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Abstract

This paper deals with a general combinatorial optimization problem in which
closed intervals and fuzzy intervals model uncertain element weights. The notion
of a deviation interval is introduced, which allows us to characterize the optimality
and the robustness of solutions and elements. The problem of computing deviation
intervals is addressed and some new complexity results in this field are provided.
Possibility theory is then applied to generalize a deviation interval and a solution
concept to fuzzy ones.
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1 Introduction

A wide class of deterministic combinatorial optimization problems with a linear objective
function consists in finding a feasible solution from a finite set whose total weight is maximal
or minimal. Typically, a set of feasible solutions is formed by subsets of a given finite set of
elements E. Every element in E has a nonnegative weight and we seek a feasible solution
whose total weight is minimal or maximal. An element e ∈ E is called optimal if it is a
part of an optimal solution.

In many real-world applications the element weights may be ill-known or uncertain.
The simplest form of the uncertainty representation is to specify the element weights as
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closed intervals. Every precise instantiation of the weights is called a configuration (it is
also called a scenario in the literature). Now a solution (an element) is possibly optimal if
it is optimal for at least one configuration (the event that it will be optimal is possible).
Similarly, a solution (an element) is necessarily optimal if it is optimal for all configurations
(the event that it will be optimal is sure). The notions of possible and necessary optimality
of solutions and elements have been already introduced in the literature for some particular
problems: in [8, 9, 10, 12, 14] for scheduling problems, in [21] for matroidal problems,
in [16, 17, 18] for linear programming, in [19] for shortest path and in [27] for minimum
spanning tree. In this paper, we generalize the optimality notions to all combinatorial
optimization problems with interval weights. We show that both possible and necessary
optimality can be expressed by means of the so-called deviation interval, which provides
some additional information under uncertainty. The upper bound of the deviation interval
of a solution is called in the literature a maximal regret and it is a natural criterion for
choosing a solution under the interval representation of uncertainty (see [22]). Namely, in
the minmax regret approach we seek a solution that minimizes the maximal regret and
this approach to combinatorial optimization has been extensively studied in the recent
literature (see, e.g. [2, 3, 5, 6, 19, 20, 24, 27] and [4] for a recent survey).

In this paper, we show some general relationships between the deviation interval, the
possible and necessary optimality and the minmax regret approach. We provide some
new results and we generalize the results known for some particular problems. We also
discuss the problem of computing bounds of the deviation interval for a given solution
or an element. In particular, we provide new complexity results for some basic problems
such as shortest path, minimum assignment and minimum s− t cut. The results obtained
for the interval-valued case can be generalized so that uncertainty is modeled in a more
sophisticated manner. The key idea is to generalize the classical closed interval to a fuzzy
one. A fuzzy interval is regarded as a possibility distribution describing the set of more or
less plausible values of an element weight. Using possibility theory [11] we can generalize
the notion of the deviation interval to the fuzzy case. From a fuzzy deviation interval,
that is a possibility distribution representing a set of plausible values of solution (element)
deviations, we can derive the degrees of possible and necessary optimality of a solution (an
element). As in the interval case, we can use an upper bound of the fuzzy deviation interval
to choose a solution. This leads to the concept of a necessary soft optimality, which has
been originally proposed in [17, 18] for linear programming problem with a fuzzy objective
function. Choosing a best necessarily soft optimal solution is a direct generalization of the
minmax regret approach to the fuzzy case.

This paper is organized as follows. In Section 2 we recall a formulation of the deter-
ministic combinatorial optimization problem. In Section 3 we discuss the problem with
uncertain weights modeled as closed intervals. We introduce the concept of the deviation
interval and we show some various properties of this notion. In particular, we show that
computing the lower bound of the deviation interval for a given element is NP-hard for
some basic problems. Section 4 is devoted to a general combinatorial optimization prob-
lems with uncertain weights modeled by fuzzy intervals. We show how the notions and
results presented in Section 3 can be naturally generalized to the fuzzy case.
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2 Deterministic combinatorial optimization problem

Let E = {e1, . . . , en} be a finite set of elements and let Φ ⊆ 2E be a set of subsets of
E called the set of feasible solutions. A nonnegative real weight we is given for every
element e ∈ E. A combinatorial optimization problem P with a linear objective function
consists in finding a feasible solution X ∈ Φ whose total weight

∑
e∈X we is minimal. This

formulation encompasses a wide class of problems such as Shortest Path, Minimum

Spanning Tree, Minimum Assignment and Minimum s-t Cut.
We call an element e ∈ E optimal if it is a part of an optimal solution to problem P.

