsizem(l);

Algorithm 9: Level ranking.



To avoid excessive energy loss in a single station, each level of the bsom-tree is
transmitted in a separate procedure lrank (Algorithm 9) and between the lranks

the task of ranking on the next level is transferred from the current r-worker to
the next r-worker by transfer-ranks (Algorithm 10). After the lrank for the last
level, the current r-worker knows the rank of its b-key in the whole transmitted
sequence and sends it to the corresponding i-worker (in the procedure send-ranks-

to-indexes – Algorithm 11). The i-worker can now compute the index of the b-key
in the merged sequence.

procedure transfer-ranks([i1, i2])
(* For each i ∈ [i1, i2], all vsi,j have the same value of rworker[vsi,j ], denoted
here by rwi. Let rw′

i = (rwi + 1) mod gs.*)
for time slot t← 0 to i2 − i1 do

Let i = i1 + t; vsi,rwi
sends msg = newRank[vsi,rwi

] to vsi,rw′

i

, and vsi,rw′

i

does: rank[vsi,rw′

i

]← msg.

Each vsi,j , for i1 ≤ i ≤ i2, does: rworker[vsi,j ]← rw′
i.

Algorithm 10: Transferring ranks.

procedure send-ranks-to-indexes([i1, i2])
(* For each i ∈ [i1, i2], all vsi,j have the same value of rworker[vsi,j ] and of
iworker[vsi,j ], denoted here by rwi and iwi respectively. Let
rw′

i = (rwi + 1) mod gs.*)
for time slot t← 0 to i2 − i1 do

Let i = i1 + t;
vsi,rwi

sends msg = newRank[vsi,rwi
] to vsi,iwi

, and vsi,iwi
does:

newIdx[vsi,iwi
]← idx[vsi,iwi

] + msg.

Each vsi,j , for i1 ≤ i ≤ i2, does: rworker[vsi,j ]← rw′
i.

Algorithm 11: Sending and adding ranks to indexes.

As soon as each i-worker knows the index of its b-key in the merged sequence,
these indexes are transferred to the next i-workers in the procedures transfer-

indexes.
After the b-sequence is sorted, the procedure final-merge (Algorithm 12)

merges the two sorted sequences: a-sequence with b-sequence. First we use the
workers to perform ranking of each b-key in the a-sequence. Each station bt

learns the rank of newKey[bt] in the a-sequence by overhearing the t-th time
slot of the procedure send-ranks-to-indexes concluding this ranking. Then (in the
loop A:) each b-key learns its index in the sorted b-sequence (variable idx) and
in the final output sequence (variable newIdx). In the loop B: each b-key learns
the rank of its successor in the b-sequence. Thus each b-key knows whether it
is the last b-key with the same rank. Then (in the loop C:) each a-key keya is



informed by the last b-key keyb with the rank equal to to the position of keya

in the a-sequence about its rank in the b-sequence. Next (in the loop D:), each
informed a-key informs its uninformed successors in the a-sequence about their
rank in the b-sequence. Finally, each a-key computes its position in the sorted
output sequence as the sum of its position in its own sequence and its rank in
the other sequence. Here, each b-key is ranked before the equal or greater a-keys.

procedure final-merge

(* For 0 ≤ i < n− k, let ai be the station sj with idxa[sj ] = i. For 0 ≤ i < k, let
bi be the sj with idxb[sj ] = i.*)
Each ai does: idx[ai]← idxa[ai];
rank([0, k − 1],〈a0, . . . , an−k−1〉,0);
(* bt listens to the message msg sent during the t-th time slot of
send-ranks-to-indexes in the above rank procedure, and does: rank[bt]← msg *)
(* Let vi be the vsi,j with iworker[vsi,j ] = j. *)

A: for t← 0 to k − 1 do
vt sends msg = newIdx[vt] to bt and bt does:
newIdx[bt]← msg; idx[bt]← msg − rank[bt];

The bi with idx[bi] = k − 1 does: last[bi]← TRUE
B: for t← k − 1 downto 1 do

the bi with idx[bi] = t sends msg = rank[bi];
the bj with idx[bj ] = t− 1 listens and does:
if rank[bj ] 6= msg then last[bj ]← TRUE else last[bi]← FALSE;

Each ai does: if i = 0 then mov[ai]← 0 else mov[ai]← NIL;
C: for t← 0 to n− k − 1 do

the bi with rank[bi] = t and last[bi] = TRUE sends msg = idx[bi];
at listens and if it received msg then it does: mov[at]← msg + 1;

D: for t← 0 to n− k − 2 do
at sends msg = mov[at];
If mov[at+1] = NIL then at+1 listens and does: mov[at+1]← msg;

Each ai does newIdx[ai]← idxa[ai] + mov[ai];

Algorithm 12: Final merging of a-sequence with b-sequence.

