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Abstract. We propose simple and efficient sorting algorithm for unre-
liable single hop radio network. (In such network each listening station
receives transmitted message with some probability p < 1.) We also pro-
pose a method of periodic transmission of a sorted sequence that allows
for efficient and energetically safe ranking in this sequence.

1 Introduction

We consider the problems of sorting and ranking in unreliable single hop radio
network. Such network consists of n stations s0, . . . , sn−1 communicating with
each other by exchanging short radio messages. The stations are synchronized.
Time is divided into slots. Within a single time slot a single message can be
broadcast. During each time slot each station is either listening or sending or
idle. If it is sending or listening then it dissipates a unit of energy. We assume that
the stations are powered by batteries. Therefore we want to minimize energetic
cost of the algorithm, i.e. maximum over all stations of non-idle time slots.
Each station is in the range of any other station (i.e. a single hop network). If
two or more stations send messages simultaneously, then a collision occurs. In
this paper we consider only collision-less algorithms. If during time slot t only
one station sends a message and any other station (say si) is listening, then
si receives the message with probability p (probability of successful reception).
The special case p = 1 means reliable network. The previously proposed sorting
algorithms for this model ([10], [6], [3], [4], [5]) were designed for reliable network.
If any transmission failed then the whole output would be devastated. Since
radio transmissions are vulnerable to many unpredictable external interferences,
we believe that practical algorithms should be robust to occasional losses of
received messages. A simple general strategy of increasing the robustness of the
algorithm is to make each transmission robust by repeating it many times. If
the transmission from single sender to single receiver is repeated r times then
the probability of failure is reduced from q to qr, where q = 1− p. However, the
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energetic cost of sending is increased r times. (The receiver may stop listening
as soon as it receives the message.) The situation is still worse if there are m
receivers, m > 1. We should ensure that all receivers have received the message
with high probability.

Any sorting algorithm consists of Ω(n) transmissions, and any of those trans-
missions may have a large number of receivers. It seems that constructing an
algorithm with reasonably high probability of success requires a lot of energy.
The number of repetitions for each step should be rather overestimated since
the failure of any robust step makes all the previous and remaining computa-
tions useless. We propose sorting based on simple merge-sort presented in [4].
Because of the asymmetry between sending and receiving energetic costs in that
algorithm, the asymptotic expected energetic cost of our robust algorithm is as
low as that of the sorting algorithms with asymptotically lower costs (e.g. [1],
[10]) with retransmissions of each step, while the low constants and simplicity
make it preferable in practical implementations.

By ranking we mean the problem of locating the position of some key x in a
sorted sequence of keys (i.e. the number of keys in the sequence that are less than
x). One of the many applications of efficient sorting and ranking algorithms may
be the routing of packets. The routing algorithms for single hop network ([2], [7],
[8], [3]) typically consist of some preprocessing reservation phase that allows for
subsequent energetically efficient delivery of the packets. Such preprocessing may
consist of sorting the addresses of the packets, and ranking by each station its
own address and the next address in the sorted sequence (see e.g. [3]). Then the
packets are delivered according to the sorted sequence and each station knows the
interval of time slots in which it should listen. Note that even the approximation
of such interval (its superset) can be useful. The ranking algorithms proposed
in this paper find the exact rank by updating its lower and upper bounds (until
they meet each other) while listening to the iterated transmissions of the sorted
sequence. The quality of these bounds after the first iteration depend solely
on the probability p and can be used for approximation of such interval. We
also consider the case when the ranking station may start at arbitrary time
slot while the sequence is periodically transmitted. Here we propose that the
sorted sequence is transmitted in recursive bisection ordering (rbo), which is
easily computable permutation. In the case of a reliable network we formally
prove in Section 3.1 that the energy used by the ranking station is then O(lg n).

In our algorithms each message contains only a single key of the input se-
quence.

2 Preliminaries.

We formulate the problem of sorting as follows: Each station si initially stores
a key in its local variable key[si]. The task of each station si is to compute the
value idx[si] which is the index of key[si] in the sorted sequence of keys. (The
indexes are numbered from 0 to n − 1.)



In Section 3 we consider the problem of ranking: The sorted sequence is
transmitted periodically (in some fixed ordering π). Each round requires n time
slots. During any time slot any station may start the computation of the rank
(or its approximation) of some key in the transmitted sequence. (By the rank of
the key in the sequence s we mean the number of elements of s that are less or
equal to the key).

