
Assume the adversary has access to various oracles revealing, long term
keys, ephemeral keys, variable states, etc. Question: Are then the following
AKE schemes secure? If not - show the attack. If yes - show the intuition
why.

6 Łukasz Krzywiecki, Tomasz Wlisłocki

then for all probabilistic poly-time machines Dist and all aux 2 AUX

| Pr
x2Real(n,aux)

[Dist(x) = 1]| � | Pr
x2Sim(n,aux)

[Dist(x) = 1]|  negl(n).

We say that the protocol is initiator deniable if there exist the simulator SIMM, since denoted
as SIM I

M, that running on the same inputs as Bob (and without Alice’s secret key) can provide the
Alice’s part of the protocol. That is when Bob can simulate the whole transcript itself. Conversely,
we say that the protocol is responder deniable if there exist the simulator SIMM, since denoted
as SIMR

M, that running on the same inputs as Alice (and without Bob’s secret key) can provide
the Bobs’s part of the protocol. That is when Alice can simulate the whole transcript itself.

2.2 Description of the 3-pass HMQV

Let us recall the 3-pass protocol of the HMQV family from [4], which is proved to be secure
against the standard KCI attacks. The two users: Alice and Bob agree on a group G of prime
order q, a generator g of G, a hash function H, and a message authentication code function MAC.
Alice selects her long-term private key at random: a 2R Z⇤

q and lets the Trusted Third Party (TTP)
certify the public key A = ga. Similarly, Bob selects his long-term private key b 2R Z⇤

q and lets
the TTP certify the public key B = gb. The protocol is shown in Fig. 1. The values �a and �b are
defined as follows:

d = H̄(X||“Bob”), e = H̄(Y ||“Alice”),

�a = (Y gbe)x+da, �b = (Xgad)y+eb

where H̄ outputs the first ` bits of the input of the hash function H, and ` is a security parameter.
Note that �a = (Y gbe)x+da = (gygbe)x+da = g(x+da)(y+eb) = (gxgda)y+eb = (Xgda)y+eb = �b.
Thus the values km, and the secret session key sk computed independently on both sides are the
same.

Alice (a, A = ga) Bob (b, B = gb)

x 2R Z⇤
q , X = gx

X�!
y 2R Z⇤

q , Y = gy

km = H(�b||0)
Z = MAC(”1”, km)

Y,Z ��
km = H(�a||0)
Verify Z
W = MAC(”0”, km)

W�!
Verify W

sk = H(�a||1) sk = H(�b||1)

Fig. 1. 3-pass HMQV

Alice Bob
xA - private key xB - private key
yA = gxA - public key yB = gxB - public key
certA - certificate for yA certB - certificate for yB

MAIN PROCEDURE
choose a at random choose b at random
hA := H(a) hB := H(b)

cA := ghA
cA−−−−−−−−−→ cB := ghB

cB←−−−−−−−−−
K := cB

hA K := cA
hB

KA := H(K, 1), KB := H(K, 2) KA := H(K, 1), KB := H(K, 2)
K′

A := H(K, 3), K′
B := H(K, 4) K′

A := H(K, 3), K′
B := H(K, 4)

rA := H(cxA
B , K′

A)
EncKA

(certA,rA)
−−−−−−−−−−−→ check certA, proceed with random values if

rA ≠ H(yhB
A , K′

A)
EncKB

(certB ,rB)
←−−−−−−−−−−− rB := H(cxB

A , K′
B)

check certB , proceed with random values if
rB ≠ H(yhA

B , K′
B)

Ksession := H(K, 5) Ksession := H(K, 5)

Figure 1. Protocol description - Anonymous Mutual Authentication

A. Protocol Rationale

The protocol is very simple (this is also a necessary
condition for its applicability). The first part is the standard
Diffie-Hellman key agreement based on ephemeral values
cA and cB and yielding a master key K. Note that it is
executed before any identity information is exchanged.

