
Sorting Long Sequence in a Single Hop Radio Network?

Marcin Kik
kik@im.pwr.wroc.pl

Institute of Mathematics and Computer Science,
Wrocław University of Technology

ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract. We propose an algorithm for merging two sorted sequences of length
k · m stored in two sequences of m stations of single-hop single-channel radio
network, where each station stores a block of of k consecutive elements. The time
and energetic cost of this algorithm are 6m · k + 8m− 4 and 8k + 4dlog2(m +
1)e + 6, respectively. This algorithm can be applied for sorting a sequence of
length N = k · n in a network consisting of n stations with memory limited by
Θ(k) words. For k = Ω(lg n), the energetic cost of such sorting is O(k · lg n)
and the time is O(N lg n). Moreover, the constants hidden by the big “Oh” are
reasonably small, to make the algorithm attractive for practical applications.

1 Introduction

We consider the following problem: A sequence of length N = n · k is distributed
among n stations of a single-hop radio network. Each station stores k elements of the
sequence. The length of the sequence significantly exceeds the number of stations (i.e.
k = Ω(lg n)). We want to sort this sequence. The stations are synchronized. Time is
divided into slots. Within a single time slot a single message can be broadcast. We
consider single-hop network: Message broadcast by any station can be received by any
other station. A single message contains O(max{B, lg N}) bits, where B is the number
of bits of a single key (i.e. element of the input sequence). (Typically B = Θ(lg(N)).)
For any station, sending or listening in a single time slot requires a unit of energy. The
main goal is to minimize energetic cost of the algorithm, i.e. the maximal energy dissi-
pated by any single station. This prolongs the lifetime of the battery powered stations of
the network. We also assume that each station can store Θ(k) words of max{B, dlg Ne}
bits each.

The sorting algorithms proposed in [9] and [4] assume that each station stores only
one key and it is not not evident how to adopt them to the case when each station stores
k keys. The sorting algorithm in [9] is based on energetically balanced selection [8] and
obtains energetic cost O(lg n). On the other hand, [4] contains description of simple
merge-sort with energetic cost O(lg2 n) that due to its low constants and simplicity is
attractive for practical applications.

There exists an algorithm [6] that sorts n elements in time O(n) with energetic cost
of broadcasting O(1): Each station si listens the keys broadcast by remaining stations
? Supported by the European Union within the 6th Framework Programme under contract

001907 (DELIS).

and computes the rank r of its own key. In the rth slot of the next stage si broadcasts
its key to sr. This algorithm can be immediately adopted for sorting k · n keys in time
O(kn) with energetic cost of broadcasting O(k). However the energetic cost of listening
in this algorithm would be Θ(k · n).

A comparator network sorting sequences of length n can be directly simulated on a
single-hop network of n stations: each comparator is simulated in two consecutive time
slots, when two endpoints of the comparator exchange their values. The time of such
an algorithm (in single channel network) is two times the number of comparators, and
the energetic cost is not greater than two times the depth of the network. (Actually, it is
twice the maximal number of comparisons performed by a single station.)

We can transform such algorithm into an algorithm for sorting sequences of size
n · k using the following standard method for comparator networks (see [5], chapter
5.3.4, exercise 38): Each of the n elements of the sequence is replaced by a sorted
block of k elements and each of the comparisons of two elements is replaced by sorting
(actually merging) of the corresponding two groups. The energetic cost and time of such
operation for each involved station is 2k: It has to broadcast all its keys and receive all
keys of the other station.

For example, the AKS sorting network [1] can be transformed into (impractical)
algorithm sorting sequences of length k ·n in time O(k ·n lg n) and with energetic cost
O(k lg n) and the Batcher networks [2] can be transformed into algorithms with time
O(k · n lg2 n) and energetic cost O(k · lg2 n).

In this paper we present a practical algorithm (based on the simple merging algo-
rithm from [4]) that merges two sequences of length k · n stored in two sequences
of n stations in time O(k · n) and with energetic cost O(max{k, lg n}). For the case
k > lg n, the energetic cost is O(k). This algorithm can be used for merge-sorting in
time O(k ·n lg n) and energetic cost O(k lg n). This is asymptotically equivalent to the
algorithm obtained from AKS network, but the constants involved are much lower.

