
Counting-sort and Routing in a Single Hop

Radio Network

Maciej Gȩbala and Marcin Kik
Maciej.Gebala@pwr.wroc.pl, Marcin.Kik@pwr.wroc.pl

Institute of Mathematics and Computer Science,
Wroc law University of Technology

Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland

Abstract. We consider two problems. First, sorting of n integer keys
from the [0, 2m − 1] range, stored in p stations of a single-hop and single
channel radio network. Second problem is routing of the packets between
the stations of the network. We introduce counting-sort algorithm which
has 3mri + si + di + 3 energetic cost and nm + n + p time cost, where
station ai stores si keys (ri distinct keys) and receives di keys. On the
basis of this sorting, we construct routing protocols with energetic costs
(3⌈log2 p⌉+ 2)ri + si + di + 5 and (3⌈log2 p⌉+ 4)ri + si + di + 6, and time
costs n⌈log2 p⌉+n+3p and r⌈log2 p⌉+n+r+3p, respectively, where r is
sum of all ri. Our routing is attractive alternative for previous solutions,
since it is efficient, deterministic and simple.

1 Introduction

Radio network is a distributed system with no central arbiter, consisting of p
radio transceivers called stations. Stations are usually small devices running on
batteries. Therefore, it is of big importance to design protocols for radio networks
with power efficiency in mind, i.e., the station must consume as little power as
possible. We assume that each of p stations belonging to the radio network has
unique ID – an integer in the [0, p − 1] range. We consider only static radio
networks where the number of station is fixed and no members join or leave the
network during the protocol operation. In this paper we focus on single-hop radio
networks where each single station lies within the transmission range of all other
stations. Finally, we only consider model with single channel of communication.
A station uses energy only when its transceiver is active, i.e. while sending or
receiving any information. When transceiver is inactive the energy consumption
is very small and therefore is ignored. We assume that a station uses one unit of
energy for sending or receiving single message.

Let p denote the number of stations. For 0 ≤ i ≤ p − 1, station ai initially
stores si items (with ri distinct values) and is destination of di items from qi

other stations. By n =
∑p−1

i=0 si we denote total number of items. Let r =
∑p−1

i=0 ri

and q =
∑p−1

i=0 qi. We assume that during a single round each station can send
or receive no more than single message containing either single key or an integer
between 0 and n.

1

mailto:Maciej.Gebala@pwr.wroc.pl
mailto:Marcin.Kik@pwr.wroc.pl
http://www.im.pwr.wroc.pl/
http://www.pwr.wroc.pl/

We consider two problems. First, sorting n integer keys of range [0, 2m − 1]
stored in p stations of a single-hop and single channel radio network. Second,
problem of routing of the packets between the stations of the network.

1.1 Previous works

Some energy efficient sorting algorithms are described in [7,8,2,3]. Singh and
Prasanna [7,8] proposed sorting algorithm based on quick-sort and balanced
selection with Θ(log n) energy cost and Θ(n

c
log n) time cost, where c is the

number of communication channels. Sorting based on merging and an algorithm
for merging with energetic cost O(log∗ n) has been proposed in [2]. In these
algorithms it is assumed that each station stores single key (i.e. p = n). The
algorithm described in [3] extends results from [2] for sorting n keys stored in p
stations (where each station stores n

p
keys) with 8n

p
log2 p + 2(log2 p + 1) log2 p

energetic cost and (3n + 2p− 2) log2 p time cost.
Some energy efficient permutation routing protocols are described in [5,1].