After establishing K a number of “independent” one-time
keys are derived by hashing K with different parameters.

Authentication is based on raising cA (respectively, cB) to
private power xB (respectively, xA). In fact we are reusing
the mechanism of static Diffie-Hellman key exchange, where
the authenticated party has to use the private key, while the
verifier can compute the same result without the private key
but with the the discrete logarithm of cA (respectively, cB).

Using static Diffie-Hellman protocol has an additional
advantage: the verifier gets no data that he could not compute
himself. Of course, the verifier may cheat and provide cA

such that he does not know the discrete logarithm of cA.
Then the answer contains cxB

A and we might fear that a faulty
protocol execution may be used as an oracle for computing
rxB for an arbitrary r. However, a dishonest verifier cannot
retrieve rxB , as it is encrypted and deriving the decryption
key requires the discrete logarithm of cA.

III. SECURITY MODEL ASSUMPTIONS

In some proofs we use Random Oracle Model (ROM) for
the hash function H used in the protocol. In ROM, hash
function H is modeled as an oracle OH . For a query x, OH

checks if there is an entry of type (x,−) in the internal table
T . If an entry (x, y) is in T , then OH responds y. If there
is no such an entry, then OH selects y at random, inserts
(x, y) in T , and answers y. In ROM model the only available

operation concerning hash function H is asking for values
for concrete arguments. Thereby, given a value y the only
way to get H−1(y) is to remember it from a previous query
or ask a query with a new x and get y accidentally. Let us
recall the Correlated-Input Secure Hash Functions [4].

Property 1. Let C1, . . . , Cn be Boolean circuits which take
as input some random coins and output values in the domain
of hash function H . We say that H is a Correlated-Input
Secure Hash Function if for any random r and any choice
of C1, . . . , Cn there exists no adversary such that given
H(x1), . . . , H(xn−1), where x1 = C1(r), . . . , xn−1 =
Cn−1(r), distinguishes, with non-negligible probability, be-
tween H(Cn(r)) and a random value R of the same length.

This property is achievable, in the standard model, by
keyed hash functions.

IV. PRIVACY

A. Non-Transferability of Authentication

We show that Alice executing AMA with Bob cannot use
the protocol transcript (and optionally own ephemeral val-
ues) to prove a third person Eve that such an interaction took
place. A similar property should hold for an eavesdropper
or an active adversary. By protocol transcript we mean here
the values cA, cB and two ciphertexts created by Alice and
Bob according to Fig. 1. By extended protocol transcript we
mean protocol transcript appended with ephemeral a or b.

Theorem 1. AMA is simultable. That is, one can create an
extended protocol transcript of AMA for interaction between
Alice and Bob without interacting with them, but with the
same probability distribution as in case of real interactions.

1684

A B

eskA
$ {0, 1}� X = gH1(eskA,skA)

-

Y = gH1(eskB,skB)
�

eskB
$ {0, 1}�

A : K H2(Y
skA , pk

H1(eskA,skA)
B , Y H1(eskA,skA), A, B)

B : K H2(pk
H1(eskB,skB)
A , XskB , XH1(eskB,skB), A, B)

Figure 3: NAXOS AKE Protocol.

Theorem 1 NAXOS satisfies Extended Canetti-Krawczyk security if H1 and H2 are modeled by
independent random oracles.

For any AKE adversary M against NAXOS that runs in time at most t, involves at most n
honest parties and activates at most k sessions, we show that there exists a GDH solver S, a PDH
solver R and a DLOG solver T such that

AdvGDH(S) = AdvPDH(R) � 1

2
min

⇢
2

k2
,

1

nk

�
· AdvAKE

NAXOS(M)�AdvDLOG(T)�O

✓
k2

2�

◆
,

where S runs in time O(tk), R runs in time O(t log t) and T runs in time O(t).

The outline of the security proof of Theorem 1 is given in Section 4.3.