2 Preliminaries

The network consists of n stations. Initially we have a sequence of n · k keys evenly
distributed among the stations: Each station si stores a (sorted) sequence of k keys
in the table key[si][1 . . . k]. (This table is extended in both directions by key[si][0] and
key[si][k+1].) By interval of si we mean the interval [key[si][1], key[si][k]]. After sort-
ing, all the elements in key[si][1 . . . k] are less than all the elements in key[si+1][1 . . . k],
for 1 ≤ i < n.

For simplicity of description we assume that all the keys are pairwise distinct. We
ignore the cost of internal operations inside single stations and for the sake of readability
we do not optimize them.

3 Merging

We start with an algorithm for merging two sorted sequences of length k · m (called
a-sequence and b-sequence) stored in two sequences of stations 〈a1, . . . , am〉 (i.e. a-

stations) and 〈b1, . . . , bm〉 (i.e. b-stations), respectively. The result will be a sorted se-
quence of length 2k · m stored in the sequence of stations 〈a1, . . . , am, b1, . . . , bm〉.

3.1 An Overview of the Algorithm

In the procedure Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉) (defined in the following
section) each station ai computes the ranks of all its keys in the b-sequence unless its
interval is split by the interval of some bj , and each station bj computes the ranks of
all its keys in the a-sequence if its interval contains at least one endpoint of the interval
of some aj . (I.e. Its interval neither splits the interval of any aj nor is disjoint with all
intervals aj .) All the uncomputed ranks are computed by the symmetrical procedure
Try-Ranking(〈b1, . . . , bm〉, 〈a1, . . . , am〉). As soon as the ranks are known, the final
position of each key in the merged sequence is also known. We finish by performing
simple permutation routing, where the destination of each key is its final position in the
merged sequence.

3.2 Technical Details

1 4 3 5 5 6

6 32 2

4 1

Fig. 1. Tree T6. Right to the nodes are their heap-order indexes.

We repeat some technical definitions from [4]. Let Tm denote a balanced binary tree
consisting of the nodes 1, . . . ,m: If m = 2k − 1, for some integer k > 0, then Tm is a
complete binary tree. If m = 2k − 1 − l, for some positive integer l < 2k−1, then the
l rightmost nodes on the last level are missing. Thus the shape of Tm is identical to the
shape of binary heap containing m elements (see [3]). However, the nodes are placed in
Tm in the in-order order (i.e. for each node x the nodes in its left subtree are less than x
and the nodes in its right subtree are greater than x). By l(m,x) (respectively r(m,x)),
for 1 ≤ x ≤ m, we denote the left (respectively right) child of node x in Tm. (A non-
existing child is represented by NIL.) By p(m,x) we denote the index of node x in Tm

in heap-order ordering, which corresponds to the index of x in an array representation
of Tm treated as a heap. (I.e. the heap-order index of the root is 1, then the nodes on the
second level are indexed from left to right, then on the third level, and so on.) We also
assume that p(m,NIL) = NIL. An example of Tm for m = 6 is given in Figure 1.
Note that the height (number of levels) of Tm is min{k : 2k − 1 ≥ m} = dlg(m + 1)e
(where “lg” denotes “log2”). The algorithm uses several procedures defined below.

procedure Init(〈a1, . . . , am〉)
begin

a1 does: key[a1][0]← −∞;
am does: key[am][k + 1]← +∞;
for time slot i← 1 to m− 1 do

station ai broadcasts 〈x〉, where x = key[ai][k];
station ai+1 listens and does: key[ai+1][0]← x;

for time slot i← 1 to m− 1 do
station ai+1 broadcasts 〈x〉, where x = key[ai+1][1];
station ai listens and does: key[ai][k + 1]← x;

end
Algorithm 1: Procedure Init.

In procedure Init (Algorithm 1) each station is informed about the maximal key
stored by its predecessor and the minimal key stored by its successor.