The protocol described by Nakano, Olariu and Zomaya routes n packets between
p station (each station stores n

p
and is destination for n

p
packets) with (4d+7b−

1)n
p

energetic cost and (2d + 2b + 1)n
c

+ c time cost, where d =
⌈

log n
c

log n
p

⌉

and

b =
⌈

log c

log n
p

⌉

. In such case, if we consider only single channel radio network the

cost reaches (4
⌈

log p
log n

p

⌉

− 1)n
p

for energy and (2
⌈

log p
log n

p

⌉

+ 1)n + 1 for time. Datta

and Zomaya in [1] presented algorithm with 6n
p

+ 2p + 8 energetic cost and

2n + p2 + p + 2 time cost. Both algorithms are effective when p ≈ √n.
In [6] Nakano, Olariu and Zomaya introduced randomized routing protocol

where for every f ≥ 1 the task of routing n items in p stations can be completed
with probability exceeding 1 − 1/f in time n + O(q + ln f) with energetic cost
below si + di + O(qi + ri log p + log f).

1.2 Our results

In this paper we present two following results (we use the notation introduced
so far)

Theorem 1. For the single hop and single channel radio network with p stations
there exists sorting algorithm for n integer keys of range [0, 2m − 1] that works
in mn + n + p rounds of time and where each station ai uses no more than
3mri + di + si + 3 energy.

Theorem 2. For the single hop and single channel radio network with p stations
there exist routing algorithms that work

1. in n⌈log2 p⌉+n+3p rounds of time with each station ai using no more than
(3⌈log2 p⌉+ 2)ri + si + di + 5 energy;

2. in r⌈log2 p⌉+ n + r + 3p rounds of time with each station ai using no more
than (3⌈log2 p⌉+ 4)ri + si + di + 6 energy.

2

The second algorithm is much faster than the first one, if n ≫ r (and r is
always bounded by min{n, p(p− 1)}).

For p nearing n (for example when n ≈ p log2 p) our routing is more effi-
cient than algorithms described in [5,1]. Besides it is more universal (arbitrary
vs. permutation routing). Also comparing with randomized algorithm described
in [6] our protocol is simpler and has comparable energy complexity, without
randomization.

2 Preliminaries.

We assume that each key is an integer in the range [0, 2m−1]. Let bi(key) denote

ith bit in the binary representation of key (i.e. key =
∑m−1

i=0 2i · bi(key)). Let

gl(key) =
∑m−1

i=l 2i−l · bi(key). For each (level) l, m ≥ l ≥ 0, we say that key is
in the group G (gl(key), l) (i.e. G(g, l) = {k : 0 ≤ k ≤ 2m − 1 ∧ gl(k) = g}).
There are 2m−l disjoint groups on level l, partitioning the set {0, . . . , 2m − 1}
into blocks of size 2l.

The number of the stations in the network is denoted by p. For 0 ≤ i ≤ p−1,
ai denotes the ith station of the network. Each station initially stores si keys
in its local (sorted) table key[ai][0 . . . si − 1]. Let n =

∑p−1
i=0 si denote the total

number of keys. Let POS = {(i, j) : 0 ≤ i < p ∧ 0 ≤ j < si} (set of positions
of elements). And let ri denote the number of distinct values of the keys in
key[ai]. Each ai stores these values in key′[ai][0 . . . ri − 1]. For 0 ≤ j ≤ ri − 1,

ci,j denotes the number of copies of key′[ai][j] in key[ai]. Thus si =
∑ri−1

j=0 ci,j .

Let r =
∑p−1

i=0 ri.
Let di be the number of keys for which ai is final destination, and let qi be

the number of stations that initially stored such keys (qi ≤ di).

3 Counting-rank

We use following additional local variables in station ai:

– lrm[ai] – copy of last received message (if needed),
– rig[ai][j] – rank of key[ai][j] in its “current” group,
– rng[ai][j] – rank of key[ai][j] in its “next” group,
– gs[ai][j] – number of keys in group of key[ai][j],
– bg[ai][j] – number of keys in groups preceding group of key[ai][j].
– rank[ai][j] – “current” rank of key[ai][j].
– first[ai][j], last[ai][j] – additional Boolean variables used in routing proce-

dures

We say that “(i, j) is in G(g, l)” if and only if key[ai][j] ∈ G(g, l).
In the procedure Init, each station ai learns the total number of keys n and

the initial ranks of its keys in the (single) group on level m. Note that this initial
ranking depends only on the initial positions of the keys and totally ignores

