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DECOMPOSITION OF SPACE INTO CYCLIC SPACES

We shall prove a theorem about decomposition of a space into cyclic spaces, given
a linear mapping f of the space into itself. Namely, we shall prove the existence of
a basis in which the space is a direct sum of special cyclic spaces. This corresponds
to existence of a matrix B (changing the basis) such that B−1FB has a special
diagonal blocks form (a Jordan matrix), where F is a matrix of f in some basis.

Theorem 28. Let V be a linear space of finite dimension and let f : V → V be a
linear mapping. Then the space V can be decomposed into a direct sum of cyclic
spaces

V = V1 ⊕ V2 ⊕ . . .⊕ Vm,

φVi+1(x)|φVi(x),

and
φV1(x) = φV (x).

Proof. We shall prove the theorem by induction with respect to n = dim(V ).

If n = 1 the conclusion holds trivially.

Now assume that the theorem is true for all k < n. Let v be a vector whose
annihilator φ1(x) is equal to the annihilator φV of the whole space V . Let us denote
the cyclic space generated by v by V1.

We have dim(V/V1) < dim(V ). We consider now the space V/V1 and the linear
mapping f (V1) : V/V1 → V/V1 given (recall) by the formula:

f (V1)([v]V1) = [f(v)]V1 .

By our induction hypothesis the conclusion of the theorem holds for the the space
V/V1 and the linear mapping f (V1). Let

V/V1 = S2 ⊕ S3 ⊕ ...⊕ Sm,

where Si are cyclic subspaces of V/V1.

Let [si]V1 be a generator of the cyclic space Si. Let φi(x) be the annihilator of [si]V1 .
We shall show that there exists s′i ∈ [si]V1 whose annihilator is φi(x). Because φi(x)
is the annihilator of [si]V1 , we have

φi(f (V1)([si]V1) = [φ(f)(si)]V1 = [0]V1 = V1.

Hence φ(f)(si) ∈ V1. As all elements of V1 (which is a cyclic space w.r.t. f) are of
the form γ(f)(v), where γ(x) is some polynomial, we have

φi(f)(si) = γ(f)(v),
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for some polynomial γ(x). By our induction assumption φi(x) divides φ(x), hence

φ(x) = δ(x)φi(x).

Thus we have
δ(f)γ(f)(v) = δ(f)φi(f)(si) = φ(f)(si) = 0.

This implies that
δ(x)φi(x) = φ(x)|δ(x)γ(x),

and we obtain
φi(x)|γ(x).

Therefore
γ(x) = φi(x)ϑ(x)

for some polynomial ϑ(x). Because φi(f)(si) = γ(f)(v), we have

φi(f)(si − ϑ(f)(v)) = 0).

Set
s′i := si − ϑ(f)(v).

Assume that the annihilator ρ(x) of s′i is of smaller degree than the degree of φi.
Then we would get

ρ(f (V1)([si]V1) = [ρ(f)(s′i) + ϑ(f)(v)]V1 = [ρ(f)(s′i)]V1 + [ϑ(f)(v)]V1 = [0]V1 ,

(here we use v ∈ V1; hence ϑ(f)(v) ∈ V1 which implies [ϑ(f)(v)]V1 = [0]V1 )
but this condradicts the fact that the annihilator of [si]V1 (w.r.t. f (V1)) is φi. Thus
we have proved that the annihilator of s′i is φi. Of course, we also have [s′i]V1 = [si]V1
and

V/Vi = Γ(f (V1), [s′i]V1).

For every vector w of V :

[w]V1 = ξ2(f (V1))([s′2]V1) + . . .+ ξm(f (V1))([s′m]V1)

for some polynomials ξi, 2 ¬ i ¬ m (because S2, . . . , Sm are cyclic spaces with
generators [(s′2],...,[(s′m], respectively). Hence for some w1 ∈ V1
(1) w = w1 + ξ2(f)(s′2) + . . .+ ξm(f)(s′m).

