ADVANCED TOPICS IN ALGEBRA

LECTURE 4

(lecture and problems to solve)
2020/21

QUOTIENT SPACES

Let us recall the notion of a quotient space V / W, where $W<V$. Geometrically elements of V / W are all shifts of W in V, namely copies of W parallel to W. Formally, let \cong be the following equivalence relation of elements of V :

$$
\boldsymbol{v} \cong \boldsymbol{w} \text { iff } \boldsymbol{v}-\boldsymbol{w} \in W
$$

The set of all vectors \boldsymbol{w} such that $\boldsymbol{v} \cong \boldsymbol{w}$ is called the coset or congruence class determined by \boldsymbol{v}. It will be denoted by $[\boldsymbol{v}]_{W}$ or simply by $[\boldsymbol{v}]$ if W has been fixed.

Theorem 24. $[\boldsymbol{u}]_{W}=[\boldsymbol{v}]_{W}$ if and only if $\boldsymbol{u} \cong \boldsymbol{v}$.
Proof. Assume that $[\boldsymbol{u}]_{W}=[\boldsymbol{v}]_{W}$. Note that $\boldsymbol{u} \in[\boldsymbol{u}]_{W}$ (because $\boldsymbol{u}-\boldsymbol{u}=\mathbf{0} \in W$). Thus $\boldsymbol{u} \in[\boldsymbol{v}]_{W}$ which means that $\boldsymbol{u} \cong \boldsymbol{v}$.

Assume now that $\boldsymbol{u} \cong \boldsymbol{v}$ and that $\boldsymbol{w} \in[\boldsymbol{v}]_{W}$. Then $\boldsymbol{v} \cong \boldsymbol{w}$, which means $\boldsymbol{w}-\boldsymbol{v} \in W$. But by our assumption we know that $\boldsymbol{v}-\boldsymbol{u} \in W$. Hence, because the sum of vectors from W is in W,

$$
\boldsymbol{w}-\boldsymbol{u}=(\boldsymbol{w}-\boldsymbol{v})+(\boldsymbol{v}-\boldsymbol{u}) \in W
$$

which means that $\boldsymbol{w} \cong \boldsymbol{u}$ and hence $\boldsymbol{w} \in[\boldsymbol{u}]_{W}$. Thus we proved

$$
[\boldsymbol{v}]_{W} \subseteq[\boldsymbol{u}]_{W}
$$

In the same way prove

$$
[\boldsymbol{u}]_{W} \subseteq[\boldsymbol{v}]_{W}
$$

Finally,

$$
[\boldsymbol{u}]_{W}=[\boldsymbol{v}]_{W}
$$

Problem 1. Prove that $[\mathbf{0}]_{W}=W$.
Problem 2. Prove that that $[\boldsymbol{u}]_{W}=[\boldsymbol{v}]_{W}$ or the sets $[\boldsymbol{u}]_{W},[\boldsymbol{v}]_{W}$ are disjoint.
Let us define a sum of congruence classes

$$
[\boldsymbol{u}]_{W}+[\boldsymbol{v}]_{W}:=[\boldsymbol{u}+\boldsymbol{v}]_{W} .
$$

Theorem 25. The sum of congruence classes is well defined, it means that if $[\boldsymbol{u}]_{W}=\left[\boldsymbol{u}^{\prime}\right]_{W}$ (which is equivalent to $\boldsymbol{u} \cong \boldsymbol{u}^{\prime}$) and $[\boldsymbol{v}]_{W}=\left[\boldsymbol{v}^{\prime}\right]_{W}$ (which is equivalent to $\boldsymbol{v} \cong \boldsymbol{v}^{\prime}$), then

$$
[\boldsymbol{u}+\boldsymbol{v}]_{W}=\left[\boldsymbol{u}^{\prime}+\boldsymbol{v}^{\prime}\right]_{W}
$$

Proof. Assume $\boldsymbol{u} \cong \boldsymbol{u}^{\prime}$ and $[\boldsymbol{v}]_{W}=\left[\boldsymbol{v}^{\prime}\right]_{W}$. Then

$$
(\boldsymbol{u}+\boldsymbol{v})-\left(\boldsymbol{u}^{\prime}+\boldsymbol{v}^{\prime}\right)=\left(\boldsymbol{u}-\boldsymbol{u}^{\prime}\right)+\left(\boldsymbol{v}-\boldsymbol{v}^{\prime}\right) \in W
$$