3

procedure Init(〈a0, . . . , ap−1〉,m)
begin

Each station ai does, for each j: bg[ai][j]← 0;
station a0 does: begin

lrm[a0]← 0;
foreach j ∈ {0, . . . , s0 − 1} do rig[a0][j]← j;

end

for i← 0 to p− 2 do
ai sends 〈x〉, where x = lrm[ai] + si;
ai+1 receives 〈x〉 and does: begin

lrm[ai+1]← x;
foreach j ∈ {0, . . . , si+1 − 1} do rig[ai+1][j]← j + x;

end

In the last time slot: begin
station ap−1 broadcasts 〈x〉, where x = lrm[ap−1] + sp−1;
each other station receives 〈x〉;
each station ai does, for each j: n[ai]← gs[ai][j]← x;

end

each station ai does, for each j: begin
if si > 0 and rig[ai][0] = 0 then rng[ai][0]← 0;
rank[ai][j]← bg[ai][j] + rig[ai][j];

end

end

Algorithm 1: Procedure Init

their values: rank[ai][j] < rank[ai′][j
′] if and only if (i, j) is less than (i′, j′) in

lexicographical ordering.
Init is used in the procedure Counting-rank. In the procedure Counting-rank

we compute the final ranks of the keys in the sorted sequence of n keys. For equal
keys their ordering is the same as in the initial sequence. Hence, our procedure
is suitable for stable sorting. For each station as and for 0 ≤ i < n, we define set
of indexes S(as, i) as follows: S(as, t) = {j : bg[as][j] < t < bg[as][j]+gs[as][j]}.
Note that the value S(as, t) depends only on the local variables of as and may be
computed by internal computations of as. Intuitively, it denotes the set positions
(s, j) located in as that are in the same “current” group as the position with
rank t. (We will show in Lemma 2(5), that all positions have consistent view of
their current group.)

For m ≥ l ≥ 0, for (i, j) ∈ POS, we say that (i, j) is classified on level l if
and only if the following conditions are satisfied:

1. gs[ai][j] is the number of positions (i′, j′) in G(gl(key[ai][j]), l), and
2. bg[ai][j] is the total number of positions (i′, j′) in the groups G(g, l) such

that 0 ≤ g < gl(key[ai][j]), and
3. rig[ai][j] is the rank (in the lexicographical ordering by (i, j)) of (i, j) in

G(gl(key[ai][j]), l), and
4. rank[ai][j] = bg[ai][j]+rig[ai][j] (final result, if we ignore the bits l−1, . . . , 0

in the keys).

4

procedure Counting-rank(〈a0, . . . , ap−1〉,m)
begin

Init(〈a0, . . . , ap−1〉,m);
(* REGROUPING PHASE *)
for l ← m− 1 downto 0 do

for t← 0 to n− 1 do

For the (unique) pair (asnd, j′) such that rank[asnd][j′] = t, asnd does:
begin

if rig[asnd][j′] = 0 then lrm[asnd]← 0;
Let x = lrm[asnd] + (1− bl(key[asnd][j′]));
if |S(asnd, t)| < gs[asnd][j′] and
(rig[asnd][j′] = gs[asnd][j′]− 1 or j′ = ssnd − 1 or
bg[asnd][j′ + 1] 6= bg[asnd][j′]) then

asnd sends message 〈x〉

end

For the (at most one) pair (arcv, j) such that rank[arcv][j] = t + 1 and
bg[arcv][j] ≤ t < bg[arcv][j] + gs[arcv][j], arcv listens to 〈x〉 (unless
arcv = asnd) and does:
(* CASE A: key[arcv][j] is successor of key[asnd][j′] in its group *)
begin

if bl(key[arcv][j]) = 0 then rng[arcv][j]← x;
else rng[arcv][j]← rig[arcv][j]− x;
lrm[arcv]← x;