If a solution (an element) is not optimal a natural question arises how far from optimality
this solution (element) is. To answer this question one can introduce the concept of a
deviation. A deviation of solution X ∈ Φ is defined in the following way:

δX =
∑

e∈X

we − min
Y ∈Φ

∑

e∈Y

we. (1)

Similarly, a deviation of element f ∈ E is defined as follows:

δf = min
Y ∈Φf

∑

e∈Y

we − min
Y ∈Φ

∑

e∈Y

we, (2)

where Φf is the set of all feasible solutions that contain element f . It is clear that solution X
(element f) is optimal if and only if δX = 0 (δf = 0).

3 Interval combinatorial optimization problem

Assume that the values of the weights associated with the elements are only known to
belong to the intervals We = [we, we], we ≥ 0. If the weight of e is precisely known, then
it is represented by a degenerate interval [we, we] such that we = we. We assume that
the element weights are unrelated to one another. A vector www = (we)e∈E, we ∈ We, that
represents an assignment of weights we to elements e ∈ E is called a configuration (it is
also called a scenario in the literature). Thus every configuration expresses a realization of
the weights that may occur with a positive but perhaps unknown probability. We denote
by Γ the set of all the configurations, i.e. Γ = ×e∈E [we, we]. For a given solution X ∈ Φ,
we define its weight under a fixed configuration www ∈ Γ as F (X,www). We will denote by
F ∗(www) the value of the weight of an optimal solution under configuration www ∈ Γ, that is
F ∗(www) = minX∈Φ F (X,www).

Now the optimality of solutions and elements depends on configuration www ∈ Γ and it
can be characterized in the following way. A solution X ∈ Φ (an element e ∈ E) is said
to be possibly optimal if there exists a weight configuration www ∈ Γ for which it is optimal.
A solution X ∈ Φ (an element e ∈ E) is said to be necessarily optimal if it is optimal
for all weight configurations www ∈ Γ. A possibly (necessarily) optimal solution is composed
of possibly (necessarily) optimal elements. However, the converse statement is not true,
since there may exist a non-possibly (non-necessarily) optimal solution entirely composed
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of possibly (necessarily) optimal elements. Furthermore, a necessarily optimal solution
may not exist, even if there are some necessarily optimal elements [21].

We can express both possible and necessary optimality using the concept of deviation.
Let δX(www) = F (X,www) − F ∗(www) denote the deviation of solution X under a specified con-
figuration www ∈ Γ. We can now compute δX = minwww∈Γ δX(www) and δX = maxwww∈Γ δX(www),
that is the smallest and the largest deviation for solution X over set Γ. They determine
a solution deviation interval ∆X = [δX , δX ]. The upper bound δX is called in the litera-
ture the maximal regret of X and configuration www ∈ Γ that maximizes deviation δX(www) is
called a worst case configuration for X. In a similar way we define the element deviation
δf (www) = minY ∈Φf

F (Y,www) − F ∗(www) under www ∈ Γ and compute the quantities δf and δf ,

which form an element deviation interval ∆f = [δf , δf ]. It is easy to check that solution
X (element f) is possibly optimal if and only if δX = 0 (δf = 0) and solution X (element

f) is necessarily optimal if and only if δX = 0 (δf = 0).
We now address the question of choosing a solution under interval weights. Our aim is

to compute a solution that behaves reasonably well under any possible weight configuration
www ∈ Γ. Obviously, a necessarily optimal solution is an ideal choice because it is optimal
regardless of weight realizations. Furthermore, if problem P is polynomially solvable, then
detecting a necessarily optimal solution can be done in polynomial time as well using the
results obtained in [20]. It is enough to compute an optimal solution Y under weights
we = 1

2
(we + we) for all e ∈ E. If there is a necessarily optimal solution, then Y must

be necessarily optimal. However, this approach has a drawback. The necessary optimality
is too strong a criterion for choosing a solution because a necessarily optimal solution
rarely exists. Observe, that a necessarily optimal solution has the maximal regret equal
to 0. Therefore, it is reasonable to compute a solution whose maximal regret is minimal,
minimizing in this way a distance to the necessary optimality. We thus consider problem
minX∈Φ δX , which belongs to the class of robust discrete optimization problems described
in book [22]. This class has been extensively studied in the recent literature (see, e.g.
[2, 3, 5, 6, 19, 20, 24, 27] and [4] for a recent survey).