Each station ai contains additional variables lPartner[ai], rPartner[ai], lRank[ai],
and rRank[ai]. lPartner[ai] and rPartner[ai] can store either NIL or a triple 〈x, f, l〉,
where x is an index of some b-station bx and f , l are the endpoints of the interval of
bx. For each ai, in procedure Find-Partners (Algorithm 2), for k1 = key[ai][1], we
compute in lPartner[ai] the index and the endpoints of the station bx such that k1 is
in the interval of bx. If k1 is ranked between any two intervals of bx and bx+1, then
lPartner[ai] = NIL and its final rank in the other sequence (equal k · x) is computed
in lRank[ai]. (Note that if x = 0 then bx does not exist, and if x = m then bx+1 does
not exist.) We make analogous computations for key[ai][k] and variables rPartner[ai]
and rRank[ai]. The computations for each endpoint of ai are independent. ai receives
only those messages that can influence one of its endpoints. Each time the endpoints of
the interval of some b-station are received, the local procedure Update (Algorithm 3)
is invoked for the endpoint of ai that can be influenced. Update uses its two initial pa-
rameters to update the variables referenced by the remaining parameters. Finally, each
station ai uses the values lPartner[ai], rPartner[ai], lRank[ai] and rRank[ai], to
compute split[aj]. The variable split[aj] becomes true if and only if the interval of
some bj is properly contained in the interval of ai.

Each station s contains a table rank[s][1 . . . k]. Initially, rank[ai][r] = rank[bi][r] =
NIL, for all 1 ≤ i ≤ m and 1 ≤ r ≤ k. We want to compute in each rank[ai][r] the
rank of key[ai][r] in b-sequence, and vice versa (i.e. in each rank[bi][r] the rank of
key[bi][r] in a-sequence). By the rank of x we mean the number of keys less than x in
the other sequence. Procedure Try-Ranking (Algorithm 4) computes the ranks in the
b-stations that have partners among the a-stations and in each aj that has split[aj] =
false. Procedure Rank (Algorithm 6) computes ranks in all the stations, and Merge
(Algorithm 7) uses the ranks for computing final positions of the keys in the sorted
sequence and routes them to their destinations.

procedure Find-Partners(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
begin

Each station ai does: begin
lT imer[ai]← rT imer[ai]← 1;
lRank[ai]← rRank[ai]← 0;
lParnter[ai]← rPartner[ai]← NIL;
split[ai]← false;

end
for time slot d← 1 to m do

let x be such that p(m, x) = d; (* d is heap-order index of x *)
station bx broadcasts 〈f, l〉, where f = key[bx][1] and l = key[bx][k];
each station ai with d = lT imer[ai] or d = rT imer[ai] listens and does: begin

if d = lT imer[ai] then
Update(〈x, f, l〉, key[ai][0], lT imer[ai], lRank[ai], lPartner[ai]);

if d = rT imer[ai] then
Update(〈x, f, l〉, key[ai][k], rT imer[ai], rRank[ai], rPartner[ai]);

end

Each station ai does: begin
Let lP = lParnter[ai], rP = rPartner[ai], lR = lRank[ai], and
rR = rRank[ai].
if (lP = rP = NIL ∧ lR < rR) or
(lP = 〈x, . . .〉 ∧ rP = 〈x′, . . .〉 ∧ x + 1 < x′) or
(lP = 〈x, . . .〉 ∧ rP = NIL ∧ x · k < rR) or
(lP = NIL ∧ rP = 〈x′, . . .〉 ∧ lR < (x′ − 1) · k) then

(* ai is split by some bj *)
split[ai]← true

end
end

Algorithm 2: Procedure Find-Partners.

procedure Update(〈x, f, l〉, key, T imer, Rank, Partner)
(* T imer, Rank, and Partner are references to variables *)
begin

if f < key < l then
Partner ← 〈x, f, l〉;
T imer ← NIL;

else if key < f then
T imer ← p(m, l(m, x)); (* heap-order index of left child of x *)

else if l < key then
T imer ← p(m, r(m, x)); (* heap-order index of right child of x *)
Rank ← x · k; (* key is preceded by at least x · k keys in the other sequence *)

end
Algorithm 3: Procedure Update.

procedure Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
begin

Init(〈a1, . . . , am〉);
Find-Partners(〈a1, . . . , am〉, 〈b1, . . . , bm〉);
for i← 1 to m do

for r ← 1 to k do
In time slot 2((i− 1) · k + r)− 1:
bi broadcasts 〈v〉, where v = key[bi][r];
each aj with lPartner[aj] = 〈i, f, l〉 or rPartner[aj] = 〈i, f, l〉 listens
and does:
if split[aj] = false then

forall 1 ≤ s ≤ k do
if v < key[aj][s] then

rank[aj][s]← (i− 1) · k + r; (* index of v in the b-sequence
*)

In time slot 2((i− 1) · k + r):
Let (j, s) be the (at most one) pair, such that lPartner[aj] = 〈i, f, l〉 or
rPartner[aj] = 〈i, f, l〉 and:

– (1 ≤ s ≤ k ∧ key[aj][s− 1] < v < key[aj][s]), or
– (s = k + 1 ∧ key[aj][s− 1] < v ≤ l < key[aj][s]).