In this paper “lg” denotes “log2”. For simplicity of description we assume
that n (number of keys and stations) is a power of two (i.e. lg n is integer). By
Pr(E) we denote probability of the event E . By E[X] we denote expected value
of random variable X. By |S| we denote the size of the set S. Whenever we
define a permutation π of {0, . . . , n − 1}, π−1 denotes the permutation reverse
to π and we settle that π(NIL) = π−1(NIL) = NIL, where NIL is a special
constant distinct from all numbers.

3 Ranking.

Let n = 2k, where k is positive integer. The generic ranking algorithm is defined
as follows: Let πk be a permutation of the elements {0, . . . , n−1}. Let b0, . . . , bn−1

be a sorted sequence of keys. The sequence permuted by πk is transmitted pe-
riodically, i.e. for t ≥ 0, bi such that πk(i) = t mod n is transmitted in time
slot t. Let a be a station that wants to compute the rank of key[a] in the sorted
sequence. a can start in arbitrary time slot. It knows permutation πk and the
numbering of time slots. Station a contains variables minR[a] and maxR[a] that
are updated during successful receptions. Initially minR[a] = 0 and maxR[a] = n.
In time slot t (i.e. when key = bπ−1

k
(t mod n) is transmitted), a does:

Let t′ = t mod n. If minR[a] ≤ π−1
k (t′) < maxR[a] then a listens. If a

received the key, then

if key[a] < key then a sets maxR[a] to π−1
k (t′), otherwise (i.e. if

key ≤ key[a]) it sets minR[a] to π−1
k (t′) + 1.

Note the following invariant: The rank of key[a] is in the interval [minR[a],maxR[a]].
Thus as soon as minR[a] = maxR[a] the exact rank of key[a] is computed. Station
a participates in the algorithm as long as it needs or some limit imposed on time
or its listening energy is exceeded.

Lemma 1 can be used for estimating the time needed for exact ranking with
high probability.

Lemma 1. Let c be a positive integer. After c · n time slots minR[a] = maxR[a]
with probability at least 1 − 2 · (1 − p)c.

Proof. Let r be the exact rank of key[a]. To have minR[a] = maxR[a] = r the
station needs successful reception of the keys br−1 and br. The probability that
during the c trials a fails to receive the key is (1−p)c. Thus the probability that
a fails to receive from both br−1 and br is not greater than 2 · (1 − p)c. ⊓⊔



Lemma 2 estimates the size of the interval [minR[a],maxR[a]] after n time
slots.

Lemma 2. The expected value of ∆ = maxR[a] − minR[a] after n time slots is
not greater than 2/p − 2.

Proof. Let r be the exact rank of key[a]. In the n time slots all the keys bi have
been transmitted. We may think as follows: each transmission was successful
with probability p, and whenever station a actually listened it simply observed
this transmission. Let u be minimal integer such that u = n or r ≤ u < n and
the transmission of bu was successful. It follows from the construction of the
algorithm that a observes this transmission and ends up with maxR[a] = u. Let
X1 = u − r. If u had not been limited by n, then X = u − r + 1 would have
been random variable with geometric distribution: Pr(X = m) = (1− p)m−1 · p
with the expected value E[X] = 1/p. Since X1 = min{X − 1, n − r}, we have
E[X1] ≤ 1/p− 1. It follows (by symmetry) that, for X2 = r −minR[a], E[X2] ≤
1/p − 1. Thus, E[∆] = E[X1 + X2] = 2/p − 2. ⊓⊔

The choice of permutation πk has great influence on the energy used by a. If
πk is identity, a starts listening in time slot 0 and rank of key[a] is n, then a is
forced to listen in all n time slots. Much better option is to use bisection ordering
(denoted by bo): first (on level 0) transmit the median x of the sequence, then
(on level 1) transmit the two medians of the sub-sequences neighboring to x, and
so on. For n = 2k, we define precisely bok by selecting upper median whenever
we have to choose. There is binary tree of depth k+1 corresponding to bisection
ordering (see Figure 1). On Figure 1 each argument x is joined by vertical dotted
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Fig. 1. The tree of bo3.

line with its corresponding node labeled by bok(x). Note the dependence between
binary representation of x and its position in the tree: The level of positive x is
determined by the position of its rightmost one and the digits left to this one
form the position of x within the level. x = 0 is the only argument placed on level
k. For x > 0, let irmo(x) = min{j ≥ 0 | ⌊x/2j⌋ mod 2 = 1} (index of rightmost
one), and let irmo(0) = −1. Let lbok(x) = k − 1 − irmo(x) (level of x in bok).