3.1 A characterization of optimal minmax regret solutions

Among the configurations of Γ a crucial role is played by the extreme ones, which belong to
×e∈E{we, we}. Let A ⊆ E be a fixed subset of elements. In configuration www+

A all elements
e ∈ A have weights we and all the remaining elements have weights we. Similarly, in
configuration www−

A all elements e ∈ A have weights we and all the remaining elements have
weights we. It is easily seen that δX = δX(www−

X) and δX = δX(www+
X). In consequence, www+

X is
the worst case configuration for solution X. Furthermore, X is possibly optimal if and only
if it is optimal in configuration www−

X and it is necessarily optimal if and only if it is optimal
in configuration www+

X . We can see now that if problem P is solvable in polynomial time, then
the optimality of a given solution X ∈ Φ can be characterized in polynomial time and its
maximal regret can be computed in polynomial time as well. It is worth pointing out that
for the linear programing problem with interval coefficients in the objective function the
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problem of computing the maximal regret of a feasible solution X turns out to be strongly
NP-hard [7].

Contrary to solutions, the computation of δf and δf for a given element f is far from
being trivial even if problem P is polynomially solvable. It follows easily that δf (www)
attains minimum (maximum) at an extreme configuration www ∈ ×e∈E{we, we}. However,
the number of extreme configurations is up to 2|E| and it may be hard, in general case, to
identify the configurations minimizing or maximizing δf (www). The computational complexity
of deciding whether an element is possibly (necessarily) optimal depends on a particular
problem P. We provide some known and new results in this area in Section 3.2. The
deviation interval for a given element can be efficiently computed if P is a matroidal
problem, for instance P is Minimum Spanning Tree. Making use of the results obtained
in [21, 27], it is easy to show that in this case δf = δ(www−

{f}) and δf = δ(www+
{f}). However,

this result is not valid for all problems P.
If solution X is not possibly optimal, then it is not optimal in configuration www−

X and
F (X,www−

X) > F ∗(www−
X). If F (Y,www−

X) = F ∗(www−
X), then F (X,www) > F (Y,www) for all configura-

tions www ∈ Γ. This implies δX > δY and X cannot be an optimal minmax regret solution.
We have thus established that every optimal minmax regret solution X is possibly optimal,
which can be equivalently expressed as δX = 0. Since every possibly optimal solution X
is composed of possibly optimal elements and every optimal solution under a worst case
configuration for X is composed of possibly optimal elements, the non-possibly optimal
elements do not influence the computation of an optimal minmax regret solutions. In con-
sequence, they can be removed from E. This general property has been proved for some
particular problems in [19, 27].

We now show some relationships between the necessarily optimal elements and the
optimal minmax regret solutions. The following auxiliary proposition is easy to prove:

Proposition 1. Let X and Y be two solutions such that F (X,www−
X) = F (Y,www−

X). Then the

following two statements are true:

(i) F (X,www) ≥ F (Y,www) for all configurations www ∈ Γ,

(ii) if X is an optimal minmax regret solution, then Y is also an optimal minmax regret

solution.

Let e ∈ E be a necessarily optimal element and let X be an optimal minmax regret
solution such that e /∈ X. Solution X must be possibly optimal, so it is optimal under
configuration www−

X . Since e is necessarily optimal, there must be an optimal solution Y under
www−

X such that e ∈ Y . In consequence, we get F (Y,www−
X) = F (X,www−

X) and Proposition 1
now implies that Y is also an optimal minmax regret solution. We have thus established
that any necessarily optimal element is a part of an optimal minmax regret solution. So,
while constructing a minmax regret solution we can always add a single necessarily optimal
element to it. Obviously, there may exist more necessarily optimal elements but, in general,
we cannot add all of them to the constructed solution. We show that this obstacle only
appears if there are some degenerate intervals associated with elements.

Observe first that if all weight intervals are nondegenerate, then for every two distinct
solutions X and Y there exists a configuration www such that F (X,www) 6= F (Y,www). Indeed,
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if F (X,www−
E) 6= F (Y,www−

E), then we are done. Otherwise, we can choose element e ∈ Y \
X and we get F (X,www+

{e}) < F (Y,www+
{e}), which follows from the fact that interval We is

nondegenerate. The following theorem generalizes a result for Minimum Spanning Tree

obtained in [27]:

Theorem 1. If all weight intervals are nondegenerate, then there exists an optimal minmax

regret solution that contains all necessarily optimal elements.