Thus we can represent w as a linear combination of vectors from the bases of the
spaces V1, Γ(f, s′2), . . . ,Γ(f, s′m). We have

dim(V ) = dim(V1) + dim(V/V1) = dim(V1) + dim(S2 ⊕ . . .⊕ Sm) =

dim(V1) + dim(Γ(f (V1), [s′2])) + . . .+ +dim(Γ(f (V1), [s′m])) =

dim(V1) + deg(φ2(x)) + . . .+ deg(φm(x)) =

dim(V1) + dim(Γ(f, s′2)) + . . .+ dim(Γ(f, s′m)).

Hence the sum of the bases of the spaces V1 and Γ(f, s′i), 2 ¬ i ¬ m is a basis
of the space V , for otherwise, in view of (1) we would have dim(V ) > dim(V1) +
dim(Γ(f, s′2)) + . . .+ dim(Γ(f, s′m)). From this we obtain

V = V1 ⊕ Γ(f, s′2)⊕ . . .⊕ Γ(f, s′m).

�

From the above theorem we derive as a corollary the following theorem about a
decomposition of a linear space into irreducible cyclic factors.
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Theorem 29. Let V be a linear space of finite dimension and let f : V → V be a
linear mapping. Then the space V can be decomposed into a direct sum of cyclic
spaces

V = V
(1)
1 ⊕ . . .⊕ V (1)n1 ⊕ V

(2)
1 ⊕ . . .⊕ V (2)n2 ⊕ . . .⊕ V

(k)
1 ⊕ . . .⊕ V (k)nk ,

where the spaces V (i)j is are not further reducible and the annihilator of V (i)j is

ψ
r(i,j)
i (x), where ψi(x) is a prime polynomial and r(i, j) > 0.

Proof. Let

V = V1 ⊕ V2 ⊕ . . .⊕ Vm
be the decomposition of V into cyclic spaces from Theorem 28.

φi(x) = ψ
r(i,1)
1 (x) · ψr(i,2)2 (x) . . . · ·ψr(i,k)k (x).

Because φi+1(x)|φi(x) we have r(i, j) ­ r(i + 1, j). Of course, for some i we may
have r(i, j) = 0. Therefore let nj be the maximal i such that r(i, j) > 0.

By Theorem 23 every space Vi can be expressed as a direct sum of cyclic spaces
whose annihilators are ψr(i,j)j . Regrouping the summands of the direct sums giving
the spaces Vi we obtain the conclusion.

�

Theorem 30. Each linear mapping f : V → V from a finite dimensional linear
space V to itself has in some basis a matrix representation

(2) F =


B1

B2
. . .

Br

 .
for some r, where all blocks Bi have the form

0 −a0
1 0 −a1

1 −a2
...

0 −ap−2
1 −ap−1


.

Proof. Let

V = V1 ⊕ . . .⊕ Vm
be the decomposition of V into a direct sum of cyclic spaces from Theorem 28.

Let xpi + a
(i)
pi−1x

pi−1+ . . .+ a
(i)
1 x+ a

(i)
0 be the annihilator of the cyclic space space

Vi. Let vi be a generator of Vi. Then the vectors vi, f(vi), . . . , fpi−1vi are linearly
independent (for otherwise there would be a polynomial of degree smaller than pi
annihilating vi.) Then the matrix of the mapping f on the space Vi in the basis

Bi =
〈
vi, f(vi), . . . , fpi−1vi

〉
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consists of columns that are representations of the images of the vectors from the
basis in the same basis:

f(vi) =


0
1
0
...
0

 , f(f(vi)) = f2


0
0
1
...
0

 , . . . f(fpi−2(vi)) = fpi−1 =


0
0
...
0
1

 , f(fpi−1(vi)) = fpi =


−a(i)0
−a(i)1

...
−a(i)pi−2
−a(i)pi−1

 .

�

In the proof of the above theorem we used only the fact that a linear space can be
represented as a direct sum of cyclic spaces. In the next theorem, which also states
the possibility of diagonal-like matrix representation of a linear mapping, we will
use the decomposition into a direct sum of irreducible cyclic spaces.

