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QUOTIENT SPACES

Let us recall the notion of a quotient space V/W , where W < V . Geometrically
elements of V/W are all shifts of W in V , namely copies of W parallel to W .
Formally, let ∼= be the following equivalence relation of elements of V :

v ∼= w iff v −w ∈W.

The set of all vectors w such that v ∼= w is called the coset or congruence class
determined by v. It will be denoted by [v]W or simply by [v] if W has been fixed.

Theorem 24. [u]W = [v]W if and only if u ∼= v.

Proof. Assume that [u]W = [v]W . Note that u ∈ [u]W (because u − u = 0 ∈ W ).
Thus u ∈ [v]W which means that u ∼= v.

Assume now that u ∼= v and that w ∈ [v]W . Then v ∼= w, which means w−v ∈W .
But by our assumption we know that v−u ∈W . Hence, because the sum of vectors
from W is in W ,

w − u = (w − v) + (v − u) ∈W,
which means that w ∼= u and hence w ∈ [u]W . Thus we proved

[v]W ⊆ [u]W .

In the same way prove
[u]W ⊆ [v]W .

Finally,
[u]W = [v]W .

�

Problem 1. Prove that [0]W = W .

Problem 2. Prove that that [u]W = [v]W or the sets [u]W , [v]W are disjoint.

Let us define a sum of congruence classes

[u]W + [v]W := [u + v]W .

Theorem 25. The sum of congruence classes is well defined, it means that if
[u]W = [u′]W (which is equivalent to u ∼= u′) and [v]W = [v′]W (which is equivalent
to v ∼= v′), then

[u + v]W = [u′ + v′]W .
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Proof. Assume u ∼= u′ and [v]W = [v′]W . Then

(u + v)− (u′ + v′) = (u− u′) + (v − v′) ∈W.
Hence

u + v ∼= u′ + v′

and by Theorem 24
[u + v]W = [u′ + v′]W .

�

Now let us define how to multiply a scalar by a congruence class.

α[u]W := [αu]W .

Problem 3. Prove that the multiplication of a scalar by a congruence class is well
defined, it means that if if [u]W = [u′]W then if [αu]W = [αu′]W .

Problem 4. Prove that the space V/W = {[v]W : v ∈ V } is a linear space with the
addition and the outer multiplication defined above.

Problem 5. Say W is a one-dimensional subspace of R2. Prove that it means it is
a line going through the point (0, 0). Say, the equation of W is y = ax. Prove that
elements of R2/W are all lines given by equations y = ax+ b, b ∈ R.

Theorem 26. Let f : V → V be a linear mapping. Let W be an invariant (with
respect to f) subspace of V . Let

f (W )([v]W ) := [f(v)]W .

Then f (W ) is well defined and that it is a linear mapping from V/W into V/W .

Proof. Let [v]W = [u]W . Then

f(v)− f(u) = f(v − u) ∈W
because v − u ∈W and W is invariant. Thus

f(v) ∼= f(u)

and by Theorem 24
[f(v)]W = [f(v)]W .

�

Theorem 27. Let f : V → V be a linear mapping and let W be a subspace
of V invariant with respect to f . Let φ(x) be an annihilator of v ∈ V . Then
φ(f (W ))([v]W ) = [0] = W .

Proof. We have
φ(f (W ))([v]W ) = [f(v)]W = [0]W = W.

�

Problem 6. It follows from Theorem 26 that the annihilator of [v]W divides φ(x).
Must it be equal to φ(x)?
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Problem 7. Let a finite-dimensional linear space V be a direct sum of linear spaces
V1 and V2. Show that there exists a one to one linear mapping from V/V1 onto V2
(in other words V/V1 and V2 are isomorphic).

Theorem 28. Let W < V be linear spaces. If dim(V ) <∞, then

dim(W ) + dim(V/W ) = dim(V ).

Let f : V → V/W be defined by the formula

f(v) = [v]W .

By the very properties of congruence classes f is a linear mapping. Let us notice
that

Ker(f) := {v : f(v)) = 0V/W (= W ))} = W

and
Im(f) = V/W.

Now it is enough to use the (well known) equality

dim(Ker(f)) + dim(Im(f)) = dim(V ).

�

Problem 8. Derive the theorem from Problem 7 from Theorem 28.

Problem 9. Derive Theorem 28 from the theorem from Problem 7.