Now we can define bok as follows: bok(x) = 2lbok(x)−1+⌊x/2irmo(x)+1⌋. (There

are 2lbok(x) − 1 nodes above the level lbok(x) and ⌊x/2irmo(x)+1⌋ is the position
of x on the level lbok(x).) The permutation reverse to bok can be computed as

follows: Let lev(y) = ⌊lg(y+1)⌋. Then bo−1
k (y) =

(

y −
(

2lev(y) − 1
))

·2k−lev(y)+

⌊2k−lev(y)−1⌋. (For y = 2k − 1, the result is zero, and, for y < 2k − 1, the first
component of the sum is the position of y within the level lev(y) multiplied by

2k−lev(y) and the second component settles the rightmost one.)

In reliable networks the ordering of transmissions πk = bok guaranties that if
a starts in time slot t such that t mod n = 0, then a has to listen at most once on
each level and therefore uses no more than k + 1 units of energy. However, if we
let a start its computation in arbitrary time slot, then a may be forced to listen
in many time slots. For example, if a starts in time slot n/2− 1 and the rank of
key[a] is n, then a must listen in all n/2 time slots on level k − 1. On the other
hand, forcing a to wait until time slot t such that t mod n = 0 may cause serious
delays. Therefore we propose slightly more “sophisticated” permutation that
to a large extent eliminates this problem. The permutation recursive bisection
ordering (rbok) is defined as follows: First we permute the elements according to
bisection ordering and then we permute each level (except the first and the last
one) according to recursive bisection ordering. The permutations rbok and rbo−1

k

can be computed by Algorithms 1 and 2, respectively. The permutation πk can

function rbok(x)
begin

if x = 0 then return 2k − 1;
y ← bok(x);
if y = 0 then return 0;

above← 2lev(y) − 1;
return above + rbolev(y)

(y − above);

end

Algorithm 1: Computation of rbok(x).

function rbo−1
k (y)

begin

if y = 2k − 1 then return 0;
if y = 0 then return bo−1

k (0);

above← 2lev(y) − 1;

return bo−1
k

(

above + rbo−1

lev(y)
(y − above)

)

;

end

Algorithm 2: Computation of rbo−1
k (y).



be imagined as a set of parallel vertical blades cutting of parts of horizontal
interval containing the rank of key[a] as it falls downwards. To appreciate the
difference between bok and rbok see Figure 2. Even if many highest blades of rbo

bo rbo

Fig. 2. Permutations bo5 and rbo5. (Dotted lines denote borders between levels of bo5.)

are missing, the remaining ones perform (less exact) bisection.

Next we show that if the station a starts in time slot 0 and we use permutation
bo or rbo, then the expected energy used by a during the first iteration is very
low.

Lemma 3. Let πk be bok or rbok. Let the station a start in time slot 0. The
expected energy used by a during the first n = 2k time slots is at most 1 + k ·
(2/p − 1).

Proof. Let Bl =
〈

bl,0, . . . , bl,2l+1−2

〉

be a sequence of keys {bj | lbok(j) ≤ l} (i.e.
the sub-tree of bisection tree from level 0 to l) sorted by j. Station a has to listen
to b0,0 (the root of bisection tree). Thus the energy used by a on level 0 is 1. For
l ≥ 0, let rl = |{bl,i | bl,i ≤ key[a]}| (i.e. the rank of a in the sequence Bl). Let d be
maximal integer such that d = −1 or 0 ≤ d < rl and the transmission of bl,d was
successful. Let u be minimal integer such that u = 2l+1 − 1 or rl ≤ u < 2l+1 − 1
and the transmission of bl,u was successful. As in the proof of Lemma 2, we can
show that the expected value of u− (d+1) is not greater than 2/p−2. It follows
from the construction of the algorithm, that the station a will not listen to any
keys that are before bl,d or after bl,u on the following levels of bisection tree. The
sequence Bl+1 consists of the keys from level l + 1 on even positions and of the
keys from Bl on odd positions. Thus a will have to listen to at most Xl = u− d
keys on level l + 1 and E[Xl] ≤ 2/p − 1. ⊓⊔



3.1 Ranking with rbo in a reliable network

In this subsection we assume that probability of successful reception is p = 1
(i.e. a reliable network), and the station a can start in arbitrary time slot t0
(w.l.o.g. we assume that 0 ≤ t0 < n) and continues until it learns its rank ra.
We also assume that the used permutation is πk = rbok, where k = lg n is
positive integer.

