Question: Let $\mathcal{E} = (Init, KeyGen, Enc, Dec)$ is an encryption scheme. Define the security model (Semantic Security, CCA, CCA2). Are the following \mathcal{E} schemes secure in the defined model. If not show attacks. If yes - show the intuition why.

m any positive integer, K any positive integer build with digits $\{1, \ldots, 9\}$	
$c = Enc_K(m)$	$m = Dec_K(c)$
c = m * K	m = c/K

\boldsymbol{m} any positive integer, \boldsymbol{K} any positive integer.	
$c = Enc_K(m)$	$m = Dec_K(c)$
c = m + K	m = c - K

Question: Let $(sk, pk) = (x, y = g^x)$ in a well defined group, where assumptions: DLP, CDH, DDH hold. Define the security model (Semantic Security, CCA, CCA2). Are the following \mathcal{E} schemes secure in the defined model. If not If not show attacks. If yes - show the intuition why.

$c = Enc_y(m)$	$m = Dec_x(c)$
$ \begin{array}{c} r_1, r_2 \in_R \mathbb{Z}_q^* \\ \alpha_1 = g^{r_1}, \alpha_2 = g^{r_2} \\ \beta = y^{r_1} y^{r_2} m \\ c = (\alpha_1, \alpha_2, \beta) \end{array} $	$m = \beta / (\alpha_1^x \alpha_2^x)$

Function *REV* reverses the order of bits of its argument.

$c = Enc_y(m)$	$m = Dec_x(c)$
$ \begin{array}{c} r \in_{R} \mathbb{Z}_{q}^{*} \\ \alpha = g^{r} \\ \beta = REV(y^{r}) \oplus m \end{array} $	$m = REV(\alpha^x) \oplus \beta$
$c = (\alpha, \beta)$	

$c = Enc_y(m)$	$m = Dec_x(c)$
$r \in_R \mathbb{Z}_q^*$	
$lpha = g^r$,	$m = \beta/((\alpha^x/2)(\alpha^2))$
$\beta = (y^r/2)\alpha^2 m$	
$c = (\alpha, \beta)$	

$c = Enc_y(m)$	$m = Dec_x(c)$
$ \begin{array}{c} r \in_{R} \mathbb{Z}_{q}^{*} \\ \alpha = g^{r}, \\ \beta = (y^{r}/2)(y^{r})^{2}m \\ c = (\alpha, \beta) \end{array} $	$m = \beta/((\alpha^x/2)((\alpha^x)^2))$