4.3 Security Proof for NAXOS

Let A be any AKE adversary against NAXOS. We start by observing that since the session key of
the test session is computed as K = H2(�) for some 5-tuple �, the adversary M has only two ways
to distinguish K from a random string:

1. Forging attack. At some point M queries H2 on the same 5-tuple �.

2. Key-replication attack. M succeeds in forcing the establishment of another session that has
the same session key as the test session.

If random oracles produce no collisions, the key-replication attack is impossible as equality of session
keys implies equality of the corresponding 5-tuples (which are hashed to produce session keys). In
turn, distinct AKE sessions must have distinct 5-tuples. Therefore, if random oracles produce no
collisions (collisions happen with probability O(k2/2�)), M must perform a forging attack. Next we
show that if M can mount a successful forging attack, then we can construct a Gap Di�e-Hellman
solver S which uses M as a subroutine. Most of the remaining proof is devoted to the construction
of S.

S takes as input a GDH challenge (X0, Y0). Then S executes the Extended Canetti-Krawczyk
(ECK) experiment with M the adversary against the NAXOS protocol, and modifies the data
returned by the honest parties in such a way that if M breaks the ECK security of NAXOS, then
S can reveal the solution to the GDH problem from M.

10

4 Lucjan Hanzlik, Kamil Kluczniak, Mirosław Kutyłowski, Łukasz Krzywiecki

algorithms and group used, etc. This stage must be based on a temporal ad hoc
identity and there must be a very limited number of behavior profiles during this
phase in order to eliminate identification.

In the following description we assume that the communication is within
domain with generator gS = g. The certificates for the public keys of, respec-
tively, Alice and Bob in domain S with public key g will be denoted by certA
and certB .

Alice Bob
xA - private key xB - private key
yA = gxA - public key yB = gxB - public key
certA - certificate for yA certB - certificate for yB

OPTIONAL SETUP
recompute g recompute g
yA := gxA - set public key yB := gxB - set public key
fetch certA and check yA fetch certB and check yB

MAIN PROCEDURE
choose a at random choose b at random
hA := H(a|0) hB := H(b|0)

cA := yhA
A

cA���������! cB := yhB
B

cB ���������
K := cB

xAhA K := cA
xBhB

KA := H(K|1), KB := H(K|2)
EncKA

(a,certA)
���������! KA := H(K|1), KB := H(K|2)

reject if cA 6= y
H(a|0)
A or certA invalid

reject if cB 6= y
H(b|0)
B or certB invalid

EncKB
(b,certB)

 ���������
Ks := H(K|3) Ks := H(K|3)

Mutual Restricted Identification protocol

Protocol idea. The first part of the protocol is deriving a master session key K
by Diffie-Hellman protocol based on values cA and cB . At this stage identity of
the participants is not revealed. At first look it may appear that derivations of
K depend on participants’ identities. However, cA and cB are in fact gxAhA and
gxBhB , and as hA and hb are in some sense “random”, so are xAhA and xBhB .

Note that the key K depends on the domain parameter g = gS . Indeed, if A
uses g and B uses a different key g0, then A derives (cB)xAhA = (g0)xBhBxAhA ,
while B derives (cA)xBhB = gxAhAxBhB . So the results are different.

The master key K is used to get a number of keys by applying a hash func-
tion with different parameters. We follow a frequent practice to yield “indepen-
dent” keys by hashing a shared secret expanded with different parameters.

Parties then verify each other’s signatures and if accepted, compute a shared
session key K = gxy. The protocol is depicted in Figure 1. This protocol was

A B

x
gx, SIGA(gx, B) -

gy, SIGB(gy, A)æ y

K = gxy K = gxy

Fig. 1. Signed Di±e-Hellman authenticated key-exchange

formally analyzed by Shoup [17] and it is proven to be secure (we will discuss be-
low in detail what security means) against an adversary who can reveal session
keys of honest key-exchange sessions but who cannot reveal ephemeral secret
keys.