4 Analysis of Complexity

Time: Time of split-and-count is t1 = n. Time of assign-workers is t2 = k. Let t3
be the time of sort. Let tM (m1,m2) denote the time of merging two sequences
with lengths m1 and m2. tM (m1,m2) = tR(m1,m2) + tR(m2,m1) + m1 + m2,
where tR(m′,m′′) is time of ranking m′ elements in the sequence of length m′′ and
m1 +m2 is the time of transfer-indexes. Note that tR(m′,m′′) = m′′ +h(m′′) ·m′,
where m′′ is the total time spent in all lranks and h(m′′)·m′ is the remaining time

(spent in transfer-ranks and send-ranks-to-indexes). Thus t3 ≤
∑⌈lg k⌉−1

i=0 ⌈k/2i+1⌉·



tM (2i, 2i) ≤ k(⌈lg k⌉2 + 6⌈lg k⌉) (see Appendix A). Let t4 be the time of final-

merge. t4 = tR(k, n−k)+k+(k−1)+(n−k)+(n−k−1) = (n−k)+k · ⌈lg(n−
k+1)⌉+k+(k−1)+(n−k)+(n−k−1) = k · ⌈lg(n−k+1)⌉+3n−k−2. Thus
the total time is: t1 + t2 + t3 + t4 ≤ 4n+k ·(⌈lg k⌉2 +⌈lg(n−k+1)⌉+6⌈lg k⌉)−2.

Energy: In the procedure split-and-count each station broadcasts once and listens
at most twice. After that each station acts either as a-station or a b-station. In
assign-workers each b-station broadcasts once and each station listens once. In
the procedures sort and final-merge, the energy used for each b-key keyt with idxb

equal t is balanced among the gs = ⌊n/k⌋ virtual stations vst,0, . . . , vst,gs−1.
By current r-worker (respectively, i-worker) we mean the virtual station vst,j

with rworker[vst,j ] = j (respectively, iworker[vst,j ] = j). The tasks of r-worker
and of i-worker are transferred in round-robin fashion in opposite directions.
Initially, vst,0 becomes the first r-worker of its group and vt,gs−1 becomes the
first i-worker of its group. Each time vst,i becomes r-worker it listens at most
twice (once in transfer-ranks and once in lrank) and broadcasts once (either in the
next transfer-ranks or in send-ranks-to-indexes). Then the vst,(i+1) mod gs becomes

the next r-worker. The keyt requires α r-workers, where α ≤
∑⌈lg k⌉

i=0 h(2i) =
(⌈lg k⌉+1)(⌈lg k⌉+2)

2 . (The last component of the sum comes from the rank in final-

merge.) Each time vt,i becomes i-worker it listens at most twice (once in transfer-

indexes and once in send-ranks-to-indexes) and broadcasts twice (once in rank and
once either in the next transfer-indexes or in the loop A: of final-merge). Then
the vt,(i−1) mod gs becomes the next i-worker. The key keyt requires β i-workers,
where β ≤ ⌈lg k⌉. We split the energy used by the virtual station vst,i into two
components: the energy used as r-worker: er and the energy used as i-worker: ei.
Since vst,i becomes r-worker (respectively, i-worker) once ⌊n/k⌋ times, we have

er ≤ 3 · ⌈ α
⌊n/k⌋⌉ and ei ≤ 4 · ⌈ β

⌊n/k⌋⌉. If β + α ≤ ⌊n/k⌋ then the energy used

by vst,i is at most 4, otherwise it can be bounded by er + ei. In the procedure
final-merge, each b-station listens at most three times (once in rank, once in loop
A:, and once in loop B:) and broadcasts at most twice (once in loop B: and
once in loop C:). Each a-station listens at most twice (once in loop C: and once
in loop D:) and broadcasts at most twice (once in rank and once in loop D:). Let
ea (respectively, eb) denote the energy used by a-station (respectively, b-station).
Thus, ea = 5 and eb = 7 and the total energy used by each station can be bound

by: 3+max{ea, eb}+ei+er ≤ 10+3·⌈ (⌈lg k⌉+1)(⌈lg k⌉+2)
2⌊n/k⌋ ⌉+4·⌈ ⌈lg k⌉

⌊n/k⌋⌉. Additionally,

if (⌈lg k⌉+1)(⌈lg k⌉+2)
2 + ⌈lg k⌉ ≤ ⌊n/k⌋ then the energetic cost is bounded by 14.