Note that a listens until the last bj with j ∈ {ra−1, ra} has been transmitted.
This happens within n time slots. For given subset of indexes S ⊆ {0, . . . , n−1}
and rank r ∈ {0, . . . , n}, let l(S, r) = max{i + 1 | i ∈ S ∪ {−1} ∧ i < r }
and u(S, r) = min{i | i ∈ S ∪ {n} ∧ r ≤ i}. For t ≥ t0, let St be a set of
indexes of keys that have been transmitted during time slots t0, . . . , t. Then,
just after t, minR[a] = l(St, ra) and maxR[a] = u(St, ra) and, for any S′ ⊆ St,
l(S′, ra) ≤ minR[a] ≤ maxR[a] ≤ u(S′, ra).

For a sequence of non-negative integers α we define subset of indexes L(α)
as follows: L(〈〉) = {0, . . . , n − 1}, and L(α · 〈l〉) is the lth level of bisection tree
formed from L(α) (“·” denotes concatenation). Note that if |L(α)| = 2l′ ≥ 1
then, for l < l′, |L(α · 〈l〉)| = 2l (full levels), and for l = l′, |L(α · 〈l〉)| = 1 (the
last level is singleton), and for l > l′, |L(α · 〈l〉)| = 0 (empty levels below the
tree). In rbolg n the sequence of subsets of indexes is: L(〈0〉), . . . , L(〈lg n〉), and
within each L(α) the sequence is: L(α · 〈0〉), . . . , L(α · 〈lg |L(α)|〉).

Lemma 4. Let |L(α)| = 2l′ ≥ 2, and 1 ≤ l < l′. Let t = max{rbolg n(x) | x ∈
L(α · 〈l〉)}. If, just after time slot t, minR[a] ≥ l(L(α · 〈l〉), ra) and maxR[a] ≤
u(L(α · 〈l〉), ra) then during each of the levels L(α · 〈l + 1〉),. . . ,L(α · 〈l′〉) the
station a listens at most twice.

Proof. During transmission of the level L(α · 〈l + 1〉) the station a listens only
to the keys bj with minR[a] ≤ j ≤ maxR[a] − 1. Since there are no such nodes
in L(α · 〈l〉), the only such nodes in L(α · 〈l + 1〉) possibly are: the right child
of minR[a] − 1 (if minR[a] − 1 ∈ L(α · 〈l〉)) and the left child of maxR[a] (if
maxR[a] ∈ L(α · 〈l〉)) in the tree L(α). After transmission of L(α · 〈l + 1〉), we
have minR[a] ≥ l(L(α · 〈l + 1〉), ra) and maxR[a] ≤ u(L(α · 〈l + 1〉), ra). Thus we
can repeat the same reasoning for each following level in the tree L(α). ⊓⊔

Lemma 5. Let |L(α)| = 2l′ ≥ 16, and 2 ≤ l < l′. Let t = max{rbolg n(x) | x ∈
L(α · 〈l〉)}. If, just after time slot t, |{x ∈ L(α · 〈l〉) | minR[a] − 1 < x <
maxR[a]}| ≤ 1 then during the transmissions of L(α ·〈l + 1〉) the station a listens
at most four times.

Proof. In the worst case a listens in L(α · 〈l + 1〉) to some subset of: right child
of minR[a] − 1, both children of the single x between minR[a] − 1 and maxR[a],
and left child of maxR[a] in the tree L(α). ⊓⊔

Theorem 1. If the assumptions formulated in the first paragraph of this sub-
section hold then the station a listens at most 4 lg n times before it learns its
rank.



Proof. Let U(α, l) =
⋃l

i=0 L(α · 〈i〉) (i.e. the uppermost l + 1 levels of the tree

L(α)). Let D(α, l) =
⋃lg |L(α)|

i=l L(α · 〈i〉) (i.e. the lowest lg |L(α)| − l + 1 levels of
the tree L(α)).