end

Each arcv such that ∃j bg[arcv][j] ≤ t = bg[arcv][j] + gs[arcv][j] − 1,
listens to 〈x〉 (unless arcv = asnd) and does, for each j ∈ S(arcv, i):
(* CASE B: key[asnd][j′] is the last one in its group *)
begin

if bl(key[arcv][j]) = 0 then
gs[arcv][j]← x;

else
bg[arcv][j]← bg[arcv][j] + x;
gs[arcv][j]← gs[arcv][j] − x;

rig[arcv][j]← rng[arcv][j];
rank[arcv][j]← bg[arcv][j] + rig[arcv][j];

end

each ai, for each j, does: begin
if rig[ai][j] = 0 then first[ai][j]← true; else first[ai][j]← false;
if rig[ai][j] = gs[ai][j] − 1 then last[ai][j]← true;
else last[ai][j]← false;

end

end

Algorithm 2: Procedure Counting-rank

5

For m > l′ ≥ 0 and 0 ≤ t′ < n, let slot(l′, t′) denote the time slot of
REGROUPING PHASE in which the variables l and t have values l′ and t′, re-
spectively. Let slot(−1, 0) denote the first time slot after the REGROUPING

PHASE. Let next(t, l) denote the next slot after slot(t, l). For m > l ≥ 0,
next(l, t) = slot(l, t + 1) if 0 ≤ t < n− 1, and next(l, n− 1) = slot(l − 1, 0).

Lemma 1. In Counting-rank:

1. For any (i, j) ∈ POS, if, after some time slot, rig[ai][j] = 0, then in all the
following time slots rng[ai][j] = rig[ai][j] = 0.

2. For any (i, j) ∈ POS, before each slot after Init, we have rank[ai][j] =
bg[ai][j] + rig[ai][j].

Proof. The code ensures that rng[ai][j] becomes zero whenever rig[ai][j] be-
comes zero. If at the beginning of time slot rig[ai][j] = 0 then rank[aj][j] =
bg[aj]. Thus if rank[ai][j] = t + 1 then t < bg[ai][j] and ai will not execute
code of CASE A of REGROUPING PHASE (the only fragment that could change
rng[ai][aj]). Consequently rng[ai][j] and rig[ai][j] will remain equal to zero. The
property 2 can be easily seen from the code. ⊓⊔

Lemma 2. For m − 1 ≥ l ≥ 0 and 0 ≤ t < n or (l, t) = (−1, 0), for each
(i, j) ∈ POS, at the beginning of slot(l, t):

1. either:
– t < bg[ai][j] + gs[i][j] and (i, j) is classified on level l + 1, or
– t ≥ bg[ai][j] + gs[i][j] and (i, j) is classified on level l,

and
2. if t ≥ rank[ai][j] then rng[ai][j] is the rank (in the lexicographical ordering

by (i, j)) of key[ai][j] in the group G(gl(key[ai][j]), l), and
3. if t = rank[ai][j] and rig[ai][j] > 0, then lrm[ai][j] is the number of pairs

(i′, j′) in G(gl+1(key[ai][j], l+1)) with rig[ai′][j
′] < rig[ai][j] and bl(key[ai′][j

′]) =
0, and

4. {rank[ai][j] : (i, j) ∈ POS} = {0, . . . , n− 1}, and
5. for each two pairs (i, j) and (i′, j′), such that 0 ≤ i, i′ < p, and 0 ≤ j < si,

0 ≤ j′ < si′ , either:
– bg[i][j] = bg[i′][j′] and gs[i][j] = gs[i′][j′], or
– bg[i][j] + gs[i][j] ≤ bg[i′][j′], or
– bg[i′][j′] + gs[i′][j′] ≤ bg[i][j].

