Data Mining 2023/2024
| ab exercises

1 PLJthOﬂ (do it on your own, no points)

| assume that you know the basics of Python. If you have only a little experience in Python,
exercises in this section will guide you through the process of creating a convenient programming
environment. At the end of this section you should be able to write and run Python code in Jupyter
Notebook and also know basic Jupyter Notebook commands. You should also know how to install
new packages and switch environments.

Exercise 1 — Download and install Anaconda. This is distribution of the Python and R program-
ming languages for applications related to data science (see wiki). Read a quick user guide and
conda-cheatsheet to learn how to create and switch environments and install new packages.

Exercise 2 — Using Anaconda run Jupyter Notebook and see Help — User Interface Tour, Keyboard
Shortcuts. Learn how to crate, move and run cells. Learn how to get information about objects and
methods and how to print their source code (e.g. can use tab, shift4+tab, shift+tab—+tab or write "7’
and 77" before a method name).

Exercise 3 — Recall what data structures are available in Python. Pay special attention to list
comprehensions as often they help to write more readable and more efficient code.

Exercise 4 — Install and familiarize yourself with numpy, pandas, matpoltlib packa-
ges.

a) Read official numpy user guide.

b) Read official pandas user guide.

¢) Read official matplotlib user guide.

2 Word-count problem (deadline: 3rd lab)

Exercise 5 — Find the source of your favorite book and save it in UTF-8 format. Load the book
and split it into single words. For example you can use a construction like: (5p)

with open ("Catch_22.txt", encoding="UTF-8") as f:

words = [word

for line in f
for word in line.split ()]

Change all words to lower case, remove punctuation and remove stop-words. You may try construc-
tions like:

https://www.anaconda.com/download
https://en.wikipedia.org/wiki/Anaconda_(Python_distribution)
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf
https://docs.python.org/3/tutorial/datastructures.html
https://docs.scipy.org/doc/numpy/user/quickstart.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://matplotlib.org/users/pyplot_tutorial.html

from string import punctuation
words = [word.lower () .translate(str.maketrans(’’, ’’, punctuation)) for

]

filtered_words = [w for w in words if not w in stopwords]

List of stop-words you can find in the Internet (e.g. here). You may also try using stemming procedure
to reduce the different forms of a given word to a common form:

from stemming.porter2 import stem
filtered_words = [stem(word) for word in filtered_words]

Next, convert the obtained list of words into a list of pairs (word, 1) of the type (String, Int):

pairs = [(w,1l) for w in filtered_words]

Group the list of pairs by different words and count the total number of occurrences of each word
to get pairs (word, occurrences). For example, you may use groupby method. However
note that groupby method requires that input list is sorted by keys and such sorting might
be computationally costly for large lists. Try to think up and implement a more efficient way of
aggregating occurrences that does not require sorting.

from itertools import groupby

pairs.sort ()

word = lambda pair : pair[O0]

grouped_pairs = [(w, sum(l for _ in g)) for w, g in groupby(pairs, key=word
]

)

Sort obtained list of pairs by the second component in decreasing order:

occurrences = lambda pair: pair[1l]
grouped_pairs.sort (key=occurrences, reverse=True)

Remove some of the initial elements (most common words) and save the result to a text file. Build a
word-cloud from the obtained list. You can use the service http://www.wordclouds.com/.

wcolonel cathca rt o

eneral dreed Y
v
olSh e

O came wanled b L O i
kiJied eve n gan S I sEeoh i 2
[said d.-:
=i plane D000

Lot g dye c: I dun B
. "thlm'e o ~0:fD S&Lewé]’?}%‘:
o rmlght i e T O g

fQde

Lbed pam
hunﬂ|v joym

open squadron anty

cha plalanmwﬁq
i scocolonel korns:
away : f5e one“%.;;h\;oa '

Rea) m<1y{u;u3doc dane ka glr

everyThing . lyeft W l]j‘“’ s
dve officer
myossaﬁlanm
seermed

Floor . thougl
going i 2.5
turned 1 T as k ed_ d a y g éth"ugh(

— carparal whitcath

Exercise 6 — This is the continuation of the previous task. (5p)
1. Divide your book into chapters. Treat each chapter as a document.

2. Split each documents into words (use lower case, stemming, etc.).

https://gist.github.com/sebleier/554280
https://en.wikipedia.org/wiki/Stemming
http://www.wordclouds.com/

3. Determine the_tf-idf weights of all words in all documents:

tr-idf(t, d, D) = tf(t, d) x idf(t, D),

where t denotes a term (word), d denotes a document and D denotes the collection of all
documents. Term frequency tf(t, d) is the number of times a term ¢ appears in document d.
Inverse document frequency idf(t, D) is often defined as

| D]

idf(t, D) = '
wdf(t, D) loq1+|{dED:t€d}|

There are packages that make it easy to find tf-idf weights, but try to implement the appropriate
procedure yourself.

