ADVANCED TOPICS IN ALGEBRA

LECTURE 6

(lecture and problems to solve)
2020/21

JORDAN FORM OF A MATRIX OF A LINEAR MAPPING - THE FIELD OF REALS CASE

In the previous lecture we proved that in the case of a finite-dimensional linear space V over the field of complex numbers if $f: V \rightarrow V$ is a linear mapping then there exists a basis B of V such that the matrix F representing f in this basis has a diagonal-like form:

$$
F=\left[\begin{array}{lll}
D_{1} & & \tag{1}\\
& D_{2} & \\
& \cdots & \\
& & D_{r}
\end{array}\right]
$$

for some r, where all blocks D_{i} have the form either

$$
D_{i}=[t]
$$

or

$$
\left[\begin{array}{ccccc}
t & & & & \\
1 & t & & & \\
& 1 & & & \\
& & \cdots & & \\
& & & t & \\
& & & 1 & t
\end{array}\right]
$$

Now we assume that a finite dimensional space V is taken over the field of real numbers \mathbb{R}. Let $\operatorname{dim}(V)=n$. Let $f: V \rightarrow V$ be a linear mapping. Fixing any particular basis in V and taking the matrix representation F of f consider a linear mapping from \mathbb{R}^{n} to \mathbb{R}^{n} having the matrix representation F in the standard basis. If we prove that we can change the basis using a transition matrix A to obtain a new representation $F^{\prime}=A F A^{-1}$ in the new basis then we can do exactly the same for f, changing the old basis via means of A. Thus we can consider V as simply \mathbb{R}^{n}. Let f^{\prime} be the so-called extension of f to the space \mathbb{C}^{n}. Namely, the basis

$$
\boldsymbol{e}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right], \boldsymbol{e}_{\boldsymbol{2}}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right], \ldots, \boldsymbol{e}_{\boldsymbol{n}}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

is also a basis for \mathbb{C}^{n} and we can set $f^{\prime}\left(\boldsymbol{e}_{\boldsymbol{i}}\right)=f\left(\boldsymbol{e}_{\boldsymbol{i}}\right)\left(f\left(\boldsymbol{e}_{\boldsymbol{1}}\right)\right.$ being a real vector is also a complex vector). Thus f^{\prime} has been defined as a mapping from \mathbb{C}^{n} to \mathbb{C}^{n} and it has the same matrix representation as f and in the same basis.

We adopt the following notation for vectors in \mathbb{C}^{n}. If

$$
\boldsymbol{v}=\left[\begin{array}{c}
a_{1}+i b_{1} \\
a_{2}+i b_{2} \\
\vdots \\
a_{n-1}+i b_{n-1} \\
a_{n}+i b_{n}
\end{array}\right]
$$

then

$$
\operatorname{Re}(\boldsymbol{v})=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n-1} \\
a_{n}
\end{array}\right] \text { and } \operatorname{Im}(\boldsymbol{v})=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right]
$$

Thus

$$
\boldsymbol{v}=\operatorname{Re}(\boldsymbol{v})+i \operatorname{Im}(\boldsymbol{v})
$$

Let

$$
\overline{\boldsymbol{v}}:=\operatorname{Re}(\boldsymbol{v})-i \operatorname{Im}(\boldsymbol{v}) .
$$

Thus

$$
\overline{\boldsymbol{v}}=\left[\begin{array}{c}
a_{1}-i b_{1} \\
a_{2}-i b_{2} \\
\vdots \\
a_{n-1}-i b_{n-1} \\
a_{n}-i b_{n}
\end{array}\right] .
$$

Problem 1. If vectors $\boldsymbol{v}_{\mathbf{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ are linearly independent in \mathbb{R}^{k}, then, treated as complex vectors, they are also linearly independent in \mathbb{C}^{k}.