For t ≥ 0, let γ(t) be the shortest sequence such that x = rbo−1
lg n(t mod n)

is the root of the tree L(γ(t)) and let δ(t) = min{δ ≥ 0 | |L(γ(t + δ))| ≥ 2}.
For 0 ≤ i < δ(t), L(γ(t + i)) is the last level (singleton) of some tree Ti. Hence,
L(γ(t + i + 1)) is a level of some tree Ti+1 such that |Ti+1| ≥ 2 · |Ti|, or of
the whole tree L(〈〉) if (t + i + 1) mod n = 0 (in this case: i + 1 = δ(t)). Ti is
predecessor of the level L(γ(t + i + 1)) in Ti+1. L(γ(t + δ(t))) is a full level, thus
its size is at least 2 · |Tδ(t)−1|. Hence we have:

Claim. |L(t + δ(t))| ≥ 2δ(t).

Let β = γ(t0 + δ(t0)). If β is empty sequence, then a listens at most δ(t0)
times and then at most lg n + 1 times starting from the root of the whole tree
L(〈〉). By the Claim: δ(t0) + lg n + 1 ≤ 2 lg n + 1.

Otherwise, let β = 〈l1, . . . , lR〉 and let βi = 〈l1, . . . , li〉. Note that R (the
length of β) is the level of recursion on which the bisection tree of L(β) is
formed and that lR ≥ 1, since |L(β)| = 2lR ≥ 2.

First a listens δ(t0) times. By the Claim: δ(t0) ≤ lR, since |L(β)| = 2lR .
Then a listens to L(β) starting from the root of L(β). Thus it listens at most
lR + 1 times and, after that, minR[a] ≥ l(L(β), ra) and maxR[a] ≤ u(L(β), ra).
Then rbo steps back one recursion level. Then it listens to (possibly empty)
sequence of sets L(βR−1 · 〈lR + 1〉), . . . , L(βR−1 · 〈lR−1〉). By Lemma 4, a listens
at most twice in each of these sets. After that minR[a] ≥ l(D(βR−1, lR), ra) and
maxR[a] ≤ u(D(βR−1, lR), ra). Then rbo steps back one recursion level. Such
stepping back is repeated R − 1 times, for i taking values R − 1,. . . ,1. For each
such i, initially minR[a] ≥ l(D(βi, li+1), ra) and maxR[a] ≤ u(D(βi, li+1), ra), and
the following (possibly empty) sequence of sets is transmitted: L(βi−1 · 〈li + 1〉),
. . . , L(βi−1 · 〈li−1〉). Note that, since L(βi+1) = L(βi · 〈li+1〉) is a full (i.e. not
last) level of L(βi), for each x ∈ U(βi, li+1−1), the predecessor and the successor
of x in L(βi) are in D(βi, li+1) and, hence, |{x ∈ L(βi) | l(D(βi, li+1), ra) − 1 <
x < u(D(βi, li+1), ra))}| ≤ 1. Thus, by Lemma 5, since L(βi) = L(βi−1 ·〈li〉), the
station a has to listen at most four times in L(βi−1 · 〈li + 1〉) and, by Lemma 4,
at most twice in each of the remaining sets.

Consider the sequence of all the sets mentioned above. For each set L(βi ·〈j〉)
in the sequence (except L(βR−1 · 〈lR〉) = L(β) – the first one) its index “j” is
greater than the index of its predecessor. The greatest possible value of j is lg n
(in the set L(〈〉 · 〈lg n〉)). Thus the number of the sets following L(β) is at most
lg n − lR and in each of them a listens at most four times. Each set in which
a has to listen more than twice (which is a full level) must be followed by at
least one set (e.g. the last level) in which a has to listen at most two times.
Thus the energy used by a while listening to the sequence of sets is at most
(4 · 1

2 + 2 · 1
2 )(lg n − lR) + (lR + 1) ≤ 3 lg n − 2lR + 1.

This procedure is finished, for the last i = 1, just before time slot n that
starts the next round. In this round a listens no more than lg n times (it does



not need to listen in the last level again). Adding δ(t0) ≤ lR initial slots, we have
upper bound 4 lg n − lR + 1 ≤ 4 lg n on the energy used by a. ⊓⊔

The estimation 4 lg n of Theorem 1 seems to be very pessimistic. (In our
tests a never had to listen more than 2 lg n times.) Nevertheless, it shows that
the station a can safely start its ranking at any time slot. (This reduces the
upper bound on ranking time from 2n − 1 to n.) The simulations indicate that
rbo is also energetically efficient on unreliable network (i.e. when p < 1).

