Distributed Algorithms 2022/2023
(lab exercise)

Leader election

Task 1 — Implement a simulator that allows you to test the leader election algorithm pre-
sented during the lecture for known number of nodes n and for a known upper bound u on
the number of nodes n. You can use any programming language.

Task 2 — Let the random variable L denote the number of slots from the start of the al-
gorithm until the leader is elected. Use the simulator from the previous task to draw the
empirical distribution (histogram) of the random variable L for both considered scenarios.
For a scenario with a known constraint « consider three cases: n =2, n=u/2, n=u.
Justify the results. (10p)

Task 3 — For a scenario with a known number of n nodes, use the simulator to estimate
E[L] and Var[L]. Verify that the results are consistent with the theoretical results. (10p)

Task 4 — Consider a scenario with a known constraint w. Let Sz, ,, be the event that in one
round of the algorithm of length L = [log, u| a leader was elected if there are n nodes in the
system. Suggest a suitable experiment and use a simulator to confirm the correctness of
the theorem from the lecture that Pr[Sy,,] > A ~ 0.579 . (10p)

Analysis of data streams: counting problem

MinCount

Task 5 — Implement the MinCount(k, h, M) algorithm and test it:

a) Consider the multisets M,, = (S, m) such that |S,,| = nforn =1,2,...,10%* and all
sets S, are disjoint. Does changing the m function affect the value of the n estimation
obtained in the algorithm?

b) For k = 2,3,10, 100,400 and multisets from point a) draw a graph with n on the hori-
zontal axis and n./n on the vertical axis.

c) Experimentally adjust the value of k so that there is 95% probability that |% —1] < 10%.
(10p)

Task 6 — Test the MinCount(k, k, M) algorithm for different hash functions i : § — {0,1}%
and different values of parameter B. Try to find or propose a hash function h for which the
accuracy of the algorithmis significantly worse than predicated by the analysis. Explain what
causes this loss of accuracy. What else can matter besides the value of the B parameter?

(10p)

Task 7 — Your task is to compare the theoretical concentration results for the 7 estima-
tor used in the MinCount(k, h, M) algorithm obtained by a) Chebyshev’s inequality and b)
Chernoff's inequality, with simulation results.
Namely, forn =1,2,...10% k = 400 and a = 5%, 1%, 0.5% plot values of 7, /n obtained in
simulation and values 1 — 4 i 1 + ¢ such that

Pril—6<2<146|>1—a. (10p)
n

HyperLoglLog

Task 8 — Implement HyperLoglLog with corrections and test it for different values of the
parameter m (number of registers) and different hash functions - create plots analogous to
those from Task 5. Compare the estimation accuracy of the MinCount and HyperLoglLog
algorithms when both have the same amount of memory available (you can assume that
HyperlLoglLog needs 5 bits per register and MinCount needs 32 bits per stored hash).

http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf

Blockchain

Task 9 — Let 0 < ¢ < 1/2 represent the probability of the adversary mining the next block
and let this probability correspond to the fraction of computational power he/she possess.
Let n represent the number of confirmations (mined blocks) needed to consider a transac-
tion as confirmed. Let P(n, q) represent the probability that an adversary with power ¢ will
mine a chain of blocks equal to or longer than the one mined by honest users at the mo-
ment when they have attached to the block containing the considered transaction n blocks,
or ever after.

a) Compare the formulas for P(n, ¢) obtained by Nakamoto and Grunspan. In particular:

—setn =1,3,6,12,24, 48 and plot P(n, ¢q) depending on the value of ¢,

— set the acceptable probability of adversary success P(n,q) = 0.1%, 1%, 10% and
draw graphs showing how to choose the value of n depending on the value of q.

b) Implement a ,double spending attack” simulator, which will enable experimental appro-
ximation of the probability P(n, ¢q) depending on the values of n and ¢.
Hint: design the experiment and repeat it multiple times (Monte Carlo method).
Carefully and thoroughly describe the idea and code of the simulator.

c) Compare the simulator results to the analytical results (graphs). If there are discrepan-
cies, try to explain them.

All the information you need was/will be given during the lecture. Additionally some notes
are available in polish. (20p)

Self-stabilization

Task 10 — Implement the simulator of Dijkstra’s Mutual Exclusion algorithm (page 17). For
a given n denoting the number of processes in the ring, verify that starting from any initial
configuration, the algorithm will reach a legal configuration. If itis possible to move to several
possible configurations from a certain configuration, depending on which process makes
the first step, each execution should be verified. What is the maximum number of steps to
reach a legal configuration for a given n? For which values of n can you get an answer in a
reasonable time? For this task, you can receive 3 x N , points, where N is the largest value
of n for which you can verify the algorithm.

Task 11 — Consider a graph G = (V, E). We call two vertices v,w € V independent if
v,w ¢ E. We call a subset S C V of vertices independent if all its elements are pa-
irwise independent. Based on the Maximal Matching algorithm given in the lecture, de-
sign, implement and test a self-stabilizing algorithm that finds the maximal independent
set (see Maximal Independent Set) in a connected undirected graph. Provide a convincing
justification for the correctness of the algorithm (formal proof - exercise 34).

Algorithms for finding a maximal independent set have many applications. You might, for
instance, think about the frequency assignment problem in wireless networks. (10p)

https://en.wikipedia.org/wiki/Monte_Carlo_method
https://ki.pwr.edu.pl/lemiesz/AA/AA_plosowe_blockchain.pdf
https://ki.pwr.edu.pl/lemiesz/info/SelfS.pdf
https://en.wikipedia.org/wiki/Maximal_independent_set