Proof. We will show that under nondegenerate weight intervals there exists an optimal
minmax regret solution, which is the unique optimal solution under some configuration
www ∈ Γ. This immediately implies that this solution must contain all necessarily optimal
elements.

If X1 is an optimal minmax regret solution, then it is possibly optimal and it is optimal
under configuration www−

X1
. If X1 is a unique optimal solution under www−

X1
, then we are done.

Otherwise, there is another solution X2 that is optimal under www−
X1

, thus F (X1,www
−
X1

) =
F (X2,www

−
X1

). Proposition 1 now implies X2 is also an optimal minmax regret solution.
Moreover, F (X1,www) ≥ F (X2,www) for all www ∈ Γ. Again solution X2 is possibly optimal
and it must be optimal under www−

X2
. We can repeat this argument obtaining a sequence

X1, X2, . . . , Xk of optimal minmax regret solutions such that F (X1,www) ≥ F (X2,www) ≥
· · · ≥ F (Xk,www) for all www ∈ Γ. No solution in this sequence can be repeated. Indeed,
suppose Xi = Xj for some i 6= j. From the construction of the sequence, it follows that
j 6= i + 1 and so F (Xi,www) ≥ F (Xi+1,www) ≥ F (Xj,www) = F (Xi,www) for all configurations www.
Thus there exist two distinct solutions Xi and Xi+1 that have the same weights under all
configurations, which is impossible if all the weight intervals are nondegenerate. Since the
number of feasible solutions is finite, the following two cases are possible: either we meet a
solution X that is the unique optimal one under www−

X and we are done or we enumerate all
feasible solutions. In the second case, let X|Φ| be the last solution enumerated. Since all
intervals are nondegenerate, there is a configuration www such that F (X|Φ|−1,www) > F (X|Φ|,www).
It holds F (X1,www) ≥ F (X2,www) ≥ · · · ≥ F (X|Φ|−1,www) > F (X|Φ|,www) ≥ F (X|Φ|,www

−
X|Φ|

) and

X|Φ| is the unique optimal solution under www−
X|Φ|

.

3.2 A characterization of optimality of elements

This section is entirely devoted to the evaluation of optimality of elements. Let us denote
by Poss P (Nec P) a decision problem in which one asks whether a given element f ∈ E
is possibly (necessarily) optimal in problem P with interval weights. Equivalently, we may
ask whether δf = 0 (δf = 0). In the next sections we will discuss three basic problems P.

3.2.1 The shortest path problem

In the deterministic Shortest Path problem the element set E consists of all paths
between two distinguished nodes s and t in a given directed or undirected graph G = (V, E)
and we wish to find a path of minimum total weight. We start by recalling the Poss

Longest Path problem:
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Poss Longest Path

Input: A connected acyclic digraph G = (V, A), s ∈ V , t ∈ V , weights on the arcs a ∈ A
are to be chosen from intervals Wa = [wa, wa], wa ≥ 0, a specified arc f ∈ A.
Question: Is there a weight configuration www ∈ Γ for which arc f belongs to a longest s− t
path in G?

The Poss Longest Path problem arises in a criticality analysis in project scheduling,
where uncertain task durations are modeled by intervals. This problem is strongly NP-
complete in general acyclic digraphs [8] and remains NP-complete even in planar digraphs of
degree 3 [9]. Recently, Okada in [25] has studied Poss Shortest Path in acyclic digraphs.
In order to show its NP-completeness, he proposed a reduction from Poss Longest Path.
Unfortunately this reduction is incorrect. We now give a correct reduction.

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]
[0, 0]

[1, 1]

[1, 1]

[1, 1]

[1, 1] [1, 1]

[1, 1]

[1, 1]

[1, 1]

[1, 1]

[1, 1]
[1, 1]

[0, 1]

[0, 1] [0, 1]

[0, 1] [0, 1]

[0, 1] [0, 1]

[0, 1]

f f

a) b)

s st t

G G′

Figure 1: a) An instance of Poss Longest Path. b) The corresponding instance of Poss

Shortest Path.

Theorem 2. Poss Shortest Path is strongly NP-complete for acyclic digraphs and

remains NP-complete for acyclic planar digraphs.

