ADVANCED TOPICS IN ALGEBRA

LECTURE 5

(lecture and problems to solve)
2020/21

DECOMPOSITION OF SPACE INTO CYCLIC SPACES

We shall prove a theorem about decomposition of a space into cyclic spaces, given a linear mapping f of the space into itself. Namely, we shall prove the existence of a basis in which the space is a direct sum of special cyclic spaces. This corresponds to existence of a matrix B (changing the basis) such that $B^{-1} F B$ has a special diagonal blocks form (a Jordan matrix), where F is a matrix of f in some basis.

Theorem 28. Let V be a linear space of finite dimension and let $f: V \rightarrow V$ be a linear mapping. Then the space V can be decomposed into a direct sum of cyclic spaces

$$
\begin{aligned}
V= & V_{1} \oplus V_{2} \oplus \ldots \oplus V_{m} \\
& \phi_{V_{i+1}}(x) \mid \phi_{V_{i}}(x)
\end{aligned}
$$

and

$$
\phi_{V_{1}}(x)=\phi_{V}(x) .
$$

Proof. We shall prove the theorem by induction with respect to $n=\operatorname{dim}(V)$.
If $n=1$ the conclusion holds trivially.
Now assume that the theorem is true for all $k<n$. Let \boldsymbol{v} be a vector whose annihilator $\phi_{1}(x)$ is equal to the annihilator ϕ_{V} of the whole space V. Let us denote the cyclic space generated by \boldsymbol{v} by V_{1}.
We have $\operatorname{dim}\left(V / V_{1}\right)<\operatorname{dim}(V)$. We consider now the space V / V_{1} and the linear mapping $f^{\left(V_{1}\right)}: V / V_{1} \rightarrow V / V_{1}$ given (recall) by the formula:

$$
f^{\left(V_{1}\right)}\left([\boldsymbol{v}]_{V_{1}}\right)=[f(\boldsymbol{v})]_{V_{1}} .
$$

By our induction hypothesis the conclusion of the theorem holds for the the space V / V_{1} and the linear mapping $f^{\left(V_{1}\right)}$. Let

$$
V / V_{1}=S_{2} \oplus S_{3} \oplus \ldots \oplus S_{m}
$$

where S_{i} are cyclic subspaces of V / V_{1}.
Let $\left[\boldsymbol{s}_{\boldsymbol{i}}\right]_{V_{1}}$ be a generator of the cyclic space S_{i}. Let $\phi_{i}(x)$ be the annihilator of $\left[\boldsymbol{s}_{\boldsymbol{i}}\right]_{V_{1}}$. We shall show that there exists $\boldsymbol{s}_{\boldsymbol{i}}^{\prime} \in\left[s_{\boldsymbol{i}}\right]_{V_{1}}$ whose annihilator is $\phi_{i}(x)$. Because $\phi_{i}(x)$ is the annihilator of $\left[s_{\boldsymbol{i}}\right]_{V_{1}}$, we have

$$
\phi_{i}\left(f^{\left(V_{1}\right)}\left(\left[\boldsymbol{s}_{\boldsymbol{i}}\right]_{V_{1}}\right)=\left[\phi(f)\left(\boldsymbol{s}_{\boldsymbol{i}}\right)\right]_{V_{1}}=[\mathbf{0}]_{V_{1}}=V_{1} .\right.
$$

Hence $\phi(f)\left(s_{\boldsymbol{i}}\right) \in V_{1}$. As all elements of V_{1} (which is a cyclic space w.r.t. f) are of the form $\gamma(f)(\boldsymbol{v})$, where $\gamma(x)$ is some polynomial, we have

$$
\phi_{i}(f)\left(\boldsymbol{s}_{\boldsymbol{i}}\right)=\gamma(f)(\boldsymbol{v})
$$

for some polynomial $\gamma(x)$. By our induction assumption $\phi_{i}(x)$ divides $\phi(x)$, hence

$$
\phi(x)=\delta(x) \phi_{i}(x)
$$

Thus we have

$$
\delta(f) \gamma(f)(\boldsymbol{v})=\delta(f) \phi_{i}(f)\left(\boldsymbol{s}_{\boldsymbol{i}}\right)=\phi(f)\left(\boldsymbol{s}_{\boldsymbol{i}}\right)=\mathbf{0}
$$