It is worth noting that Signed Di±e-Hellman AKE can be broken if an ad-
versary can reveal ephemeral secret keys of the parties. Exposure of ephemeral
secret keys can occur in practical implementations of AKE protocols if ephemeral
keys are precomputed or if they are stored in insecure storage. If an adversary
M reveals an ephemeral secret key x used by A in some session with B, then
M can impersonate A to B by starting a session with B and sending the same
tuple {gx, SIGA(gx, B)}. B will accept this tuple because the signature is valid
and then M can compute a session key using the knowledge of x.

Security of Authenticated Key Exchange. For AKE protocols there are
a surprisingly large number of possible attack scenarios and there is no single se-
curity definition. We sketch 3 security notions which seem to capture all possible
attacks, and give their precise definitions in Section 2:

1. The main security requirement (we will call it AKE security) as intro-
duced by Bellare and Rogaway [4] and further refined by Bellare, Pointcheval
and Rogaway [3] and by Canetti and Krawczyk [9], considers a multi-party ex-
periment with unauthenticated communication channels (called the AKE ex-
periment). The adversary controls all the communication and can corrupt some
of the parties. Moreover, the adversary selects honest parties to participate in
key-exchange sessions. The adversary must select an uncorrupted session called
a test session and then he is given a challenge, which is either the session key
of the test session or a randomly selected key. The goal of the adversary is to
distinguish between these 2 cases.

2. One of the properties not captured by AKE security is Perfect Forward
Secrecy (PFS). Perfect Forward Secrecy says that an adversary in the AKE ex-
periment who corrupted one of the parties (that is, revealed the long-term secret
key), should not be able to reveal session keys of past sessions executed by that

Security Analysis of KEA Authenticated Key Exchange Protocol 381

challenge is a correct key for the test session and if different, M decides that
the challenge key was chosen at random. The demonstrated attack breaks AKE
security against a weak adversary (who can only reveal session keys). This attack
is often called as Unknown Key Share (UKS) attack.

One possible counter-measure to the above attack is not to allow 2 parties to
have the same public key, and this check can be done by a certificate authority.
We note that this counter-measure also wouldn’t work. In the previous attack’s
scenario, an adversary can pick any exponent k, register a public key gak and
instead of sending gy as a response to A, send a value gyk. This way, both A and
B will again have the same session key H(gayk ⊕ gbx).

Security fix: KEA+. We present a modified version of the KEA protocol,
called KEA+, which is resistant to the above attacks. We prove that no such
attacks on KEA+ are possible and that KEA+ satisfies the strongest known
security requirement. The main idea behind KEA+ is to incorporate parties’
identities in the computation of a session key. Interestingly, this simple feature
of the protocol turns out to be crucial in the security analysis and avoids the
proof-of-possession requirement.

The KEA+ protocol proceeds as follows. First, parties A and B randomly
select ephemeral secret keys x and y and exchange ephemeral public keys gx

and gy. Then parties verify that the received ephemeral public keys are in the
group G and compute a session key K as H(gay, gbx, A, B), where H can be an
arbitrary cryptographic hash function. In the security analysis we model H by
a random oracle. Figure 2 depicts actions performed by the parties. We note
that verifying that the ephemeral public keys are in the group G is essential for
the security of the protocol. Otherwise, the protocol is vulnerable to a so-called
“small subgroup” attack.

A : a, ga B : b, gb

x
gx

✲

ygy
✛

K = H(gay, gbx, A, B) K = H(gay, gbx, A, B)

Fig. 2. New KEA+ protocol

We prove that KEA+ protocol satisfies AKE security, weak perfect forward se-
crecy and security againstKCI attacks. All these results involve a strong adversary
who can reveal ephemeral secret keys of the parties as well as session keys. The re-
sults hold under either the standard Gap Diffie-Hellman (GDH) assumption in a
group G, as defined by Okamoto and Pointcheval [16], or under a stronger Pairing
Diffie-Hellman (PDH) assumption. The latter assumption means hardness of the