Proof. Let a digraph G = (V, A) with interval arc weights and a distinguished arc f be an
instance of Poss Longest Path. We construct an instance of Poss Shortest Path

as follows. We first convert digraph G into a layered digraph G
′

= (V
′
, A

′
) by adding to G

dummy nodes and dummy series arcs having weight intervals equal to [0, 0] (in a layered
digraph node set V can be partitioned into disjoint subsets V = {s} ∪ V1 ∪ · · · ∪ Vk ∪ {t}
and the arcs exist only from s to V1, from Vk to t and from Vi to Vi+1 for i = 1, . . . , k − 1).
Observe that the dummy nodes only split some arcs of G and there is one to one mapping
between paths in G and G′. Nodes s and t and arc f in graph G′ are the same as in G.
Since G

′
is layered, all paths between two specified nodes have the same number of arcs (see

Figure 1b). We complete the reduction by changing the interval weights of the original arcs
in following way W

′

a = [M−wa, M−wa], a ∈ A
′
, where M = max{wa | a ∈ A}. An example

of an instance of Poss Longest Path is shown in Figure 1a and the corresponding
instance of Poss Shortest Path is shown in Figure 1b. The dummy arcs are dashed.
Now it is easily seen that arc f belongs to a longest s − t path in G for some weight
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configuration if and only if it belongs to a shortest s − t path in G
′

for some weight
configuration. The Poss Shortest Path problem is in NP. It follows from the fact
that an arc is possibly optimal if and only if it belongs to a possibly optimal path. A
nondeterministic Turing machine first “guesses” a path P such that f ∈ P . It can be
then verified in polynomial time whether P is possibly optimal (whether it is optimal in
configuration www−

P ).

From Theorem 2 we immediately get that computing δf of a given element f is strongly
NP-hard for acyclic digraphs and remains NP-hard for acyclic planar digraphs. On the
other hand, the problem of computing δf of a given element f in an acyclic digraph is
polynomially solvable. The algorithms designed in [14] solve the problem of computing the
upper bound on an arc float and they can be easily modified to compute the bound δf in
Shortest Path. Thus the Nec P problem in acyclic digraphs is polynomially solvable
as well. However, the complexity status of this problem in general graphs is unknown.

Sometimes a special structure of the input graph allows us to compute efficiently the
quantity δf . For instance, δf (and δf ) can be computed in O(|A|) time for any arc f
if graph G has a series-parallel topology [10]. Also, in a general acyclic digraph G it is
possible to detect efficiently a subset of arcs, for which δf > 0 [19, 28].

3.2.2 The assignment problem

We now investigate the problem of evaluating the possible optimality of a specified element
(edge) associated with Minimum Assignment. In this problem we are given a bipartite
graph G and Φ is the set of all perfect matchings in G.

Theorem 3. Poss Minimum Assignment is strongly NP-complete.

Proof. We show the strong NP-completeness of Poss Minimum Assignment by a re-
duction of Poss Shortest Path, which is strongly NP-complete in acyclic digraphs (see
Theorem 2). We claim that an instance of Poss Shortest Path is polynomially reducible
to an instance of Poss Minimum Assignment.

Consider an instance of Poss Shortest Path. A digraph G = (V, A) with interval
arc weights [wij, wij ], (i, j) ∈ A, being a part of this instance, is acyclic so the set V =
{1, 2, . . . , n} can be labeled in such a way that i < j for each arc (i, j) ∈ A, s = 1 and t = n.
We assume that f = (p, q), p, q ∈ V , is the specified arc whose possible optimality is to be
evaluated. We now use the transformation constructed by Hoffman and Markovitz [15]. We
create a bipartite graph G′ = (V

′

1 ∪V
′

2 , E ′), where V
′

1 = {1, . . . , n−1}, V
′

2 = {2′, . . . , n′}. If
(i, j) ∈ A, then edge {i, j′} with weight interval [wij, wij ] is added to E ′. We also add to E ′

the edges of the form {i, i′} for i = 2, . . . n−1 with weight intervals [0, 0]. We complete the
construction by setting edge f = {p, q′} whose possible optimality is to be evaluated. The
construction of G

′
is done in a time bounded by polynomial in the size of Poss Shortest

Path. A sample reduction is shown in Figure 2.
It can be verified [15] that there is one to one mapping from paths in G to assignments

in G′. Let π = (j0, j1, . . . , jk), j0 = 1 and jk = n be a sequence of nodes that forms a path
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[1, 2]