This implies that

$$
\delta(x) \phi_{i}(x)=\phi(x) \mid \delta(x) \gamma(x)
$$

and we obtain

$$
\phi_{i}(x) \mid \gamma(x)
$$

Therefore

$$
\gamma(x)=\phi_{i}(x) \vartheta(x)
$$

for some polynomial $\vartheta(x)$. Because $\phi_{i}(f)\left(\boldsymbol{s}_{\boldsymbol{i}}\right)=\gamma(f)(\boldsymbol{v})$, we have

$$
\left.\phi_{i}(f)\left(s_{i}-\vartheta(f)(\boldsymbol{v})\right)=\mathbf{0}\right)
$$

Set

$$
s_{i}^{\prime}:=s_{i}-\vartheta(f)(v)
$$

Assume that the annihilator $\rho(x)$ of $\boldsymbol{s}_{\boldsymbol{i}}^{\prime}$ is of smaller degree than the degree of ϕ_{i}. Then we would get

$$
\rho\left(f^{\left(V_{1}\right)}\left(\left[\boldsymbol{s}_{\boldsymbol{i}}\right]_{V_{1}}\right)=\left[\rho(f)\left(\boldsymbol{s}_{\boldsymbol{i}}^{\prime}\right)+\vartheta(f)(\boldsymbol{v})\right]_{V_{1}}=\left[\rho(f)\left(\boldsymbol{s}_{\boldsymbol{i}}^{\prime}\right)\right]_{V_{1}}+[\vartheta(f)(\boldsymbol{v})]_{V_{1}}=[\mathbf{0}]_{V_{1}}\right.
$$

(here we use $\boldsymbol{v} \in V_{1}$; hence $\vartheta(f)(\boldsymbol{v}) \in V_{1}$ which implies $\left.[\vartheta(f)(\boldsymbol{v})]_{V_{1}}=[0]_{V_{1}}\right)$
but this condradicts the fact that the annihilator of $\left[s_{i}\right]_{V_{1}}$ (w.r.t. $\left.f^{\left(V_{1}\right)}\right)$ is ϕ_{i}. Thus we have proved that the annihilator of $\boldsymbol{s}_{\boldsymbol{i}}^{\prime}$ is ϕ_{i}. Of course, we also have $\left[s_{\boldsymbol{i}}^{\prime}\right]_{V_{1}}=\left[\boldsymbol{s}_{\boldsymbol{i}}\right]_{V_{1}}$ and

$$
V / V_{i}=\Gamma\left(f^{\left(V_{1}\right)},\left[s_{\boldsymbol{i}}^{\prime}\right]_{V_{1}}\right)
$$

For every vector \boldsymbol{w} of V :

$$
[\boldsymbol{w}]_{V_{1}}=\xi_{2}\left(f^{\left(V_{1}\right)}\right)\left(\left[\boldsymbol{s}_{\mathbf{2}}^{\prime}\right]_{V_{1}}\right)+\ldots+\xi_{m}\left(f^{\left(V_{1}\right)}\right)\left(\left[\boldsymbol{s}_{\boldsymbol{m}}^{\prime}\right]_{V_{1}}\right)
$$

for some polynomials $\xi_{i}, 2 \leqslant i \leqslant m$ (because S_{2}, \ldots, S_{m} are cyclic spaces with generators $\left[\left(\boldsymbol{s}_{\mathbf{2}}^{\prime}\right], \ldots,\left[\left(s_{\boldsymbol{m}}^{\prime}\right]\right.\right.$, respectively $)$. Hence for some $w_{1} \in V_{1}$

$$
\begin{equation*}
\boldsymbol{w}=\boldsymbol{w}_{\mathbf{1}}+\xi_{2}(f)\left(\boldsymbol{s}_{\mathbf{2}}^{\prime}\right)+\ldots+\xi_{m}(f)\left(\boldsymbol{s}_{\boldsymbol{m}}^{\prime}\right) \tag{1}
\end{equation*}
$$

Thus we can represent \boldsymbol{w} as a linear combination of vectors from the bases of the spaces $V_{1}, \Gamma\left(f, \boldsymbol{s}_{\mathbf{2}}^{\prime}\right), \ldots, \Gamma\left(f, \boldsymbol{s}_{\boldsymbol{m}}^{\prime}\right)$. We have

$$
\begin{gathered}
\operatorname{dim}(V)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V / V_{1}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(S_{2} \oplus \ldots \oplus S_{m}\right)= \\
\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(\Gamma\left(f^{\left(V_{1}\right)},\left[\boldsymbol{s}_{\mathbf{2}}^{\prime}\right]\right)\right)+\ldots++\operatorname{dim}\left(\Gamma\left(f^{\left(V_{1}\right)},\left[\boldsymbol{s}_{\boldsymbol{m}}^{\prime}\right]\right)\right)= \\
\operatorname{dim}\left(V_{1}\right)+\operatorname{deg}\left(\phi_{2}(x)\right)+\ldots+\operatorname{deg}\left(\phi_{m}(x)\right)= \\
\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(\Gamma\left(f, \boldsymbol{s}_{\mathbf{2}}^{\prime}\right)\right)+\ldots+\operatorname{dim}\left(\Gamma\left(f, \boldsymbol{s}_{\boldsymbol{m}}^{\prime}\right)\right)
\end{gathered}
$$