Theorem 31. Let V be a linear space over the field of complex numbers. Each
linear mapping f : V → V from a finite dimensional linear space V to itself has in
some basis a matrix representation

(3) F =


D1

D2
. . .

Dr

 .
for some r, where all blocks Di have the form either

Di = [t]

or 
t
1 t

1
. . .

t
1 t

 . (Jordan blocks)

Proof. Let

V = V
(1)
1 ⊕ . . .⊕ V (1)n1 ⊕ V

(2)
1 ⊕ . . .⊕ V (2)n2 ⊕ . . .⊕ V

(k)
1 ⊕ . . .⊕ V (k)nm

be the decomposition of V into a direct sum of irreducible cyclic spaces from the
conclusion of Theorem 29. Let

W = V
(i)
j

for some i, j.

Because W is cyclic and irredicible its annihilator must be of the form (x − t)m.
(note that if there were factors (x− t1)m1 , . . . , (x− tq)mq , for pairwise different ti’s,
of W ’s annihilator, then W would be a direct sum of q cyclic spaces). Let w be a
generator of W . Consider now the following vectors:

v0 = w,v1 = (f − t · id)(w),v2 = (f − t · id)2(w), . . . ,vm−1 = (f − t · id)m−1(w).
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There are m vectors here and to show that they form a basis of W it is enough
to show that they are linearly independent. Assume they are not. Then there exist
α0, α1, . . . , αm−1, not all equalto zetro, such that

α0w + α1(f − t · id)(w) + . . .+ αm−1(f − t · id)m−1(w) = 0.

Then the polynomial

φ(x) = α0 + α1(x− t) + . . .+ αm−1(x− t)m−1

would annihilate w but p = deg(φ(x)) < m and this contradicts our assumption
that (x− t)m is the annihilator of w.

We have
f(v0) = f(w) = f(w)− tw + tw = v1 + tv0,

f(v1) = f(f(w)− tw) = f(f(w)− tw)− t(f(w)− tw) + t(f(w)− tw) =
(f − t · id)((f − t · id)(w)) + (f(w)− t ·w) = v2 + tv1,

and, generally, for i < m− 1

f(vi) = f((f − t · id)i(w)) = f((f − t · id)i(w))− t(f − t · id)i(w)+ t(f − t · id)i(w) =

(f − t · id)i+1(w) + t(f − t · id)i(w) = vi+1 + tvi,

and for i = m− 1
f(vm−1) = f((f − t · id)m−1(w)) =

f((f − t · id)m−1(w))− t(f − t ·m-1d)m−1(w) + t(f − t · id)i(w) =
(f − t · id)m(w) + t(f − t · id)m−1(w) = 0 + tvm−1.

This gives the form of the columns of the matrix representing f in the basis
v0, . . . ,vm−1. These columns are as in the conclusion of the theorem.

�

Problem 1. Let V be a linear space and f : V → V be a linear mapping. Is it true
that for each vector v ∈ V the space V is a direct sum Γ(f,v)⊕W , where W is an
f -invariant subspace of V ?

Problem 2. Let V be a linear space and f : V → V be a linear mapping and ψ(x)
its characteristic polynomial. Derive from Theorem 29 the theorem that says that
ψ(f)(v) = 0 for each v ∈ V . In other words: if ϕ is the annihilator of the space V ,
then ϕ(x)|ψ(x).

Problem 3. Let f : R2 → R2 be a rotation by the angle π/2. Find the annihilator
of R2 for this linear mapping.

Problem 4. Find the mapping f : R100 → R100 such that the annihilator of R100 is
equal to φ(x) = x2 + 1. Find a matrix representation of f?

Problem 5. Find the mapping f : C100 → C100 such that the annihilator of C100 is
equal to φ(x) = x2 + 1. Find a matrix representation of f?

Problem 6. Recall the argument that a linear space is cyclic (with respect to some
fixed linear mapping) if and only if the degree of its annihilator is equal to its
dimension.