(* I.e. key[aj][s] is the successor of v in the a-sequence and, for s = k + 1,
bi is not a partner of aj+1. *)
If such (j, s) exists, then aj broadcasts 〈y〉, where y = (j − 1) · k + s− 1.
bi listens and does:begin

if there was a message 〈y〉 then
rank[bi][r]← y; (* index of key[aj][s− 1] in the a-sequence *)

end

Each ai does internally: Rank-Unsplit(ai);
end

Algorithm 4: Procedure Try-Ranking.

procedure Rank-Unsplit(aj)
begin

if split[aj] = false then
if lPartner[aj] = rPartner[aj] = NIL then

for r ← 1 to k do
rank[aj][r]← lRank[aj];

else if lPartner[aj] = NIL then
last← max{i|key[aj][i] < f}, where rPartner[aj] = 〈x, f, l〉;
for r ← 1 to last do

rank[aj][r]← lRank[aj];

end
Algorithm 5: Procedure Rank-Unsplit.

procedure Rank(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
begin

Each s ∈ {a1, . . . , am, b1, . . . , bm} does internally: begin
for r ← 1 to k do rank[s][r]← NIL;

end
Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉);
Try-Ranking(〈b1, . . . , bm〉, 〈a1, . . . , am〉);

end
Algorithm 6: Procedure Rank.

procedure Merge(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
begin

Rank(〈a1, . . . , am〉,〈b1, . . . , bm〉);
Each station ai does internally:
for r ← 1 to k do idx[ai][r]← (i− 1) · k + r + rank[ai][r] ;
Each station bi does internally:
for r ← 1 to k do idx[bi][r]← (i− 1) · k + r + rank[bi][r] ;
(* for 1 ≤ i ≤ m let ci = ai and cm+i = bi *)
for time slot t← 1 to 2m · k do

station ci with idx[ci][r] = t broadcasts 〈k〉, where k = key[ci][r];
(* Let t′ = b(t− 1)/kc+ 1 and r = t− (t′ − 1) · k *)
station ct′ listens and does: new[ct′][r]← k;

Each station ci does, for 1 ≤ r ≤ k: key[ci][r]← new[ci][r];
end

Algorithm 7: Procedure Merge.

3.3 Correctness of Merge

Lemma 1. For each endpoint e of the interval of each ai, Find-Partners(〈a1, . . . , am〉,
〈b1, . . . , bm〉) either computes its partner 〈x, f, l〉 such that f = key[bx][0] < e <
key[bx][k] = l or (if such bx does not exist) its rank in b-sequence. Variable split[ai]
becomes true if and only if the interval of some b-station is inside the interval of ai.

Consider arbitrary ai. Let e = key[ai][1] (i.e. the left endpoint of ai). Let t1, . . . , tr
be the initial consecutive values (different form NIL) of lT imer[ai] during the compu-
tation. Let x1, . . . , xr, be such that tj = p(m,xj). Let 〈fj , lj〉 =

〈

key[bxj
][1], key[bxj

][k]
〉

.
Note that, for each j < r, either e < fj or lj < e and xj+1 is the child of xj in Tm on
the same side that e is to the interval of bxj

. The ordering of intervals of b-stations is the
same as the ordering of their indexes. Hence x1, . . . , xr is the path in Tm that should be
followed by the ordinary bisection algorithm searching for position of e among the in-
tervals of b-stations. Thus, every time lRank[ai] and lT imer[ai] are properly updated
by Update. If (after Find-Partners) lPartner[ai] 6= NIL then its correctness follows
from the code of Update. The reasoning for the right endpoint of ai is the same.