4. For each document separately build a word cloud using obtained tf-idf weights.

Exercise 7 — Write a function that takes a word as an input and use tf-idf weights to create the
list of chapters of your book most matching to that word (i.e. it should return a list of chapters
sorted according to appropriate tf-idf weights). (5p)

Exercise 8 — For each given word in your book make a list of five most common words that appear
directly after considered word (but ignore stop-words). Use this summary to generate a random
paragraph that resembles a paragraph of your book. (5p)

3 Linear Regression (deadline: 4th lab)

Exercise 9 — Using Python solve applied exercises 13 and 14 from Section 3.7 in ISL book . (20p)

Exercise 10 — Read lab1.ipynb and download Auto.csv from my webpage. Read it as dataframe
and change the origin column to the category type. Split the data into the training and
validation set. (20p)

a) Use statsmodels library for linear regression with mpg as the response and horsepower as
the feature. Be prepared to explain parameters returned by summary () method that we have
discussed, in particular: confidence intervals, p-values, T-statistic, F-statistic and R-squared.

b) Create a scatterplot matrix which includes all of the variables in the data set. You can
use pandas.plotting.scatter_matrix(...). Compute the matrix of correlations
between the variables, you may use corr () function for pandas dataframe.

c) Perform a linear regression with mpg as the response and all other variables (except name) as
the features. Try defining different models with patsy library, use symbols +, x, : and different
transformations of the variables like for example I (np.log (X)) or I (np.sqrt (X)). For
which model you get the best generalization error?

d) Try to look for outliers and remove them from the data (see e.g.: residual plot, Z-Score). What
are high leverage points? How can you detect them (for example see here)? Retrain your
models on cleansed data and compare the results.

https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://www.statlearning.com/
http://www.science.smith.edu/~jcrouser/SDS293/labs/lab2-py.html

4 Classification (deadline: 5th lab)

Exercise 11 — Cateqorical predictors. Using Auto.csv data from previous list create and compare
two linear regression models for predicting mpg. In the first model use year treated as a continuous
variable. In the second use year treated as a cateqgorical variable. Which model is better? What if
there were more than 13 values for variable year? Which model is easier to train? (10p)

Exercise 12 — Download Credit.csv file. Dataset is described here. Create logistic regression
models with possibly high prediction accuracy for predicting

a) if a given person has an income greater than 50 (hint: create new indicator variable),

b) how many credit cards a person has. (10p)

Exercise 13 — Repeat the previous exercise with the K-Nearest Neighbor and Decision Tree clas-
sification models. You may use scikit-learn implementations: KNN and DT. For KNN check different
values of parameter n_neighbors - the number of considered neighbors. For DT check different
values of parameter max_depth - the maximum depth of a tree.

What is the best model you get in case a) and b)? To get more reliable answer you may use
cross-validation for making many experiments having only one dataset (e.g. use KFold method, see
lab3.ipynb) (10p)

Exercise 14 — For problems a) and b) from Exercise 12 choose two continuous predictors that
seems to be important and plot decision boundaries for different models (e.g. logistic regression,
KNN, DT, RF). You may read this tutorial. (20p)

5 Introduction to Neural Networks (deadline: the last lab)

Exercise 15 — In the notebook lab4.ipynb presented during the lecture we have created a pipeline
for text classification (data set: 20newsgroups). Try to increase test accuracy by improving the
pipeline and by using stronger classification model. You can get 2(x — 70) points , where x is your
average test accuracy (in percents) obtained from cross-validation. In the example we have used a
single Decision Tree, at least you should try using Random Forest model. What's out-of-bag error?

Exercise 16 — In the notebook labb.ipynb we have presented a simple neural network created with
Keras library. Try to solve classification problem from the previous exercise with the similar neural
network. Test different hyper-parameters (e.qg. size and number of layers or batch size). If you don't
have GPU you may try to use Google Colab. To avoid dealing with very large input vector spaces
you may consider only top N most common words in the dataset. (20p)

Exercise 17 — In the notebook lab7.ipynb we have presented the procedure for training a deep
neural network for an image classification problem using only a small dataset. We have used data
augmentation, transfer learning and fine tuning. Try to carry out a similar procedure for a dataset
of your choice. If you have no better ideas you can use flowers dataset. (20p)

JL

https://cs.pwr.edu.pl/lemiesz/labED/Credit.csv
https://rdrr.io/cran/ISLR/man/Credit.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://research.google.com/colaboratory/faq.html
https://ki.pwr.edu.pl/lemiesz/info/flowers.zip