[1, 2]

[1, 4]

[1, 4]

[0, 2]

[0, 2]

[3, 5]

[3, 5]

[0, 1][0, 1]

[0, 0]

[0, 0]
2′

3′

4′

1

1

2

2

3

3

4

Figure 2: An instance of Poss Shortest Path and the corresponding instance of Poss

Minimum Assignment.

in G. The corresponding assignment A is constructed as follows: node ji is paired with j′i+1

for i = 0, . . . , k − 1; every node j /∈ π is paired with j′. On the other hand, let A ⊂ E be
an assignment in G′. It must contain the subset of edges {{j0, j

′
1}, {j1, j

′
2}, . . . , {jk−1, j

′
k}},

where j0 < j1 < · · · < jk−1 < n, j0 = 1 and jk = n. Moreover, it is not difficult to verify
that if j /∈ {j0, . . . , jk−1} and j 6= n, then edge {j, j′} must belong to A. Observe that the
sequence of nodes (j0, j1, . . . , jk) is a path from 1 to n in G.

From the construction of G′, it follows that one can use www to denote the same configu-
ration of weights both in G and G′. It follows from the fact that all the additional edges
in G′ have degenerate weight intervals [0,0]. For any configuration www each path π from 1
to n in G has a corresponding assignment A of the same weight in G′ and the converse
is also true. Consequently, an optimal path π∗ in www gives an optimal assignment A∗ in www
and vice versa. Moreover, (p, q) ∈ π∗ if and only if {p, q′} ∈ A∗. Thus arc g = (p, q) is
possibly optimal in Shortest Path if and only if f = {p, q′} is possibly optimal in the
corresponding Minimum Assignment. The Poss Minimum Assignment problem is in
NP and the proof is similar to the proof in Theorem 2.

We can thus see that computing the value of δf in Minimum Assignment is strongly

NP-hard. However, the complexity status of the problems of computing δf and checking
the necessary optimality of edge f is unknown.

3.2.3 The minimum s-t cut problem

Consider the problem of evaluating the optimality of a specified element (arc) f associated
with Minimum s-t Cut. In this problem Φ consists of all s − t cuts in a given directed
graph G. If V1 ∪V2 is a partition of the node set V such that s ∈ V1 and t ∈ V2, then a cut
is formed by all arcs that start in V1 and end in V2. We will show that Poss Minimum

s-t Cut is computationally intractable even if an input graph is planar. Recall that a
graph is planar if it can be embedded in the plane without crossing arcs. An embedding of
a planar digraph partitions the plane into separate regions called faces. Exactly one such
face is unbounded and it is called the outer face. A right face of an arc a = (i, j) ∈ A is the
face which is on the right hand side of (i, j) when traversing this arc from i to j. Similarly
we define the left face of a.
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Suppose that G = (V, A) is a directed planar graph with two distinguished nodes s
and t. We assume, without loss of generality, that no arc enters s and no arc leaves t.
Such arcs can be removed from G because they cannot be a part of any cut in G. We also
assume that G is given as a plane representation, in which s and t touch the outer face.
The digraph G is associated with a digraph G∗ = (V ∗, A∗) called a dual digraph. The dual
digraph is constructed as follows. We first modify G by introducing an artificial arc (t, s)
in the outer face of G, so that this arc is directed clockwise when looking from the inside
of G. The nodes of G∗ are the faces of the modified digraph G. For every arc a ∈ A, except
for the artificial one, we add to A∗ arc a∗ that intersects a and joins the nodes in the faces
on either side of it; arc a∗ = (i∗, j∗) is oriented in such a way that node i∗ is in the right
face of a = (i, j). Finally, s∗ ∈ V ∗ is the node corresponding to the face limited by the
artificial arc (t, s) in G and t∗ ∈ V ∗ is the node that corresponds to the outer face of G. It
is easy to verify that G∗ is also a planar digraph and the dual of G∗ is G. An example of
a planar digraph and its dual are shown in Figure 3. The construction of the dual graph
G∗ can be done in polynomial time (see, e.g.[1, 23]).

e1

e2

e3

e4

e5

s t

e∗1

e∗2

e∗3

e∗4

e∗5

s∗

t∗ G∗

G

Figure 3: Construction of a dual graph G∗ (dashed arcs).