4 Sorting.

We assume that lg n is positive integer. Each station si contains variables:
idx0[si], . . . , idxlg n[si], minR0[si], . . . , minRlg n−1[si], maxR0[si], . . . , maxRlg n−1[si].
The variables are initialized by the procedure init (see Algorithm 3). The ul-

procedure init

Each si does (in parallel):
begin

idx0[si]← 0;
for k ← 1 to lg n do idxk[si]← NIL;
for k ← 0 to lg n− 1 do

minRk[si]← 0;
maxRk[si]← 2k;

end

Algorithm 3: procedure init.

timate goal for each si is to compute idxlg n[si], which is the index of key[si] in
the sorted sequence of keys. Our algorithm is designed to perform stable sorting
(i.e. the initial ordering between equal keys is preserved). The basic building
block of our algorithm is the procedure rank(k, l, d, πk), where d ∈ {0, 1} and
0 ≤ l < n/2k+1, (see Algorithm 4) that tries to find the rank of each key from
the stations sl·2k+1+d·2k , . . . , sl·2k+1+d·2k+2k−1 in the sorted sequence of keys
from the stations sl·2k+1+(1−d)·2k , . . . , sl·2k+1+(1−d)·2k+2k−1. Once the station
si knows its rank r in the neighboring sequence and its index idx in its own
sorted sequence, it can compute its index (r + idx) in the sequence merged from
the two sequences. The permutation πk is either rbok or bok (defined in Sec-
tion 3). For any k, 0 ≤ k < lg n, all procedures rank(k, l, d, πk) are used to
produce indexes for sorted sub-sequences of length 2k+1. This is done by proce-
dure levelRanking(k, πk) (see Algorithm 5). We refer to k as a level.

Sorting algorithms can be built by composing sequences of levelRanking for

various levels. For n > 0 and 0 < q, q′ < 1, let c(q, q′, n) = ⌈log1/q

(

2n lg n
q′

)

⌉ =

⌈(1 + lg n + lg lg n + lg(1/q′))/ lg(1/q)⌉. We propose and analyze a simple pro-
cedure sortingq′ (see Algorithm 6) that successfully sorts with probability 1− q′



procedure rank(k, l, d, πk)
for 0 ≤ i < 2k:

– let ai denote sl·2k+1+d·2k+i, and
– let bi denote sl·2k+1+(1−d)·2k+i.

for time slot t← 0 to 2k − 1 do
the (at most one) bj with πk(idxk[bi]) = t broadcasts key = key[bj ];
let x = π−1

k (t);
each ai with minR[ai] ≤ x < maxRk[ai] does:
begin

ai listens;
if ai received key then

(* comparison for stable ranking *)
if (d = 0 and key[ai] ≤ key) or (d = 1 and key[ai] < key) then

maxRk[ai]← x;

else
minRk[ai]← x + 1;

(* cascading computation of indexes *)
k′ ← k;
while k′ < lg n and idxk′ [ai] 6= NIL and minRk′ [ai] = maxRk′ [ai] do

idxk′+1[ai]← idxk′ [ai] + minRk′ [ai];
k′ ← k′ + 1;

end

Algorithm 4: Procedure rank.

procedure levelRanking(k, πk)
for l← 0 to n/(2k+1)− 1 do

rank(k, l, 1, πk);
rank(k, l, 0, πk);

Algorithm 5: Procedure levelRanking.

procedure sortingq′

init;
Let q = 1− p, where p is probability of successful reception;
for k ← 0 to lg n− 1 do

repeat c(q, q′, n) times levelRanking(k, rbok);

Algorithm 6: Procedure sorting.



by repeating levelRanking c(q, q′, n) times on each level. The output consists of
the final values of idxlg n in the stations.

Theorem 2. For 0 < q′ < 1, the procedure sortingq′ (Algorithm 6) sorts any
input sequence with probability greater or equal 1 − q′.