After the variables lPartner, lRank, rPartner and rRank have been correctly
computed in ai, the correctness of the computation of split[ai] follows from the obser-
vation that some b-station is inside the interval of ai if and only if ai has no partners
and the ranks of its endpoints are different, or ai has two partners with indexes more
distant than one, or ai has one partner and the other endpoint of the interval of ai is not
ranked immediately before or immediately after the keys of this partner. 2

We have to show that all values in all tables rank are properly computed by Rank.
We show that each of these tables is computed by at least one of the two procedures
Try-Ranking in Rank. We say that station ai is split in Try-Ranking(〈a1, . . . , am〉,
〈b1, . . . , bm〉) if it ends up with split[ai] = true. We say that station bi is split-
ting in Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉) if exists aj such that key[aj][1] <
key[bi][1] and key[bi][k] < key[aj][k] (i.e. bi splits aj). We say that bi is avoided in
Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉) if the interval of bi does not intersect interval
of any aj .

Lemma 2. Procedure Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉) correctly computes
all ranks in unsplit a-stations and in unsplitting b-stations that are not avoided. In the
remaining stations the tables rank are not modified.

Let aj be unsplit. After Find-Partners(〈a1, . . . , am〉, 〈b1, . . . , bm〉) there are four
possible cases:

Case1: lPartner[aj] = rPartner[aj] = NIL. In this case interval of aj is
disjoint with all intervals of b-stations and the value r = lRank[aj] = rRank[aj]
is the rank of each key of aj in the b-sequence. Procedure Rank-Unsplit(aj) fills
rank[aj][1 . . . k] with r.

Case 2: lPartner[aj] = 〈x, f, l〉, for some x and f < l, and rPartner[aj] =
NIL. In the fragment following Find-Partners in Try-Ranking, aj listens to all keys
broadcast in increasing order by bx during the x-th iteration of the external “for” loop
and adjusts all the ranks of its own greater keys. Thus, after the last key of bx is broad-
cast, all the ranks in aj are correct.

Case 3: lParner[aj] = NIL and rPartner[aj] = 〈x, f, l〉, for some x and f < l.
In this case lRank[aj] is the proper rank of all keys of ai less than f . This part of
rank[aj][1 . . . k] is adjusted in Rank-Unsplit. The remaining ranks are adjusted during
the x-th iteration of the external “for” loop after Find-Partners.

Case 4: lPartner[aj] = 〈x, f, l〉 and rPartner[aj] = 〈x + 1, f ′, l′〉, for some x
and f < l < f ′ < l′. The ranks of the keys of aj that are less than f ′ are computed
during the x-th iteration of the external “for” loop after Find-Partners. Remaining ranks
in aj are computed during the (x + 1)-st iteration of this loop.

Let bi be unsplitting and not avoided. Then the the interval of bi contains the end-
points of all the intervals of a-stations that intersect the interval of bj . Hence, after
Find-Partners, bi is a partner of all those a-stations and, for each key v of bi there
exists some (unique) aj with lPartner[aj] = 〈i, . . .〉 or rPartner[aj] = 〈i, . . .〉 that
contains successor of v or the last element of a-sequence in the interval of bi. This sta-
tion is responsible for answering to the message 〈v〉 broadcast by bi. (Note that aj may
be split.)

Let aj be split. The instructions “if split[aj] = false” in Try-Ranking and Rank-
Unsplit prevent modifications of rank[aj][1 . . . k].

Let bi be splitting or avoided. Then bi is not partner of any aj and no one answers to
its messages broadcast in the ith iteration of the external “for” loop after Find-Partners.
Only those answers could have caused modifications of rank[bi]. 2

Lemma 3. If ai is split in Try-Ranking(〈a1, . . . , am〉 , 〈b1, . . . , bm〉), then it is unsplit-
ting and not avoided in Try-Ranking(〈b1, . . . , bm〉 , 〈a1, . . . , am〉).

There is some bj with its interval properly contained in the interval of ai. The inter-
vals of b1, . . . bm are disjoint. Thus the interval of ai can not be contained in any one of
them (i.e. ai is unsplitting) and intersects the interval of bj (i.e. ai is not avoided). 2

Lemma 4. If bi is splitting in Try-Ranking(〈a1, . . . , am〉 , 〈b1, . . . , bm〉), then it is un-
split in Try-Ranking(〈b1, . . . , bm〉 , 〈a1, . . . , am〉).