From Theorem we know that the space \mathbb{R}^{n} (which is the domain of f) is a direct sum of cyclic spaces:

$$
\mathbb{R}^{n}=V_{1} \oplus \ldots \oplus V_{m}
$$

whose annihilators are of the form $\phi_{i}(x)=\left(\psi_{i}(x)\right)^{n_{i}}$, where $\psi_{i}(x)$ is a prime polynomial, i.e. it is either of the form

$$
\begin{equation*}
\psi_{i}(x)=x-t_{i} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi_{i}(x)=x^{2}+b_{i} x+c_{i} \text { and } b_{i}-4 c_{i}<0 \tag{3}
\end{equation*}
$$

Let $\boldsymbol{v}_{\boldsymbol{i}}$ be its generator of the space V_{i}. Let V_{i}^{\prime} be the space over the field \mathbb{C} having the same cyclic basis as V_{i}. Let f^{\prime} be the extension of f. If (2) holds the same polynomial $\phi_{i}(x)=\left(x-t_{i}\right)^{n_{i}}$ is the annihilator of V_{i}^{\prime}. Then, as we know, we can change the basis of V_{i}^{\prime} to obtain the matrix representation of f^{\prime} on V in the form

$$
D_{i}=[t]
$$

or

$$
\left[\begin{array}{ccccc}
t & & & & \\
1 & t & & & \\
& 1 & & & \\
& & \cdots & & \\
& & & t & \\
& & & 1 & t
\end{array}\right] .
$$

If (3) holds V^{\prime} being cyclic is a direct sum of two subspaces $W_{i, 1}$ and $W_{i, 2}$ of the annihilators $\phi_{i, 1}(x)=\left(x-\alpha_{i}\right)^{n_{i}}$ and $\phi_{i, 1}(x)=\left(x-\beta_{i}\right)^{n_{i}}$, respectively, where, of course,

$$
\left(x-\alpha_{i}\right)\left(x-\beta_{i}\right)=x^{2}+b x+c .
$$

Note that, because b, c are real numbers, from the fact that α_{i} is a root of the polynomial $x^{2}+b x+c$ follows that $\overline{\alpha_{i}}$ is also a root of $x^{2}+b x+c$. Thus $\beta_{i}=\overline{\alpha_{i}}$.

Problem 2. Show that if $\boldsymbol{w}_{\boldsymbol{i}}$ is a generator of the space $W_{i, 1}$ then $\overline{\boldsymbol{w}_{\boldsymbol{i}}}$ is a generator of the space $W_{i, 2}$.

Problem 3. Show that if $\boldsymbol{w}_{\boldsymbol{i}}$ is a generator of of the space $W_{i, 1}$ then the vector $\boldsymbol{w}_{\boldsymbol{i}}+\overline{\boldsymbol{w}_{\boldsymbol{i}}}$ is a generator of V_{i}^{\prime} (Hence we can assume that $\left.\boldsymbol{v}_{\boldsymbol{i}}=\boldsymbol{w}_{\boldsymbol{i}}+\overline{\boldsymbol{w}_{\boldsymbol{i}}}\right)$.

We shall now use Jordan bases of the spaces $W_{i, 1}$ and $W_{i, 2}$. Namely, for fixed i, let

$$
\boldsymbol{p}_{\boldsymbol{1}}=\boldsymbol{w}_{\boldsymbol{i}}, \boldsymbol{p}_{\boldsymbol{2}}=\left(f^{\prime}-\alpha_{i} \cdot \mathrm{id}\right)\left(\boldsymbol{w}_{\boldsymbol{i}}\right), \ldots, \boldsymbol{p}_{\boldsymbol{n}_{i}}=\left(f^{\prime}-\alpha_{i} \cdot \mathrm{id}\right)^{n_{i}-1}\left(\boldsymbol{w}_{\boldsymbol{i}}\right)
$$

and

$$
\boldsymbol{r}_{\mathbf{1}}=\overline{\boldsymbol{w}_{\boldsymbol{i}}}, \boldsymbol{r}_{\mathbf{2}}=\left(f^{\prime}-\overline{\alpha_{i}} \cdot \mathrm{id}\right)\left(\overline{\boldsymbol{w}_{\boldsymbol{i}}}\right), \ldots, \boldsymbol{r}_{\boldsymbol{n}_{i}}=\left(f^{\prime}-\overline{\alpha_{i}} \cdot \mathrm{id}\right)^{n_{i}-1}\left(\overline{\boldsymbol{w}_{\boldsymbol{i}}}\right)
$$

