
This work has been supported by the ICT Programme of the European Union under contract number FP7-215270 (FRONTS)

Sorting
We assume thatlg n is positive integer. The network consists ofn
stations:s0, . . . , sn−1. Eachsi contains single key:key[si]. Each
si also contains the following variables:

• idx0[si], . . . , idxlg n[si]

•minR0[si], . . . , minRlg n−1[si]

•maxR0[si], . . . , maxRlg n−1[si]

These variables are initialized by the procedureinit. On level k
we partition the sequences0, . . . , sn−1 into blocksof length2k.
idxk[si] should become the index ofkey[si] in the sorted sequence
of the keys from its block on levelk. The ultimategoal of sorting
is to compute in eachidxlg n[si] the index ofkey[si] in the sorted
sequence of all the keys.

procedure init
Eachsi does (in parallel):
begin

idx0[si]← 0;
for k ← 1 to lg n do

idxk[si]← NIL;

for k ← 0 to lg n− 1 do
minRk[si]← 0;
maxRk[si]← 2k;

end

procedure rank(k, l, d, πk)
for 0 ≤ i < 2k:

• let ai denotesl·2k+1+d·2k+i, and

• let bi denotesl·2k+1+(1−d)·2k+i.

for time slott← 0 to 2k − 1 do
the (at most one)bj with πk(idxk[bj]) = t
broadcastskey = key[bj];
let x = π−1

k (t);
eachai with minR[ai] ≤ x < maxRk[ai] does:
begin

ai listens;
if ai receivedkey then

(* comparison forstableranking *)
if (d = 0 andkey[ai] ≤ key) or
(d = 1 andkey[ai] < key) then

maxRk[ai]← x;

else
minRk[ai]← x + 1;

(* cascading computation of indexes *)
k′← k;
while k′ < lg n and idxk′[ai] 6= NIL and
minRk′[ai] = maxRk′[ai] do

idxk′+1[ai]← idxk′[ai] + minRk′[ai];
k′← k′ + 1;

end

rank(k, l, d, πk), for d ∈ {0, 1}, is used
for merging thelth pair of sorted blocks on
level k into one block on levelk + 1. For
d = 0 (respectivelyd = 1), each station
from the left (respectively right) block at-
tempts to find the rank of its key in the other
block (using one round of the ranking al-
gorithm). The sum of the index in its own
block and the rank in the other block is the
index in the merged block. To ensure that
the sorting isstableand that the computed
indexes are unique, whenever we compare
two equal keys, the one from the right block
is considered to be the greater.
(Cascading computation of indexes could
be useful if some ranking on lower level
follows some some ranking on higher level.
In sortingq′ (defined below) it is enough to
compute only the index on the next level.)

levelRanking(k, πk) is used for merging all the pairs of blocks
on levelk. levelRanking(k, πk) attempts to increase the number
of computed indexes on levelk + 1. The time of eachlevelRank-
ing is n and sorting algorithms can be defined as sequences of
levelRankings.

procedure levelRanking(k, πk)
for l← 0 to n/(2k+1)− 1 do

rank(k, l, 1, πk);
rank(k, l, 0, πk);

Forn > 0 and0 < q, q′ < 1, letc(q, q′, n) = ⌈log1/q

(

2n lg n
q′

)

⌉ =
⌈

(1 + lg n + lg lg n + lg(1/q′))/ lg(1/q)
⌉

.

proceduresortingq′

init;
Let q = 1− p, wherep is probability of successful
reception;
for k ← 0 to lg n− 1 do

repeatc(q, q′, n) timeslevelRanking(k, rbok);

sortingq′ is the simplest application oflev-
elRankings that guaranties successful sort-
ing with probability1 − q′. The low ener-
getic cost follows fromπk = rbok. (We
could usebok as well.)

Theorem 2.For 0 < q′ < 1, the proceduresortingq′ sorts any input sequence with probability greater
or equal1− q′.

(This follows from Lemma 1 and from the definition ofc(q, q′, n).)

Theorem 3.For any input, the expected energy used for listening by any single station insortingq′ is
at mostlg n · (1 + (c− 1)(2/p− 2) + (2/p− 1)(lg n− 1)/2) +c(n − 1)q′, wherec = c(q, q′, n). The
energy used for broadcasting by any single station isc lg n. Time ofsortingq′ is cn lg n.

(If the computation is successful, then all indexes on levelk are computed before the first
levelRanking(k, rbok). Thus we can use Lemma 3 to bound the energy used by the firstlevel-
Ranking(k, rbok). By Lemma 2 we have the bounds for the remaininglevelRankings on this level.
If the computation is unsuccessful (this happens with probability≤ q′) then we use the worst case
bound:c(n− 1).)

There is a tradeoff between energy and reliability. As one example, we have the following corollary:

Corollary. Algorithmsorting1/n sorts any input with probability at least1− 1
n in timeO(n lg2 n) and,

for each stations, the expected energy used bys is O(lg2 n).