Let V1 ∪ V2 be a partition of V such that s ∈ V1 and t ∈ V2. A cut C, that corresponds
to this partition, is said to be uniformly directed s − t cut if no arcs in G lead from V2 to
V1. The following theorem characterizes a planar digraph and its dual:

Theorem 4 ([1, 23]). Let G be a planar acyclic digraph and let G∗ be its dual. Then

P = {a1, a2, . . . , ak} is a simple path from s to t in G if and only if C = {a∗
1, a

∗
2, . . . , a

∗
k} is

an uniformly directed s∗ − t∗ cut in G∗

Hence there is one-to-one correspondence between simple paths in a directed planar
graph and uniformly directed cuts in its dual. We will use this fact to prove the following
result:

Theorem 5. Poss Minimum s-t Cut is NP-complete for planar digraphs.

Proof. We will construct a polynomial time reduction from Poss Shortest Path for
acyclic planar digraphs, which is known to be NP-complete (see Theorem 2). Let an
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acyclic planar digraph G = (V, A), s ∈ V , t ∈ V , with interval arc weights [wa, wa], a ∈ A,
and a specified arc f = (k, l) ∈ A be an instance of Poss Shortest Path. We construct
the corresponding instance of Poss Minimum s-t Cut as follows. We first construct a
dual digraph G∗ = (V ∗, A∗) for G. The interval weight of arc a∗ ∈ A∗ is the same as the
interval weight of the corresponding arc a ∈ A. Then for every arc a∗ = (i∗, j∗) ∈ A∗ we
create the reverse arc b∗ = (j∗, i∗) with interval weight [M, M ]. This arc is called a dummy

arc. We fix M = |A|wmax + 1, where wmax = maxa∈A wa. We denote by G∗∗ the resulting
digraph with dummy arcs. Finally, we distinguish arc f ∗ in G∗∗. It is easily seen that
digraph G∗∗ is planar and it can be constructed from G in polynomial time. A sample
reduction is shown in Figure 4.

a1

f

a3
a4

a5

a6

a7

s t

a∗1

b∗
1

f∗ b∗
2

a∗
3

b∗3
a∗
5

b∗5

a∗
6

b∗
6

a∗7

b∗
7

b∗
4

a∗4

s∗

t∗

Figure 4: A sample reduction. Arcs a∗
i have the same interval weights as ai and arcs b∗i

have interval weights [M, M ].

We claim that arc f ∗ belongs to a minimum cut in G∗∗ under some weight configuration
if and only if f belongs to a shortest path in G under some weight configuration.

Observe first that every uniformly directed cut C in G∗ is a cut in G∗∗. It follows
from the fact that adding dummy arcs to G∗ only backward arcs leading from V2 to V1

are created, where V1 ∪ V2 is a partition of nodes that corresponds to cut C. Consider
a configuration www in G∗∗. A minimum cut under www cannot use any dummy arc. Indeed,
there is at least one cut in G∗∗ that does not use any dummy arc. To see this consider
a path from s to t in G. This path corresponds to a uniformly directed cut C in G∗ and
obviously C is also the cut in G∗∗. Every cut C1 in G∗∗, that uses a dummy arc, has the
weight of at least |A|wmax + 1, which is strictly greater than the weight of C under www.
Consequently, C1 cannot be a minimum cut under www. Now from Theorem 4 we get that
path P = {a1, a2, . . . , ak} is a shortest path in G under some weight configuration if and
only if cut C = {a∗

1, a
∗
2, . . . , a

∗
k} is a minimum cut in G∗∗ under some weight configuration.

Moreover, f ∈ P if and only if f ∗ ∈ C. Poss Minimum s-t Cut is in NP and the
reasoning is the same as for Poss Shortest Path in Theorem 2.

Similarly to Poss Minimum Assignment and Poss Shortest Path, computing
δf for a given arc f in the considered problem is NP-hard. However, the problems of
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computing δf and asserting whether f is necessarily optimal remain open.

4 Fuzzy combinatorial optimization problem

In this section, we discuss a fuzzy version of problem P, that is problem P with uncertain
weights modeled by fuzzy intervals. We provide a possibilistic interpretation of the fuzzy
problem together with some solution concepts, which can be viewed as a generalization of
the minmax regret approach.

4.1 Some basic notions of possibility theory

A fuzzy set (see [11]) Ã is a reference set Ω together with mapping µ eA
from Ω into [0, 1],

called a membership function. The value of µ eA(v), v ∈ Ω, is interpreted as the degree

of membership of v in the fuzzy set Ã. A λ-cut, λ ∈ (0, 1], of Ã is a classical set, i.e.