We know from the reasoning concerning the complex case (in the previous theorem) that

$$
f^{\prime}\left(\boldsymbol{p}_{\boldsymbol{j}}\right)=\alpha_{i} \boldsymbol{p}_{\boldsymbol{j}}+\boldsymbol{p}_{\boldsymbol{j}+\boldsymbol{1}} \text { for } j<n_{i}, \text { and } f^{\prime}\left(\boldsymbol{p}_{n_{i}}\right)=\alpha_{i} \boldsymbol{p}_{n_{i}}
$$

and

$$
f^{\prime}\left(\boldsymbol{r}_{\boldsymbol{j}}\right)=\overline{\alpha_{i}} \boldsymbol{r}_{\boldsymbol{j}}+\boldsymbol{r}_{\boldsymbol{j}+\boldsymbol{1}} \text { for } j<n_{i}, \text { and } f^{\prime}\left(\boldsymbol{r}_{\boldsymbol{n}_{i}}\right)=\overline{\alpha_{i}} \boldsymbol{r}_{n_{i}} .
$$

Problem 4. Prove that

$$
f^{\prime}\left(\boldsymbol{r}_{\boldsymbol{j}}\right)=\overline{\alpha_{i}} \boldsymbol{p}_{\boldsymbol{j}}+\overline{\boldsymbol{p}_{\boldsymbol{j}+\boldsymbol{1}}} \text { for } j<n_{i}, \text { and } f^{\prime}\left(\boldsymbol{r}_{\boldsymbol{n}_{i}}\right)=\overline{\alpha_{i} \boldsymbol{p}_{\boldsymbol{n}_{i}}} .
$$

Let $\alpha_{i}=a+i b$. Then $\overline{\alpha_{i}}=a-i b$. Thus we have

$$
f^{\prime}\left(\boldsymbol{p}_{\boldsymbol{j}}\right)=(a+i b) \boldsymbol{p}_{\boldsymbol{j}}+\boldsymbol{p}_{\boldsymbol{j}+\mathbf{1}} \text { for } j<n_{i}, \text { and } f^{\prime}\left(\boldsymbol{p}_{n_{i}}\right)=(a+i b) \boldsymbol{p}_{\boldsymbol{n}_{i}}
$$

and

$$
f^{\prime}\left(\boldsymbol{r}_{\boldsymbol{j}}\right)=(a-i b) \overline{\boldsymbol{p}_{\boldsymbol{j}}}+\overline{\boldsymbol{p}_{\boldsymbol{j}+\mathbf{1}}} \text { for } j<n_{i}, \text { and } f^{\prime}\left(\boldsymbol{r}_{\boldsymbol{n}_{\boldsymbol{i}}}\right)=(a-i b) \overline{\boldsymbol{p}_{n_{i}}} .
$$

Let, for $1 \leqslant j \leqslant n_{i}$,

$$
s_{2 j-1}=p_{j}+r_{j}
$$

and

$$
\boldsymbol{s}_{\mathbf{2} j}=i \cdot\left(\boldsymbol{p}_{j}-\boldsymbol{r}_{j}\right)
$$

Problem 5. Prove that the vectors \boldsymbol{s}_{j} have real coefficients, i.e. $\boldsymbol{s}_{j} \in \mathbb{R}^{n}$.

Problem 6. Prove that the vectors $\boldsymbol{s}_{\boldsymbol{j}}, j \leqslant 2 n_{i}$ are linearly independent in the space \mathbb{C}^{n}.