Proof. We prove Lemma 2 by induction on time slots of REGROUPING PHASE.
(I.e. we show that the conditions of the lemma hold for slot(m−1, 0) and that if
they hold for slot(l, t) then they also hold for next(l, t).) For slot(m− 1, 0), the
conditions of Lemma 2 are enforced by the Init procedure. Let us assume that the
conditions hold for slot(l, t), where m− 1 ≥ l ≥ 0 and 0 ≤ t < n. By condition
4, there is exactly one pair (asnd, j

′) such that rank[asnd] = t. By condition
1, (snd, j) is classified on level l + 1, since t = rank[asnd][j

′] = bg[asnd][j
′] +

rig[asnd][j
′] < bg[asnd][j

′] + gs[asnd][j
′]. Let G′ = G(gl+1(key[asnd][j

′]), l + 1).
By conditions 5 and 1, all the pairs (i, j) in G′ are classified on level l + 1. Let

6

G′

0 = {k ∈ G′ : bl(k) = 0} and G′

1 = G′ \ G′

0 (the two groups on level l that
are halves of G′). The value x computed by asnd is the number of pairs (i, j) in
G′

0 with rig[ai][j] ≤ rig[asnd][j
′], since either rig[asnd][j

′] = 0 and asnd executed
lrm[asnd]← 0, or it follows from condition 3.

We look at variables at the beginning of slot(l, t) and define three sets:

A = {(i, j) : bg[ai][j] ≤ t < bg[ai] + gs[ai]− 1}
B = {(i, j) : t = bg[ai] + gs[ai]− 1}
C = {(i, j) : t < bg[ai] ∨ bg[ai][j] + gs ≤ t}

Note that, by conditions 5 and 1: A, B, C is a partition of POS, and A ∪ B is
the set of pairs that are in G′, and either A = ∅ or B = ∅.

Consider the case A 6= ∅ (CASE A). Then there is exactly one pair (rcv, j) in
G′ such that rank[arcv][j] = t + 1. If rcv 6= snd, then |S(asnd, t)| < gs[asnd][j

′]
and either j′ = ssnd−1 or bg[asnd][j

′+1] 6= bg[asnd][j
′]+1. (Otherwise rcv = snd

since key[asnd] is sorted and the keys in key[asnd] from G′ are blocked together
and have consecutive ranks.) Hence asnd broadcasts 〈x〉, if necessary. (rcv, j) is
preceded by rig[arcv][j] pairs (i′, j′) in G′ and x of them are in G′

0. Thus (rcv, j)
should be ranked in its group on level l on position x, if bl(key[arcv][j]) = 0,
and on position rig[arcv][j]−x, otherwise. It follows that rng[arcv][j] is updated
so that condition 2 is satisfied in next(l, t). The execution of lrm[arcv] ← x
makes the condition 3 satisfied in next(l, t). Condition 1 remains satisfied in
next(l, t), since (in CASE A) next(t, l) = slot(l, t + 1) and, for each pair (i, j)
in G′, t + 1 < bg[ai][j + gs[ai][j] and (i, j) remains classified on level l + 1. For
all pairs in C condition 1 does not change. Conditions 4 and 5 remain satisfied,
since none of the involved variables is changed.

Consider the case B 6= ∅ (CASE B). For all pairs (rcv, j) in G′, the station
arcv has the same values bg and gs. Hence, all of them execute code for CASE B.
If there is some pair (rcv, j) in G′, such that rcv 6= snd, then |S(asnd, t)| <
gs[asnd][j

′]. Since, in CASE B, t = rank[asnd][j
′] = bg[asnd][j

′] + gs[asnd][j
′]− 1,

it follows that rank[asnd][j′]− bg[asnd][j
′] = rig[asnd][j

′] = gs[asnd][j
′]− 1, and

asnd broadcasts 〈x〉, if necessary. Since (snd, j) is the last pair in G′, the value
x is the number of pairs in G′

0. Hence, each pair (rcv, j) ∈ G′

0 properly updates
gs[arcv][j] to x (bg[arcv][j] remains unchanged), and each pair (rcv, j) ∈ G′