The interval of bi is properly contained in the interval of some aj . Thus the proce-
dure Find-Partners(〈b1, . . . , bm〉, 〈a1, . . . , am〉) ends up with lPartner[bi] = rPartner[bi] =
〈j, key[aj][1], key[aj][k]〉 and with split = false. 2

Lemma 5. If bi is avoided in Try-Ranking(〈a1, . . . , am〉 , 〈b1, . . . , bm〉), then it is un-
split in Try-Ranking(〈b1, . . . , bm〉 , 〈a1, . . . , am〉).

The interval of bi is disjoint with each aj . Thus none interval of aj can be properly
contained in the interval of bi. 2

Lemma 6. Procedure Rank correctly computes all ranks in all stations.

By Lemmas 2, 3, 4, and 5 all the ranks in all the stations are correctly computed in
at least one of Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉) or Try-Ranking(〈b1, . . . , bm〉,
〈a1, . . . , am〉). (The second Try-Ranking does compute all the ranks missing after the
first Try-Ranking and doesn’t overwrite any computed ranks with wrong values.) 2

Lemma 7. Merge correctly merges a-sequence with b-sequence.

Rank computes the rank of each key in the other sequence. Thus the final position
of each key in the merged sequence is the sum of its position in its own sequence and
its rank in the other sequence. These are exactly the values computed in tables idx.
Since all the keys are pairwise distinct, there is exactly one value t in all tables idx, for
each 1 ≤ t ≤ 2k · m, and in each iteration of the “for” loop exactly one message is
broadcast. (We do not need the reservation phase mentioned in simple routing protocol
in [7], since the destinations are positions in the sequence – not indexes of the stations.)
2

3.4 Estimations of Time and Energetic Costs.

To make the comparison with other algorithms more fair, we assume that a single mes-
sage may contain either a single key or a single index of dlg(N)e bits, where N is
total number of keys. Therefore we replace each message 〈f, l〉 broadcast in Find-
Partners by two messages 〈f〉 and 〈l〉 broadcast in two consecutive time slots. Let
TM denote the time of Merge. TM = TR + 2m · k, where TR is the time of Rank.
TR = 2TTR, where TTR is the time of Try-Ranking. TTR = TI + TFP + 2m · k,
where TI is time of Init and TFP is time of Find-Partners. TI = 2m − 2. In Find-
Partners, each bi broadcasts once both endpoints of its interval. Hence, TFP = 2m.
Thus TTR = (2m−2)+(2m)+2m ·k = 2m ·k+4m−2, and TR = 4m ·k+8m−4,
and TM = 6m · k + 8m − 4.

We estimate separately the energetic cost of listening LM and of sending SM of
Merge. This is more informative in the case when sending requires more energy than
listening. However, we assume that the total energetic cost of Merge is EM = SM +
LM . Thus SM = SR + k and LM = LR + k (where SR and LR are the respective
costs of Rank), since in the “for” loop each ci listens k times and broadcasts each of
its keys exactly once. SR = STR,a + STR,b and LR = LTR,a + LTR,b, where STR,a

and LTR,a (respectively, STR,b and LTR,b) are the costs for a-stations (respectively,
b-stations) in Try-Ranking. STR,a = SI + 2k (where SI is cost of sending in Init),
since some ai may be obliged to respond to all keys 〈v〉 broadcast by its both partners.
LTR,a = LI + LFP,a + 2k (where LI and LFP,a are the listening costs for a-stations
in Init and Find-Partners), since each ai has to listen to all keys 〈v〉 broadcast by its
at most two partners. STR,b = SFP,b + k (where SFP,b is cost of sending in Find-
Partners), since each bi broadcasts each its key as 〈v〉. LTR,b = k +LFP,b, since each
bi listens to each its message 〈v〉. SFP,b = 2, since each bi broadcasts its 〈f, l〉 only
once. LFP,a = 4dlg(m + 1)e, since each timer, after each updating, becomes the heap-
order index of a node on the next level of Tm or NIL. Hence each ai listens to 〈f, l〉
at most twice on each level of Tm. SFP,a = 0 and LFP,b = 0, since a-stations do not
broadcast and b-stations do not listen in Find-Partners. It is obvious that SI = LI = 2.
Thus STR,a = 2k+2, LTR,a = 2k+4dlg(m+1)e+2, STR,b = k+2, LTR,b = k, SR =
3k+4, LR = 3k+4dlg(m+1)e+2, SM = 4k+4, and LM = 4k+4dlg(m+1)e+2.
Thus the total energy of Merge is EM = 8k + 4dlg(m + 1)e + 6.