By the fact stated in Problem 6 the vectors $\boldsymbol{s}_{\boldsymbol{j}}$ form a basis for the space V_{i}. We have

$$
\begin{gathered}
f^{\prime}\left(s_{\mathbf{1}}\right)=f^{\prime}\left(\boldsymbol{p}_{\mathbf{1}}\right)+f^{\prime}\left(\boldsymbol{r}_{\mathbf{1}}\right)=f^{\prime}\left(\boldsymbol{p}_{\mathbf{1}}\right)+\overline{f^{\prime}\left(\boldsymbol{p}_{\mathbf{1}}\right)}= \\
(a+b i) \boldsymbol{p}_{\mathbf{1}}+\boldsymbol{p}_{\mathbf{2}}+(a-i b) \overline{\boldsymbol{p}_{\mathbf{1}}}+\overline{\boldsymbol{p}_{\mathbf{2}}}= \\
a\left(\boldsymbol{p}_{\mathbf{1}}+\overline{\boldsymbol{p}_{\mathbf{1}}}\right)+b i\left(\boldsymbol{p}_{\mathbf{1}}-\overline{\boldsymbol{p}_{\mathbf{1}}}\right)+\left(\boldsymbol{p}_{\mathbf{2}}+\overline{\boldsymbol{p}_{\mathbf{2}}}\right)= \\
a \boldsymbol{s}_{\mathbf{1}}+b \boldsymbol{s}_{\mathbf{2}}+s_{\mathbf{3}},
\end{gathered}
$$

and

$$
\begin{gathered}
f^{\prime}\left(\boldsymbol{s}_{\mathbf{2}}\right)=f^{\prime}\left(i\left(\boldsymbol{p}_{\mathbf{1}}-\boldsymbol{r}_{\mathbf{1}}\right)\right)=i f^{\prime}\left(\boldsymbol{p}_{\mathbf{1}}\right)-i f^{\prime}\left(\boldsymbol{r}_{\mathbf{1}}\right)=i f^{\prime}\left(\boldsymbol{p}_{\mathbf{1}}\right)-i f^{\prime}\left(\overline{\boldsymbol{p}_{\mathbf{1}}}\right)= \\
i f^{\prime}\left(\boldsymbol{p}_{\mathbf{1}}\right)-i \overline{f^{\prime}\left(\boldsymbol{p}_{\mathbf{1}}\right)}=i\left((a+b i) \boldsymbol{p}_{\mathbf{1}}+\boldsymbol{p}_{\mathbf{2}}\right)-i \overline{(a+b i) \boldsymbol{p}_{\mathbf{1}}+\boldsymbol{p}_{\mathbf{2}}}= \\
i\left((a+b i) \boldsymbol{p}_{\mathbf{1}}+\boldsymbol{p}_{\mathbf{2}}\right)-i\left((a-b i) \overline{\boldsymbol{p}_{\mathbf{1}}}+\overline{\boldsymbol{p}_{\mathbf{2}}}\right)= \\
-b\left(\boldsymbol{p}_{\mathbf{1}}+\overline{\boldsymbol{p}_{\mathbf{1}}}\right)+a\left(i\left(\boldsymbol{p}_{\mathbf{1}}-\overline{\boldsymbol{p}_{\mathbf{1}}}\right)\right)+i\left(\boldsymbol{p}_{\mathbf{2}}-\overline{\boldsymbol{p}_{\mathbf{2}}}\right)= \\
-b \boldsymbol{s}_{\mathbf{1}}+a \boldsymbol{s}_{\mathbf{2}}+\boldsymbol{s}_{\mathbf{4}} .
\end{gathered}
$$