1

properly decreases gs[arcv][j] and increases bg[arcv][j] by x, for classification on
level l. Besides (by condition 2) each pair (rcv, j) in G′ properly updates the
values of rig[arcv][j] and rank[arcv][j]. Thus in next(l, t), all the pairs in G′ are
classified on level l and all the pairs in C are classified as before and condition
1 holds in next(t, l). Note that all ranks used by the pairs in G′ in classification
on level l + 1 are “recycled” by them in classification on level l, thus condition
4 holds in next(l, t). Condition 5 holds in next(l, t) since all pairs that are in
the same group on level l are classified on the same level (either l or l + 1). Let
(i, j) be the pair with rank[ai][j] = (t+1) mod n. Condition 3 holds in next(l, t)
since rig[ai][j] = 0. Condition 2 holds in next(l, t) since (by Lemma 1(1)) also
rng[ai][j] = 0, and either (t+1) = 0 or positions with rank < t had proper values
of rng by induction hypothesis and no variable rng is modified in CASE B. ⊓⊔

7

By Lemma 2(1), after the REGROUPING PHASE (i.e. before slot(−1, 0)), all
pairs are classified on level 0, which means the stable ranking of the keys.

4 Sorting

After the ranks of the keys have been computed we may send each key with
rank r to its destination station adest(r). The function dest should be globally
known, however its definition may depend on further applications. For example
we may define dest(r) = ⌊p · r/n⌋, or dest(r) = r mod p. Procedure Route-by-

ranks performs this task.

procedure Route-by-ranks(〈a0, . . . , ap−1〉)
begin

for i← 0 to n− 1 do
the (unique) station asnd containing (unique) j such that i = rank[asnd][j]
sends message 〈x〉, where x = key[asnd][j] (if adest(i) 6= asnd);
the station adest(i) listens (if adest(i) 6= asnd) and stores x;

end

Algorithm 3: Procedure Route-by-ranks

procedure Counting-sort(〈a0, . . . , ap−1〉,m)
begin

Counting-rank(〈a0, . . . , ap−1〉,m)
Route-by-ranks(〈a0, . . . , ap−1〉)

end

Algorithm 4: Procedure Counting-sort

5 Routing

In the case of routing, we assume that each key is a number of the station that
is destination of the packet containing this key in the address field of its header.
Hence we should route the packets by the keys rather than by the ranks of
the keys. However, we use Counting-rank in the preprocessing phase of routing.
Besides the ranks rank[ai][j], we also use the values rig[ai][j], gs[ai][j] and n[ai]
computed by Counting-rank. Thus each key is from the set {0, . . . , p − 1} and
the parameter m (number of bits) is ⌈log2 p⌉. After computing the ranks of
the keys, the stations perform procedure Compute-intervals. Each station learns
time interval in which it should receive its incoming packets in the procedure
Finish-routing. The interval for ai will be stored in variables i1[ai] and i2[ai]. The

8

packets are then broadcast in the sequence of their ranks. The whole routing is
performed by the procedure Route-packets. Note that each packet is transmitted
only once (in Finish-routing), while in preprocessing phase the stations transmit
only the integers from the range [0, n], which are usually much shorter than the
whole packets.

procedure Compute-intervals(〈a0, . . . , ap−1〉)
begin

for i← 0 to p− 1 do

in time slot 2 · i: begin
the (at most one) station asnd containing (unique) j with
key[asnd][j] = i and first[asnd][j] = true sends 〈x〉, where
x = rank[asnd][j];
ai listens and does: if there was a message then i1[ai]← x;
else i1[ai]← i2[ai]← (−1);

end

in time slot 2 · i + 1: begin
the (at most one) station asnd containing (unique) j with
key[asnd][j] = i and last[asnd][j] = true sends 〈x〉, where
x = rank[asnd][j];
if i1[ai] 6= (−1) then ai listens and does: i2[ai]← x;