Further Improvements. Since, each message 〈f, l〉 broadcast in Find-Partners contains
the keys that are memorized by all interested a-stations, b-stations do not need repeat

sending them in the following “for” loops in Try-Ranking. This reduces the time of Try-
Ranking by 2m and the sending energy of each b-station and listening energy of each
a-station by 2. Thus the energetic cost of Merge is reduced by 4 and its time is reduced
by 4m. We have proven the following theorem:

Theorem 1. There exists algorithm merging two sorted sequences of length k · m, di-
vided into consecutive blocks of size k stored in two sequences of m stations, in time
6m · k + 4m − 4 with energetic cost 8k + 4dlg(m + 1)e + 2.

For comparison consider the Batcher comparator network for merging two sequences
of length m (either bitonic or odd-even merge [2]). It contains ≈ m lg m

2
comparators.

Thus the time of merging a-sequence with b-sequence with the adaptation of this net-
work, as described in Section 1, requires ≈ m lg m · k time slots.

The energetic cost of the algorithm obtained from the Batcher network is ≈ 2k lg m,
since the depth of the Batcher merging network is ≈ lg m.

For example, for m = 210 = 1024, the time and energetic cost of our algorithm are
6144 · k + 4092 and 8k + 46, respectively. For the adaptation of Batcher networks the
time and energetic cost are ≈ 10240 · k and ≈ 20 · k.

4 Sorting.

For simplicity, let n be power of two. We can treat any sequence of length N = n · k
as n sorted sequences of length k. We merge each pair of consecutive sorted sequences
into single sorted sequence. We repeat this operation lg n times to obtain a single sorted
sequence of length n. Let TM (m) and EM (m) be the time and energetic cost of merging
two sequences of length m · k, placed in m stations each. Then the time and energetic
cost of our sorting procedure are TS(n, k) =

∑lg n−1

i=0 n · TM (2i)/2i and ES(n, k) =
∑lg n−1

i=0 EM (2i). If we apply our merging algorithm, then TS(n, k) ≤ (3k + 2)n lg n

and ES(n, k) ≤ (8k + 2) lg n +
∑lg n

i=1 4i = (8k + 2) lg n + 2(lg n + 1)(lg n).
On the other hand the energetic cost and time for adaptations of Batcher algorithms

are ≈ k lg2 n and ≈ 1
2
kn lg2 n.

In merge-sort we can mix our merging algorithm with other merging or sorting al-
gorithms (such as Batcher algorithms) that are more efficient for shorter subsequences.
The proper choice depends on both parameters n and k.

Remark. A simulation implemented in Java of the merging procedure described in this
paper can be found at [10].

References

1. M. Ajtai, J. Komlós and E. Szemerédi. Sorting in c log n parallel steps. Combinatorica, Vol.
3, pages 1–19, 1983.

2. K. E. Batcher. Sorting networks and their applications. Proceedings of 32nd AFIPS, pages
307–314, 1968.

3. Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest. Introduction to Algorithms. 1994.

4. M. Kik. Merging and Merge-sort in a Single Hop Radio Network. SOFSEM 2006, LNCS
3831, pp. 341-349, 2006.

5. D. E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison-
Wesley, Reading, Mass. 1973.

6. K. Nakano, S. Olariu. Broadcast-efficient protocols for mobile radio networks with few chan-
nels. IEEE Transactions on Parallel and Distributed Systems, 10:1276-1289, 1999.

7. K. Nakano, S. Olariu, A. Y. Zomaya. Energy-Efficient Permutation Routing in Radio Net-
works. IEEE Transactions on Parallel and Distributed Systems, 12:544-557, 2001.

8. M. Singh and V. K. Prasanna. Optimal Energy Balanced Algorithm for Selection in Single
Hop Sensor Network. SNPA ICC, May 2003.

9. M. Singh and V. K. Prasanna. Energy-Optimal and Energy-Balanced Sorting in a Single-Hop
Sensor Network. PERCOM, March 2003.

10. Compendium of Large-Scale Optimization Problems. (DELIS, Subproject 3).
http://ru1.cti.gr/delis-sp3/