Hence

$$
\boldsymbol{u}+\boldsymbol{v} \cong \boldsymbol{u}^{\prime}+\boldsymbol{v}^{\prime}
$$

and by Theorem 24

$$
[\boldsymbol{u}+\boldsymbol{v}]_{W}=\left[\boldsymbol{u}^{\prime}+\boldsymbol{v}^{\prime}\right]_{W}
$$

Now let us define how to multiply a scalar by a congruence class.

$$
\alpha[\boldsymbol{u}]_{W}:=[\alpha \boldsymbol{u}]_{W} .
$$

Problem 3. Prove that the multiplication of a scalar by a congruence class is well defined, it means that if if $[\boldsymbol{u}]_{W}=\left[\boldsymbol{u}^{\prime}\right]_{W}$ then if $[\alpha \boldsymbol{u}]_{W}=\left[\alpha \boldsymbol{u}^{\prime}\right]_{W}$.

Problem 4. Prove that the space $V / W=\left\{[\boldsymbol{v}]_{W}: \boldsymbol{v} \in V\right\}$ is a linear space with the addition and the outer multiplication defined above.

Problem 5. Say W is a one-dimensional subspace of \mathbb{R}^{2}. Prove that it means it is a line going through the point $(0,0)$. Say, the equation of W is $y=a x$. Prove that elements of \mathbb{R}^{2} / W are all lines given by equations $y=a x+b, b \in \mathbb{R}$.

Theorem 26. Let $f: V \rightarrow V$ be a linear mapping. Let W be an invariant (with respect to f) subspace of V. Let

$$
f^{(W)}\left([\boldsymbol{v}]_{W}\right):=[f(\boldsymbol{v})]_{W}
$$

Then $f^{(W)}$ is well defined and that it is a linear mapping from V / W into V / W.
Proof. Let $[\boldsymbol{v}]_{W}=[\boldsymbol{u}]_{W}$. Then

$$
f(\boldsymbol{v})-f(\boldsymbol{u})=f(\boldsymbol{v}-\boldsymbol{u}) \in W
$$

because $\boldsymbol{v}-\boldsymbol{u} \in W$ and W is invariant. Thus

$$
f(\boldsymbol{v}) \cong f(\boldsymbol{u})
$$

and by Theorem 24

$$
[f(\boldsymbol{v})]_{W}=[f(\boldsymbol{v})]_{W}
$$

Theorem 27. Let $f: V \rightarrow V$ be a linear mapping and let W be a subspace of V invariant with respect to f. Let $\phi(x)$ be an annihilator of $\boldsymbol{v} \in V$. Then $\phi\left(f^{(W)}\right)\left([\boldsymbol{v}]_{W}\right)=[\mathbf{0}]=W$.

Proof. We have

$$
\phi\left(f^{(W)}\right)\left([\boldsymbol{v}]_{W}\right)=[f(\boldsymbol{v})]_{W}=[\mathbf{0}]_{W}=W
$$

Problem 6. It follows from Theorem 26 that the annihilator of $[\boldsymbol{v}]_{W}$ divides $\phi(x)$. Must it be equal to $\phi(x)$?

Problem 7. Let a finite-dimensional linear space V be a direct sum of linear spaces V_{1} and V_{2}. Show that there exists a one to one linear mapping from V / V_{1} onto V_{2} (in other words V / V_{1} and V_{2} are isomorphic).

Theorem 28. Let $W<V$ be linear spaces. If $\operatorname{dim}(V)<\infty$, then

$$
\operatorname{dim}(W)+\operatorname{dim}(V / W)=\operatorname{dim}(V)
$$

Let $f: V \rightarrow V / W$ be defined by the formula

$$
f(\boldsymbol{v})=[\boldsymbol{v}]_{W}
$$

By the very properties of congruence classes f is a linear mapping. Let us notice that

$$
\left.\left.\operatorname{Ker}(f):=\{\boldsymbol{v}: f(\boldsymbol{v}))=\mathbf{0}_{V / W}(=W)\right)\right\}=W
$$

and

$$
\operatorname{Im}(f)=V / W
$$

Now it is enough to use the (well known) equality

$$
\operatorname{dim}(\operatorname{Ker}(f))+\operatorname{dim}(\operatorname{Im}(f))=\operatorname{dim}(V)
$$

Problem 8. Derive the theorem from Problem 7 from Theorem 28.
Problem 9. Derive Theorem 28 from the theorem from Problem 7.