Hence the sum of the bases of the spaces V_{1} and $\Gamma\left(f, s_{i}^{\prime}\right), 2 \leqslant i \leqslant m$ is a basis of the space V, for otherwise, in view of (1) we would have $\operatorname{dim}(V)>\operatorname{dim}\left(V_{1}\right)+$ $\operatorname{dim}\left(\Gamma\left(f, \boldsymbol{s}_{\mathbf{2}}^{\prime}\right)\right)+\ldots+\operatorname{dim}\left(\Gamma\left(f, \boldsymbol{s}_{\boldsymbol{m}}^{\prime}\right)\right)$. From this we obtain

$$
V=V_{1} \oplus \Gamma\left(f, s_{\mathbf{2}}^{\prime}\right) \oplus \ldots \oplus \Gamma\left(f, s_{m}^{\prime}\right)
$$

From the above theorem we derive as a corollary the following theorem about a decomposition of a linear space into irreducible cyclic factors.

Theorem 29. Let V be a linear space of finite dimension and let $f: V \rightarrow V$ be a linear mapping. Then the space V can be decomposed into a direct sum of cyclic spaces

$$
V=V_{1}^{(1)} \oplus \ldots \oplus V_{n_{1}}^{(1)} \oplus V_{1}^{(2)} \oplus \ldots \oplus V_{n_{2}}^{(2)} \oplus \ldots \oplus V_{1}^{(k)} \oplus \ldots \oplus V_{n_{k}}^{(k)}
$$

where the spaces $V_{j}^{(i)}$ is are not further reducible and the annihilator of $V_{j}^{(i)}$ is $\psi_{i}^{r(i, j)}(x)$, where $\psi_{i}(x)$ is a prime polynomial and $r(i, j)>0$.

Proof. Let

$$
V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{m}
$$

be the decomposition of V into cyclic spaces from Theorem 28.

$$
\phi_{i}(x)=\psi_{1}^{r(i, 1)}(x) \cdot \psi_{2}^{r(i, 2)}(x) \ldots \cdot \psi_{k}^{r(i, k)}(x)
$$

Because $\phi_{i+1}(x) \mid \phi_{i}(x)$ we have $r(i, j) \geqslant r(i+1, j)$. Of course, for some i we may have $r(i, j)=0$. Therefore let n_{j} be the maximal i such that $r(i, j)>0$.

By Theorem 23 every space V_{i} can be expressed as a direct sum of cyclic spaces whose annihilators are $\psi_{j}^{r(i, j)}$. Regrouping the summands of the direct sums giving the spaces V_{i} we obtain the conclusion.

Theorem 30. Each linear mapping $f: V \rightarrow V$ from a finite dimensional linear space V to itself has in some basis a matrix representation

$$
F=\left[\begin{array}{lll}
B_{1} & & \tag{2}\\
& B_{2} & \\
& \cdots & \\
& & B_{r}
\end{array}\right]
$$

for some r, where all blocks B_{i} have the form

$$
\left[\begin{array}{ccccc}
0 & & & -a_{0} \\
1 & 0 & & & -a_{1} \\
& 1 & & -a_{2} \\
& & & \vdots \\
& & & 0 & -a_{p-2} \\
& & & 1 & -a_{p-1}
\end{array}\right]
$$

Proof. Let

$$
V=V_{1} \oplus \ldots \oplus V_{m}
$$

be the decomposition of V into a direct sum of cyclic spaces from Theorem 28. Let $x^{p_{i}}+a_{p_{i}-1}^{(i)} x^{p_{i}-1}+\ldots+a_{1}^{(i)} x+a_{0}^{(i)}$ be the annihilator of the cyclic space space V_{i}. Let $\boldsymbol{v}_{\boldsymbol{i}}$ be a generator of V_{i}. Then the vectors $\boldsymbol{v}_{\boldsymbol{i}}, f\left(\boldsymbol{v}_{\boldsymbol{i}}\right), \ldots, f^{p_{i}-1} \boldsymbol{v}_{\boldsymbol{i}}$ are linearly independent (for otherwise there would be a polynomial of degree smaller than p_{i} annihilating $\boldsymbol{v}_{\boldsymbol{i}}$.) Then the matrix of the mapping f on the space V_{i} in the basis