Similarly, for $j<n_{i}$, we obtain:

$$
f^{\prime}\left(\boldsymbol{s}_{\mathbf{2 j - 1}}\right)=a \boldsymbol{s}_{\mathbf{2 j - 1}}+b \boldsymbol{s}_{\mathbf{2 j}}+\boldsymbol{s}_{\mathbf{2 j + 1}}
$$

and

$$
f^{\prime}\left(\boldsymbol{s}_{\mathbf{2 j}}\right)=-b \boldsymbol{s}_{\mathbf{2 j - 1}}+a \boldsymbol{s}_{\mathbf{2 j}}+\boldsymbol{s}_{\mathbf{2 j + 2}}
$$

and

$$
\begin{aligned}
f^{\prime}\left(\boldsymbol{s}_{\mathbf{2 n _ { i } - \mathbf { 1 }}}\right)=f^{\prime}\left(\boldsymbol{p}_{n_{i}}+\overline{\boldsymbol{p}_{n_{i}}}\right)= & \alpha_{i} \boldsymbol{p}_{n_{i}}+\overline{\alpha_{i} \boldsymbol{p}_{n_{i}}}=a\left(\boldsymbol{p}_{n_{i}}+\overline{\boldsymbol{p}_{n_{i}}}\right)+i b\left(\boldsymbol{p}_{n_{i}}-\overline{\boldsymbol{p}_{n_{i}}}\right)= \\
& =a \boldsymbol{s}_{\mathbf{2 n _ { i } - \mathbf { 1 }}}+b \boldsymbol{s}_{\mathbf{2 n _ { i }}}
\end{aligned}
$$

and

$$
\begin{gathered}
f^{\prime}\left(\boldsymbol{s}_{\mathbf{2 n _ { i }}}\right)=f^{\prime}\left(i\left(\boldsymbol{p}_{\boldsymbol{n}_{i}}-\overline{\boldsymbol{p}_{n_{i}}}\right)\right)=i \alpha_{i} \boldsymbol{p}_{\boldsymbol{n}_{i}}-i \overline{\alpha_{i} \boldsymbol{p}_{n_{i}}} \\
=a i\left(\boldsymbol{p}_{n_{i}}-\overline{\boldsymbol{p}_{n_{i}}}\right)-b\left(\boldsymbol{p}_{\boldsymbol{n}_{i}}+\overline{\boldsymbol{p}_{\boldsymbol{n}_{i}}}\right)=-b \boldsymbol{s}_{\mathbf{2 n _ { i } - \mathbf { 1 }}}+a \boldsymbol{s}_{\mathbf{2 n _ { i }}-\mathbf{1}}
\end{gathered}
$$

Hence in the basis $\left\langle s_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}, \ldots \boldsymbol{s}_{\mathbf{2 n _ { i }} \mathbf{1}}, \boldsymbol{s}_{\mathbf{2 n}}{ }^{\prime}\right\rangle$ the mapping f restricted to the space V^{\prime} is represented by the matrix

$$
F_{i}=\left[\begin{array}{ccccc}
A & & & & \\
E & A & & & \\
& E & & & \\
& & \cdots & & \\
& & & A & \\
& & & E & A
\end{array}\right]
$$

where

$$
A=\left[\begin{array}{c}
a,-b \\
b, a
\end{array}\right] \text { and } E=\left[\begin{array}{c}
1,0 \\
0,1
\end{array}\right]
$$

Thus we can state the following theorem.

Theorem. If V is a finite-dimensional linear space over the field of real naumbers \mathbb{R} and $f: V \rightarrow V$ is a linear mapping, then there exists a basis of V such that in this basis f is represented by a matrix F

$$
F=\left[\begin{array}{llll}
F_{1} & & & \\
& F_{2} & & \\
& & \ldots & \\
& & & F_{m}
\end{array}\right]
$$

where the blocks F_{i} are of one of the following three forms:

$$
\begin{gathered}
{[t],} \\
{\left[\begin{array}{lllll}
t & & & & \\
1 & t & & & \\
& 1 & & & \\
& & \cdots & & \\
& & & t & \\
& & & 1 & t
\end{array}\right],} \\
{\left[\begin{array}{lllll}
A & & & & \\
E & A & & & \\
& E & & & \\
& & \cdots & & \\
& & & A & \\
& & & E & A
\end{array}\right],}
\end{gathered}
$$

where

$$
A=\left[\begin{array}{c}
a,-b \\
b, a
\end{array}\right] \text { and } E=\left[\begin{array}{c}
1,0 \\
0,1
\end{array}\right]
$$