5 Conclusions and Final Remarks

The following theorem concludes the discussion of previous sections:

Theorem 1. There exists an algorithm that sorts a k-disturbed sequence of

length n distributed among n stations of single-hop radio network in time at

most 4n + k · (⌈lg k⌉2 + ⌈lg(n− k + 1)⌉+ 6⌈lg k⌉)− 2 with energetic cost at most



3 · ⌈ (⌈lg k⌉+1)(⌈lg k⌉+2)
2⌊n/k⌋ ⌉ + 4 · ⌈ ⌈lg k⌉

⌊n/k⌋⌉ + 10. If
(⌈lg k⌉+1)(⌈lg k⌉+2)

2 + ⌈lg k⌉ ≤ ⌊n/k⌋

then the energetic cost of the algorithm is bounded by 14.

⊓⊔
Consider a scenario in which the algorithm is invoked periodically. The sta-

tions with largest indexes have greater chance of not being used as virtual worker
(if n mod ⌊n/k⌋ 6= 0). Since the the indexes of the stations are independent of
the indexes of the keys in the sequence, we can try to balance this chance among
all stations by re-indexing them between the periods (for example, by adding
one modulo n to each index).

Our algorithm is designed for reliable network (i.e. each transmitted message
is received by each listening station with probability one). It would be interest-
ing to consider k-correction in unreliable networks. (Sorting algorithm for such
networks has been proposed in [6]).

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c log n parallel steps. Combina-
torica 3, 1-19 (1983)

2. Batcher, K.E.: Sorting networks and their applications. Proceedings of 32nd
AFIPS, pp. 307-314, 1968.

3. Gȩbala, M., Kik, M.: Counting-Sort and Routing in a Single Hop Radio Network.
In: Kuty lowski, M., Cichoń, J., Kubiak, P. (eds.) ALGOSENSORS 2007. LNCS,
vol. 4837, pp. 138-149. Springer, Heidelberg (2008)

4. Kik, M.: Merging and Merge-sort in a Single Hop Radio Network. In: Wiedermann,
J., Tel, G., Pokorný, J., Bieliková, M., Stuller, J. (eds.) SOFSEM 2006. LNCS, vol.
3831, pp. 341-349. Springer, Heidelberg (2006)

5. Kik, M.: Sorting Long Sequences in a Single Hop Radio Network. In: Královic, R.,
Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 573-583. Springer, Heidelberg
(2006)

6. Kik, M: Ranking and Sorting in Unreliable Single Hop Radio Network. In: D. Coud-
ert et al. (Eds.): ADHOC-NOW 2008, LNCS 5198, pp. 333-344, 2008. Springer-
Verlag Berlin Heidelberg (2008)

7. Kik, M., Kuty lowski, M., Piotrów, M.: Correction Networks, ICPP 1999, pp. 40-47,
8. Nakano, K.: An Optimal Randomized Ranking Algorithm on the k-channel Broad-

cast Communication Model. In: ICPP 2002, pp. 493-500 (2002)
9. Singh, M. and Prasanna, V.K.: Energy-Optimal and Energy-Balanced Sorting in

a Single-Hop Sensor Network. PERCOM, March 2003.
10. Stachowiak, G.: Fibonacci Correction Networks. In: Magnús M. Halldórsson (eds.):

SWAT 2000, LNCS 1851, pp. 535–548, 2000. Springer, Heidelberg 2000.



A Analysis of time complexity of the procedure sort

t3 ≤

⌈lg k⌉−1∑

i=0

⌈k/2i+1⌉ · tM (2i, 2i) =

⌈lg k⌉−1∑

i=0

⌈k/2i+1⌉ · (2 · tR(2i, 2i) + 2 · 2i)

=

⌈lg k⌉−1∑

i=0

⌈k/2i+1⌉ · (2 · (2i + h(2i) · 2i) + 2 · 2i) =

⌈lg k⌉−1∑

i=0

⌈k/2i+1⌉ · 2i+1(2 + h(2i))

Since h(2i) = i + 1, we have:

t3 =

⌈lg k⌉−1∑

i=0

⌈k/2i+1⌉ · 2i+1(3 + i) ≤

⌈lg k⌉−1∑

i=0

(k/2i+1 + 1) · 2i+1(3 + i) =

⌈lg k⌉−1∑

i=0

(k + 2i+1)(3 + i).

For 0 ≤ i ≤ ⌈lg k⌉ − 1, we have 2i+1 < k. Thus

t3 ≤

⌈lg k⌉−1∑

i=0

2 · k · (3 + i) = 6k⌈lg k⌉ + 2k ·

⌈lg k⌉−1∑

i=0

i = 6k⌈lg k⌉ + 2k ·
(⌈lg k⌉ − 1)⌈lg k⌉

2

≤ k(⌈lg k⌉2 + 6⌈lg k⌉).