$$
\mathcal{B}_{i}=\left\langle\boldsymbol{v}_{\boldsymbol{i}}, f\left(\boldsymbol{v}_{\boldsymbol{i}}\right), \ldots, f^{p_{i}-1} \boldsymbol{v}_{\boldsymbol{i}}\right\rangle
$$

consists of columns that are representations of the images of the vectors from the basis in the same basis:
$f\left(v_{i}\right)=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right], f\left(f\left(v_{i}\right)\right)=f^{2}\left[\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots \\ 0\end{array}\right], \ldots f\left(f^{p_{i}-2}\left(v_{i}\right)\right)=f^{p_{i}-1}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 1\end{array}\right], f\left(f^{p_{i}-1}\left(v_{i}\right)\right)=f^{p_{i}}=\left[\begin{array}{c}-a_{0}^{(i)} \\ -a_{1}^{(i)} \\ \vdots \\ -a_{p_{i}-2}^{(i)} \\ -a_{p_{i}-1}^{(i)}\end{array}\right]$.

In the proof of the above theorem we used only the fact that a linear space can be represented as a direct sum of cyclic spaces. In the next theorem, which also states the possibility of diagonal-like matrix representation of a linear mapping, we will use the decomposition into a direct sum of irreducible cyclic spaces.

Theorem 31. Let V be a linear space over the field of complex numbers. Each linear mapping $f: V \rightarrow V$ from a finite dimensional linear space V to itself has in some basis a matrix representation

$$
F=\left[\begin{array}{lll}
D_{1} & & \tag{3}\\
& D_{2} & \\
& \cdots & \\
& & D_{r}
\end{array}\right]
$$

for some r, where all blocks D_{i} have the form either

$$
D_{i}=[t]
$$

or

$$
\left[\begin{array}{ccccc}
t & & & & \\
1 & t & & & \\
& 1 & & & \\
& & \cdots & & \\
& & & t & \\
& & & 1 & t
\end{array}\right] \cdot(\text { Jordan blocks })
$$

Proof. Let

$$
V=V_{1}^{(1)} \oplus \ldots \oplus V_{n_{1}}^{(1)} \oplus V_{1}^{(2)} \oplus \ldots \oplus V_{n_{2}}^{(2)} \oplus \ldots \oplus V_{1}^{(k)} \oplus \ldots \oplus V_{n_{m}}^{(k)}
$$

be the decomposition of V into a direct sum of irreducible cyclic spaces from the conclusion of Theorem 29. Let

$$
W=V_{j}^{(i)}
$$

for some i, j.
Because W is cyclic and irredicible its annihilator must be of the form $(x-t)^{m}$. (note that if there were factors $\left(x-t_{1}\right)^{m_{1}}, \ldots,\left(x-t_{q}\right)^{m_{q}}$, for pairwise different t_{i} 's, of W 's annihilator, then W would be a direct sum of q cyclic spaces). Let \boldsymbol{w} be a generator of W. Consider now the following vectors:
$\boldsymbol{v}_{\mathbf{0}}=\boldsymbol{w}, \boldsymbol{v}_{\mathbf{1}}=(f-t \cdot \mathrm{id})(\boldsymbol{w}), \boldsymbol{v}_{\mathbf{2}}=(f-t \cdot \mathrm{id})^{2}(\boldsymbol{w}), \ldots, \boldsymbol{v}_{\boldsymbol{m}-\mathbf{1}}=(f-t \cdot \mathrm{id})^{m-1}(\boldsymbol{w})$.

There are m vectors here and to show that they form a basis of W it is enough to show that they are linearly independent. Assume they are not. Then there exist $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m-1}$, not all equalto zetro, such that

$$
\alpha_{0} \boldsymbol{w}+\alpha_{1}(f-t \cdot \mathrm{id})(\boldsymbol{w})+\ldots+\alpha_{m-1}(f-t \cdot \mathrm{id})^{m-1}(\boldsymbol{w})=\mathbf{0}
$$

