Assume the adversary has access to various oracles revealing, long term keys, ephemeral keys, variable states, etc. Question: Are then the following AKE schemes secure? If not - show the attack. If yes - show the intuition why.

$$\begin{split} d &= \bar{\mathbf{H}}(X||``Bob"), e = \bar{\mathbf{H}}(Y||``Alice"), \\ \sigma_a &= (Yg^{be})^{x+da}, \ \sigma_b = (Xg^{ad})^{y+eb} \end{split}$$

where \overline{H} outputs the first ℓ bits of the input of the hash function H, and ℓ is a security parameter. Note that $\sigma_a = (Yg^{be})^{x+da} = (g^yg^{be})^{x+da} = g^{(x+da)(y+eb)} = (g^xg^{da})^{y+eb} = (Xg^{da})^{y+eb} = \sigma_b$. Thus the values k_m , and the secret session key sk computed independently on both sides are the same.

Alice		Bob
x_A - private key		x_B - private key
$y_A = g^{x_A}$ - public key		$y_B = g^{x_B}$ - public key
$cert_A$ - certificate for y_A		$cert_B$ - certificate for y_B
	MAIN PROCEDURE	
choose a at random		choose b at random
$h_A := H(a)$		$h_B := H(b)$
$c_A := g^{h_A}$	$\xrightarrow{c_A}$	$c_B := g^{h_B}$
	< ^c B	
$K := c_B{}^{h_A}$		$K := c_A{}^{h_B}$
$K_A := H(K, 1), K_B := H(K, 2)$		$K_A := H(K, 1), K_B := H(K, 2)$
$K'_A := H(K, 3), K'_B := H(K, 4)$		$K'_A := H(K,3), K'_B := H(K,4)$
$r_A := H(c_B^{-A}, K_A)$	P ()	
	$\xrightarrow{Enc_{K_A}(cen_A, r_A)}$	check cert _A , proceed with random values if
		$r_A \neq H(y_A^{h_B}, K_A')$
	$Enc_{K_B}(cert_B, r_B)$	TI (*B T/)
	<	$r_B := H(c_A^{\ B}, K_B)$
check cert _B , proceed with random values if		
$r_B \neq H(y_B^{n_A}, K_B')$		
$K_{session} := H(K, 5)$		$K_{session} := H(K, 5)$

$$\begin{array}{ccc} \mathcal{A} & \mathcal{B} \\ esk_{\mathcal{A}} \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda} & \underbrace{X = g^{H_{1}(esk_{\mathcal{A}}, sk_{\mathcal{A}})}}_{Y = g^{H_{1}(esk_{\mathcal{B}}, sk_{\mathcal{B}})}} & esk_{\mathcal{B}} \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda} \\ & & \mathcal{B} \colon K \leftarrow H_{2}(pk_{\mathcal{A}}^{H_{1}(esk_{\mathcal{B}}, sk_{\mathcal{B}})}, X^{sk_{\mathcal{B}}}, X^{H_{1}(esk_{\mathcal{B}}, sk_{\mathcal{B}})}, \mathcal{A}, \mathcal{B}) \\ & \mathcal{A} \colon K \leftarrow H_{2}(Y^{sk_{\mathcal{A}}}, pk_{\mathcal{B}}^{H_{1}(esk_{\mathcal{A}}, sk_{\mathcal{A}})}, Y^{H_{1}(esk_{\mathcal{A}}, sk_{\mathcal{A}})}, \mathcal{A}, \mathcal{B}) \end{array}$$

Alice		Poh	
Allee		B00	
x_A - private key		x_B - private key	
$y_A = g^{x_A}$ - public key		$y_B = g^{x_B}$ - public key	
$cert_A$ - certificate for y_A		$cert_B$ - certificate for y_B	
OPTIONAL SETUP			
recompute g		recompute g	
$y_A := g^{x_A}$ - set public key		$y_B := g^{x_B}$ - set public key	
fetch $cert_A$ and check y_A		fetch $cert_B$ and check y_B	
MAIN PROCEDURE			
choose a at random		choose b at random	
$h_A := H(a 0)$		$h_B := H(b 0)$	
$c_A := y_A^{h_A}$	$\xrightarrow{c_A}$	$c_B := y_B^{h_B}$	
	$\leftarrow c_B$		
$K := c_B{}^{x_A h_A}$		$K := c_A{}^{x_B h_B}$	
$K_A := H(K 1), K_B := H(K 2)$	$\xrightarrow{\mathit{Enc}_{K_A}(a,\mathit{cert}_A)}$	$K_A := H(K 1), K_B := H(K 2)$	
		reject if $c_A \neq y_A^{H(a 0)}$ or <i>cert_A</i> invalid	
reject if $c_B \neq y_B^{H(b 0)}$ or <i>cert</i> _B invalid $\xleftarrow{Enc_{K_B}(b,cert_B)}{}$			
$K_s := H(K 3)$		$K_s := H(K 3)$	

