Question: Let $\mathcal{E}=($ Init, KeyGen, Enc, Dec) is an encryption scheme. Define the security model (Semantic Security, CCA, CCA2). Are the following \mathcal{E} schemes secure in the defined model. If not show attacks. If yes - show the intuition why.

m any positive integer, K any positive integer build with digits $\{1, \ldots, 9\}$	
$c=E n c_{K}(m)$	$m=\operatorname{Dec}(c)$
$c=m * K$	$m=c / K$

m any positive integer, K any positive integer.	
$c=E n c_{K}(m)$	$m=\operatorname{Dec_{K}}(c)$
$c=m+K$	$m=c-K$

Question: Let $(s k, p k)=\left(x, y=g^{x}\right)$ in a well defined group, where assumptions: DLP, CDH, DDH hold. Define the security model (Semantic Security, CCA, CCA2). Are the following \mathcal{E} schemes secure in the defined model. If not If not show attacks. If yes - show the intuition why.

$c=E n c_{y}(m)$	$m=\operatorname{Dec}_{x}(c)$
$r_{1}, r_{2} \in_{R} \mathbb{Z}_{q}^{*}$	
$\alpha_{1}=g^{r_{1}}, \alpha_{2}=g^{r_{2}}$	$m=\beta /\left(\alpha_{1}^{x} \alpha_{2}^{x}\right)$
$\beta=y^{r_{1}} r^{r_{2}} m$	
$c=\left(\alpha_{1}, \alpha_{2}, \beta\right)$	

Function $R E V$ reverses the order of bits of its argument.

$c=E n c_{y}(m)$	$m=\operatorname{Dec}_{x}(c)$
$r \in R \mathbb{Z}_{q}^{*}$	
$\alpha=g^{r}$	$m=R E V\left(\alpha^{x}\right) \oplus \beta$
$\beta=R E V\left(y^{r}\right) \oplus m$	
$c=(\alpha, \beta)$	

$c=\operatorname{Enc}_{y}(m)$	$m=\operatorname{Dec}_{x}(c)$
$r \in_{R} \mathbb{Z}_{q}^{*}$	
$\alpha=g^{r}$,	$m=\beta /\left(\left(\alpha^{x} / 2\right)\left(\alpha^{2}\right)\right)$
$\beta=\left(y^{r} / 2\right) \alpha^{2} m$	
$c=(\alpha, \beta)$	

$c=E n c_{y}(m)$	$m=\operatorname{Dec}_{x}(c)$
$r \in_{R} \mathbb{Z}_{q}^{*}$	
$\alpha=g^{r} r$	
$\beta=\left(y^{r} / 2\right)\left(y^{r}\right)^{2} m$	$m=\beta /\left(\left(\alpha^{x} / 2\right)\left(\left(\alpha^{x}\right)^{2}\right)\right)$
$c=(\alpha, \beta)$	