Then the polynomial

$$
\phi(x)=\alpha_{0}+\alpha_{1}(x-t)+\ldots+\alpha_{m-1}(x-t)^{m-1}
$$

would annihilate \boldsymbol{w} but $p=\operatorname{deg}(\phi(x))<m$ and this contradicts our assumption that $(x-t)^{m}$ is the annihilator of \boldsymbol{w}.
We have

$$
\begin{gathered}
f\left(\boldsymbol{v}_{\mathbf{0}}\right)=f(\boldsymbol{w})=f(\boldsymbol{w})-t \boldsymbol{w}+t \boldsymbol{w}=\boldsymbol{v}_{\mathbf{1}}+t \boldsymbol{v}_{\mathbf{0}} \\
f\left(\boldsymbol{v}_{\mathbf{1}}\right)=f(f(\boldsymbol{w})-t \boldsymbol{w})=f(f(\boldsymbol{w})-t \boldsymbol{w})-t(f(\boldsymbol{w})-t \boldsymbol{w})+t(f(\boldsymbol{w})-t \boldsymbol{w})= \\
(f-t \cdot \mathrm{id})((f-t \cdot \mathrm{id})(\boldsymbol{w}))+(f(\boldsymbol{w})-t \cdot \boldsymbol{w})=\boldsymbol{v}_{\mathbf{2}}+t \boldsymbol{v}_{\mathbf{1}}
\end{gathered}
$$

and, generally, for $i<m-1$
$f\left(\boldsymbol{v}_{\boldsymbol{i}}\right)=f\left((f-t \cdot \mathrm{id})^{i}(\boldsymbol{w})\right)=f\left((f-t \cdot \mathrm{id})^{i}(\boldsymbol{w})\right)-t(f-t \cdot \mathrm{id})^{i}(\boldsymbol{w})+t(f-t \cdot \mathrm{id})^{i}(\boldsymbol{w})=$ $(f-t \cdot \mathrm{id})^{i+1}(\boldsymbol{w})+t(f-t \cdot \mathrm{id})^{i}(\boldsymbol{w})=\boldsymbol{v}_{i+\mathbf{1}}+t \boldsymbol{v}_{\boldsymbol{i}}$,
and for $i=m-1$

$$
\begin{gathered}
f\left(\boldsymbol{v}_{\boldsymbol{m}-\mathbf{1}}\right)=f\left((f-t \cdot \mathrm{id})^{m-1}(\boldsymbol{w})\right)= \\
f\left((f-t \cdot \mathrm{id})^{m-1}(\boldsymbol{w})\right)-t(f-t \cdot \mathrm{~m}-1 \mathrm{~d})^{m-1}(\boldsymbol{w})+t(f-t \cdot \mathrm{id})^{i}(\boldsymbol{w})= \\
(f-t \cdot \mathrm{id})^{m}(\boldsymbol{w})+t(f-t \cdot \mathrm{id})^{m-1}(\boldsymbol{w})=\mathbf{0}+t \boldsymbol{v}_{\boldsymbol{m}-\mathbf{1}}
\end{gathered}
$$

This gives the form of the columns of the matrix representing f in the basis $\boldsymbol{v}_{\mathbf{0}}, \ldots, \boldsymbol{v}_{\boldsymbol{m}-\mathbf{1}}$. These columns are as in the conclusion of the theorem.

Problem 1. Let V be a linear space and $f: V \rightarrow V$ be a linear mapping. Is it true that for each vector $\boldsymbol{v} \in V$ the space V is a direct $\operatorname{sum} \Gamma(f, \boldsymbol{v}) \oplus W$, where W is an f-invariant subspace of V ?

Problem 2. Let V be a linear space and $f: V \rightarrow V$ be a linear mapping and $\psi(x)$ its characteristic polynomial. Derive from Theorem 29 the theorem that says that $\psi(f)(\boldsymbol{v})=\mathbf{0}$ for each $\boldsymbol{v} \in V$. In other words: if φ is the annihilator of the space V, then $\varphi(x) \mid \psi(x)$.

Problem 3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation by the angle $\pi / 2$. Find the annihilator of \mathbb{R}^{2} for this linear mapping.

Problem 4. Find the mapping $f: \mathbb{R}^{100} \rightarrow \mathbb{R}^{100}$ such that the annihilator of \mathbb{R}^{100} is equal to $\phi(x)=x^{2}+1$. Find a matrix representation of f ?

Problem 5. Find the mapping $f: \mathbb{C}^{100} \rightarrow \mathbb{C}^{100}$ such that the annihilator of \mathbb{C}^{100} is equal to $\phi(x)=x^{2}+1$. Find a matrix representation of f ?

Problem 6. Recall the argument that a linear space is cyclic (with respect to some fixed linear mapping) if and only if the degree of its annihilator is equal to its dimension.