end

end

Algorithm 5: Procedure Compute-intervals

procedure Finish-routing(〈a0, . . . , ap−1〉)
begin

for i← 0 to n do

in time slot i: begin
the (unique) station asnd containing (unique) j with rank[asnd][j] = i

sends packet addressed by key[asnd][j];
the (unique) arcv with i1[arcv] ≤ i ≤ i2[arcv] receives this packet;
(* should be: rcv = key[asnd][j] *)

end

end

Algorithm 6: Procedure Finish-routing

6 Complexities of the procedures.

Recall, that for each station ai, si denotes the number of keys initially stored
by ai, ri is the number of distinct values of these keys, di is the number of keys

9

procedure Route-packets(〈a0, . . . , ap−1〉)
begin

(* In each station ai there are si outgoing packets sorted by their destination
addresses, which are stored in the table key[ai] *)
Counting-rank(〈a0, . . . , ap−1〉,⌈log2 p⌉);
Compute-intervals(〈a0, . . . , ap−1〉);
Finish-routing(〈a0, . . . , ap−1〉);

end

Algorithm 7: Procedure Route-packets

for which ai is destination, and qi is the number of stations that initially stored
such keys. Also p is the number of stations, n =

∑p−1
i=0 si and r =

∑p−1
i=1 ri.

Lemma 3. For Init the energetic cost of listening, for each ai, is at most 2 and
the energetic cost of sending is at most 1. Time of Init is p.

Lemma 4. For Counting-rank, for each ai, the energetic cost of listening is at
most 2m · ri + 2 and the energetic cost of sending is at most m · ri + 1. Time of
Counting-rank is m · n + p.

Proof. Ranks of the keys from the same group g are continuous in a single station
ai, and all keys with the same value v are always in the same group. For each such
group g, ai has to listen only to the predecessor of its key with the lowest rank
in g and to the last element in g, if it is in another station. Similar arguments
can be used to estimate the cost of sending. Time complexity is easily seen from
the code of the procedure. ⊓⊔

Lemma 5. For Route-by-ranks, for each ai, the energetic cost of listening is at
most di and the cost of sending is si. The time of Route-by-ranks is n.

Lemma 6. For Counting-sort, for each ai, the energetic cost of listening is 2m ·
ri + di + 2 and the cost of sending is m · ri + si + 1. (The total energetic cost is:
3m · ri + di + si + 3.) The time is m · n + n + p.

Lemma 7. For Compute-intervals, for each ai, the energetic cost of listening is
2 and energetic cost of sending is at most 2ri. The time is 2p.

Lemma 8. For Finish-routing, for each ai, the energetic cost of listening is di,
and the energetic cost of sending is si. The time is n.

Lemma 9. For Route-packets, for each ai, the energetic cost of listening is 2m ·
ri + di + 4, and the cost of sending is m · ri + si + 2ri + 1, where m = ⌈log2 p⌉
and ri ≤ p − 1 (no station sends packets to itself). (Total energetic cost is:
3m · ri + si + di + 2ri + 5). The time is m · n + n + 3p.

10

procedure Expand-ranks(〈a0, . . . , ap−1〉)
begin

Each ai, for each 0 ≤ j < si, does: first[ai][j]← last[ai][j]← false;
Each ai, for each 0 ≤ j′ < ri, does: begin

first[ai][min P (ai, key′[ai][j
′])]← first′[ai][j

′];
last[ai][max P (ai, key′[ai][j

′])]← last′[ai][j
′];

end

Each ai does: lrm[ai]← 0;
for t← 0 to r − 2 do

the (unique) asnd with table rank′[asnd] containing t, does: begin

Let j be such that rank′[asnd][j] = t;
asnd assigns sequential ranks lrm[asnd], . . . , lrm[asnd] + csnd,j − 1 to
the positions P (asnd, key′[asnd][j]) of the table rank[asnd], where
csnd,j = |P (asnd, key′[asnd][j])|;
asnd sends message 〈x〉, where x = lrm[asnd] + csnd,j ;