Proof. Let q = 1 − p and c = c(q, q′, n). Let Q be the event that sortingq′ failed
to sort (i.e. some indexes remained uncomputed). For 0 ≤ k < lg n, let Qk be
the event that the first failure occurred at level k (i.e. some idxk+1[si] remained
uncomputed, while all values idxk′ [s], for 0 ≤ k′ ≤ k, for each station s, are

computed.) Thus Pr(Q) =
∑lg n−1

k=0 Pr(Qk) (Q is disjoint union of all events
Qk). Let Fk be the event that repeating c times levelRanking(k, rbok) fails to
compute all indexes on level k + 1 under the condition that all indexes on levels
up to k have been computed. Let q = 1 − p. By Lemma 1, the probability
that some given index remains uncomputed is not greater than 2 · qc. Thus
Pr(Fk) ≤ 2nqc, as we have to compute n indexes. Let Ek be the event that
all indexes on levels up to k has been properly computed in sortingq′ . Then
Pr(Qk) = Pr(Ek) ·Pr(Fk) ≤ Pr(Fk) and, hence, Pr(Q) ≤ 2nqc · lg n. It is easy
to verify that c ≥ min{c | qc · 2n lg n ≤ q′}. This completes the proof. ⊓⊔

Theorem 3. For any input, the expected energy used for listening by any single
station in sortingq′ is at most lg n · (1 + (c − 1)(2/p − 2) + (2/p − 1)(lg n − 1)/2)
+c(n − 1)q′, where c = c(q, q′, n). The energy used for sending by any single
station is c lg n. Time of sortingq′ is cn lg n.

Proof. Let the input sequence be arbitrary and let s be any of the stations.
Let X be random variable that is the energy used for listening by s. Let Xk

be random variable that is the energy used by s in all c levelRankings on level
k. Thus X =

∑lg n−1
k=0 Xk. Let Ω be the set of all elementary events (i.e. of all

possible computations). Note that E[X] =
∑

ω∈Ω X(ω) · Pr(ω), where X(ω) is
the energy used by s in the computation ω and Pr(ω) is the probability of this
computation. Let the events Q, Ek be defined as in the proof of Theorem 2. Let
E = Elg n. Note that Ω is a disjoint union of Q and E and, hence, E[X] = SQ+SE ,
where SQ =

∑

ω∈Q X(ω) · Pr(ω) and SE =
∑

ω∈E X(ω) · Pr(ω).

To estimate SQ note that in the levelRanking on level k there are only 2k

time slots in which s is allowed to listen. Thus Xk(ω) ≤ c · 2k and X(ω) ≤

c
∑lg n−1

k=0 2k = c(n − 1) and SQ ≤ c(n − 1) ·
∑

ω∈Q Pr(ω) ≤ c(n − 1)q′ (by
Theorem 2).

To estimate SE note that

SE =
∑

ω∈E

lg n−1
∑

k=0

Xk(ω) · Pr(ω) =

lg n−1
∑

k=0

∑

ω∈E

Xk(ω) · Pr(ω)

≤

lg n−1
∑

k=0

∑

ω∈Ek

Xk(ω) · Pr(ω) ≤

lg n−1
∑

k=0

∑

ω∈Ek

Xk(ω) · Pr(ω)

Pr(Ek)
=

lg n
∑

k=0

E[Xk|Ek],

where E[Xk|Ek] is expected value of Xk under the condition Ek that all indexes
up to level k have been computed. (The first inequality above follows from E ⊆



Ek, and the second one follows from Pr(Ek) ≤ 1.) Under the condition Ek the
expected energy used for listening by s during the first levelRanking on level k
is at most 1 + k(2/p − 1) (by Lemma 3). By Lemma 2, the expected value of
∆ = maxRk[s]−minRk[s] after the first levelRanking on level k is 2/p−2. During
each of the remaining c − 1 levelRankings on level k station s can listen to at
most ∆ stations, thus the expected listening energy for these levelRankings can be
bounded by (c−1)·(2/p−2). We have E[Xk|Ek] ≤ 1+k(2/p−1)+(c−1)·(2/p−2).

Thus SE ≤
∑lg n−1

k=0 (1 + k(2/p− 1) + (c− 1) · (2/p− 2)) = lg n(1 + (c− 1)(2/p−

2)) + (2/p − 1) lg n(lg n−1)
2 .

The limits on time and sending energy follow from the fact that each station
broadcasts only once in each levelRanking. ⊓⊔

Corollary 1. Algorithm sorting1/n sorts any input with probability at least 1 −
1
n in time O(n lg2 n) and, for each station s, the expected energy used by s is

O(lg2 n).
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1. M. Ajtai, J. Komlós and E. Szemerédi. Sorting in c log n parallel steps. Combina-
torica, Vol. 3, pages 1–19, 1983.

2. Amitava Datta and Albert Y. Zomaya. An Energy-Efficient Permutation Rout-
ing Protocol for Single-Hop Radio Networks. IEEE Trans. Parallel Distrib. Syst.,
15:331-338, 2004.
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