Bibliographic coordinates of the conference paper:
Marcin Kik: Ranking and Sorting in Unreliable Single Hop Radio Network.In David Coudert, David
Simplot-Ryl, and Ivan Stojmenovic (Eds.): Ad-hoc, Mobile and Wireless Networks 7th International
Conference, ADHOC-NOW 2008, LNCS 5198, pp. 333-344, 2008. Springer-Verlag Berlin Heidel-
berg 2008.

Introduction
Model of computation:

• radio network(set of stations communicating by radio messages)

• single hop(all stations are within the range of each message)

• synchronized(time is divided into slots)

• single channel(in one time slot only one message can be broadcast)

• if station listens thenprobability of successful receptionis p
(In reliablenetworkp = 1. In unreliablenetworkp < 1.)

• during each time slot any station can be either:

– idle (using no energy), or
– broadcastingor listening(using one unit of energy)

Complexity measures:

• energetic cost– maximum over all stations of the energy used. (Stations are powered bybatteries.)

• time– number of time slots used by the computation.

Remark: By “ lg” we mean “log2”.

Ranking
(We assume thatn = 2k.) A sorted sequence of keys:b0, . . . , bn−1 permuted by a fixed permutation
πk is transmitted periodically. (In time slott the keybx is broadcast, wherex = π−1

k (t mod n).)

Stationa containingkey[a] has to compute therank of key[a] in b0, . . . , bn−1 (or its approximation).
(Rankof key[a] is |{bi | bi ≤ key[a]}|.) Stationa contains variablesminR[a] andmaxR[a] that are
the lower and upper bound on the rank, respectively. Initially minR[a] = 0 andmaxR[a] = n. a can
start its computation in arbitrary time slot. In time slott, the stationa does:

Let x = π−1
k (t mod n). If minR[a] ≤ x < maxR[a] thena listens.

If a received the message (i.e.bx), thena does:

if key[a] < bx then maxR[a]← x elseminR[a]← x + 1

Note that the rank ofkey[a] is always in the interval[minR[a], maxR[a]].

Lemma 1. Let c be a positive integer. Afterc · n time slotsminR[a] = maxR[a] (i.e. the exact rank is
computed) with probability at least1− 2 · (1− p)c.

(Stationa hasc chances of receiving the direct neighbors ofkey[a].)

Lemma 2. The expected value of∆ = maxR[a] − minR[a] after n time slots is not greater than
2/p− 2.

(Let r be the rank ofkey[a] in b0, . . . , bn−1. ThenmaxR[a]−r+1 is bounded by a random variableX
with geometric distribution:Pr(X = m) = (1− p)m−1 · p andE[X] = 1/p. ThusE[maxR[a]− r] =
1/p− 1 (and, by symmetry,E[r −minR[a]] = 1/p− 1.)

Bisection orderingpermutation (bok): Illustrated by the
figure to the right: Eachx is connected by vertical dotted
line with the node labelledbok(x). (Note that level of
the tree and position within the level can be easily read
from binary representation ofx. Hence,bok is “easily
computable” function.) If the network is reliable andπk =
bok anda starts in time slott = 0 then the energy used
by a is at mostk. However, ifa can start in arbitrary time
slot, then the energy used bya may be as large asn/2.

0

0
0
0

1

0
0
1

2

0
1
0

3

0
1
1

4

1
0
0

5

1
0
1

6

1
1
0

7

1
1
1

0

1 2

3 4 5 6

7

level 0

level 2

level 3

level 1

binary:

x:

bo rbo

Recursive bisection orderingpermutation
(rbok): First we permute all the elements
by bok and then we permute each level of
the binary tree ofbok (except the first and
the last one, which are singletons) by recur-
sive bisection ordering. (rbo is also “easily
computable”.)
The permutationπk can be imagined as
a set of parallel vertical blades cutting of
parts of the horizontal interval containing
the rank ofkey[a] as it falls downwards.
The figure to the left illustrates the differ-
ence betweenbo andrbo.

Lemma 3. Let πk bebok or rbok. Let the stationa start in time slot0. The expected energy used by
a during the firstn = 2k time slots is at most1 + k · (2/p− 1).

(This follows from Lemma 2 applied to each level of the binarytree ofbok.)

Ranking withrbo in a reliable network

Theorem 1. If πk = rbok and p = 1 and stationa starts in arbitrary time slot, then the stationa
listens at most4 lg n times before it learns its rank.

(The proof is rather technical: We bound by 2 or by 4 the energyused within levels of the bisection
binary trees formed on the same or different levels of recursion within rbo.)

Remarks:

• In the simulations, the energy used bya was never greater than2 lg n. (The estimation4 lg n does
not seem to be very precise.)

• The experimental results suggest thatrbo is also energetically efficient inunreliablenetworks when
a starts in arbitrary time slot.

Marcin Kik Marcin.Kik@pwr.wroc.pl
INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCE, Wrocław University of Technology, Wrocław, Poland(www.im.pwr.wroc.pl)

Ranking and Sorting
in Unreliable Single Hop Radio Network