end

the (unique) arcv with table rank′[arcv] containing t + 1, receives 〈x〉 and
does: lrm[arcv]← x;

the (unique) asnd with table rank′[asnd] containing r − 1, does: begin

Let j be such that rank′[asnd][j] = r − 1;
asnd assigns sequential ranks lrm[asnd], . . . , lrm[asnd] + csnd,j − 1 to the
positions P (asnd, key′[asnd][j]) of the table rank[asnd], where
csnd,j = |P (asnd, key′[asnd][j])|;
asnd sends message 〈x〉, where x = lrm[asnd] + csnd,j .

end

each ai 6= asnd listens to 〈x〉;
each ai does: n[ai]← x;

end

Algorithm 8: Procedure Expand-ranks

11

7 Accelerating Counting-rank.

Time complexity of Counting-rank contains component m · n. Note that, in the
case of routing, r ≤ p(p − 1) (each station sends packets to at most p − 1
other stations) and m = ⌈log2 p⌉. We may expect that n is much larger than r.
In this section we show how to replace this component with (m + 1) · r while
the energetic cost for each ai is increased by at most 2ri + 1. By Compressed-

counting-rank we denote the procedure Counting-rank with the code modified as
follows: Each station ai pretends that it contains only one key of given value
(i.e. it uses key′, rank′, last′, first′, ri and r instead of key, rank, last, first,
si and n, respectively.) The code of the sub-procedure Init is modified the same
way. The computed results are stored in rank′, first′ and last′. At the end of
Compressed-counting-rank we add procedure Expand-ranks (Algorithm 8) which
computes ranks and proper values first and last, for all keys, and proper value
of n in each station. Let P (ai, k) = {j | key[ai][j] = k}. The time of Expand-ranks

is r and its energetic cost for each ai is 2ri + 1. (Each ai may need to listen and
send at most once for each its key value and listen to the last message.) Let us
call the resulting algorithm Accelerated-Routing.

Lemma 10. For Accelerated-Routing, for each ai, the energetic cost of listening
and sending is 3⌈log2 p⌉ · ri + si + di + 4ri + 6, where ri ≤ p − 1. The time is
⌈log2 p⌉ · r + n + r + 3p.

References

1. Amitava Datta and Albert Y. Zomaya. An Energy-Efficient Permutation Rout-
ing Protocol for Single-Hop Radio Networks. IEEE Trans. Parallel Distrib. Syst.,
15:331-338, 2004.

2. M. Kik. Merging and Merge-sort in a Single Hop Radio Network. SOFSEM 2006,
LNCS 3831, pp. 341-349, 2006.

3. M.Kik. Sorting Long Sequences in a Single Hop Radio Network. MFCS 2006, LNCS
4162, pp. 573-583, 2006.

4. K. Nakano. An Optimal Randomized Ranking Algorithm on the k-channel Broad-
cast Communication Model. ICPP 2002, pp. 493-500, 2002.

5. K. Nakano, S. Olariu, A. Y. Zomaya. Energy-Efficient Permutation Routing in
Radio Networks. IEEE Transactions on Parallel and Distributed Systems, 12:544-
557, 2001.

6. K. Nakano, S. Olariu, A. Y. Zomaya. Energy-Efficient Routing in the Broadcast
Communication Model. IEEE Trans. Parallel Distrib. Syst., 13:1201-1210, 2002.

7. M. Singh and V. K. Prasanna. Optimal Energy Balanced Algorithm for Selection
in Single Hop Sensor Network. SNPA ICC, May 2003.

8. M. Singh and V. K. Prasanna. Energy-Optimal and Energy-Balanced Sorting in a
Single-Hop Sensor Network. PERCOM, March 2003.

9. Compendium of Large-Scale Optimization Problems. (DELIS, Subproject 3).
http://ru1.cti.gr/delis-sp3/

12