Ãλ = {v ∈ Ω : µ eA(v) ≥ λ}. The cuts of Ã form a family of nested sets, i.e if λ1 ≥ λ2, then

Ãλ1 ⊆ Ãλ2 . A fuzzy set in R, whose membership function is normal, quasi-concave and
upper semi-continuous is called a fuzzy interval (see [11]). A support of a fuzzy interval Ã

is the set {v : µ eA(v) > 0} together with its closure and it will be denoted as Ã0. We will

assume that the support of a fuzzy interval is bounded. It can be shown [11] that if Ã is

a fuzzy interval with a bounded support, then Ãλ is a closed interval for every λ ∈ [0, 1].

We can thus represent a fuzzy interval Ã as a family of cuts Ãλ = [aλ, aλ], λ ∈ [0, 1]. One
can obtain the membership function µ eA from the family of λ-cuts in the following way:

µ eA(v) = sup{λ ∈ [0, 1] : v ∈ Ãλ} (3)

and µ eA(v) = 0 if v /∈ Ã0. Observe that a classical closed interval A = [a, a] is a special case
of a fuzzy one with membership function µA(v) = 1 if v ∈ A and µA(v) = 0 otherwise. In
this case we have Aλ = [a, a] for all λ ∈ [0, 1]. Another class of fuzzy intervals is formed
by trapezoidal fuzzy intervals, denoted as (a, a, αA, βA), αA, βA > 0. In this case we have
Ãλ = [a − (1 − λ)αA, a + (1 − λ)βA] for λ ∈ [0, 1].

Let us now recall a possibilistic interpretation of a fuzzy set. Possibility theory [11]
is an approach to handle incomplete information with two dual measures: possibility and
necessity, which are used to model available information. Both measures are built from
a possibility distribution. Let a fuzzy set Ã be attached with a single-valued variable a.
The membership function µ eA is a possibility distribution, πa = µ eA, which describes the
set of more or less plausible, mutually exclusive values of the variable a. It is similar to a
probability density. The value of πa(v) represents the possibility degree of the assignment
a = v, i.e. Π(a = v) = πa(v) = µ eA

(v). In particular, πa(v) = 0 means that a = v
is impossible and πa(v) > 0 means that a = v is plausible. A degree of possibility can
be viewed as an upper bound of a degree of probability. A detailed interpretation of the
possibility distribution and some methods of obtaining it from the possessed knowledge are
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described in [11]. The possibility of an event “a ∈ B”, denoted by Π(a ∈ B), is as follows:

Π(a ∈ B) = sup
v

min{πa(v), µB(v)}, (4)

where B can be a fuzzy set. Π(a ∈ B) evaluates the extent to which “a ∈ B” is possibly
true. If B is a subset of R, then µB is a characteristic function of B and thus Π(a ∈ B) =
supv∈B πa(v). The necessity of an event “a ∈ B”, denoted by N(a ∈ B), is as follows:

N(a ∈ B) = 1−Π(a ∈ B) = 1−sup
v

min{πa(v), 1−µB(v)} = inf
v

max{1−πa(v), µB(v)}, (5)

where B is the complement of B and its membership function is µB = 1 − µB. N(a ∈ B)
evaluates the extent to which “a ∈ B” is certainly true. If B is a subset of R, then
N(a ∈ B) = infv 6∈B(1 − πa(v)).

4.2 Fuzzy combinatorial optimization problem in the setting of

possibility theory

We now present a possibilistic formalization of problem P, in which uncertainty of the
element weights is modeled by fuzzy intervals W̃e, e ∈ E. A membership function of
W̃e is regarded as a possibility distribution for the values of the unknown weight we, i.e.
πwe

= µfWe
, e ∈ E. Thus the possibility degree of the assignment we = v is Π(we =

v) = πwe
(v) = µfWe

(v). Let www = (ve)e∈E be a configuration of the element weights. The
configuration www represents a state of the world in which we = ve, for all e ∈ E. It defines
an instance of problem P with the deterministic weights (ve)e∈E. Assuming that weights
are unrelated to one another, the degree of possibility of a configuration www = (ve)e∈E is

obtained by the following joint possibility distribution on configurations induced by W̃e,
e ∈ E (see [10, 12]):

π(www) = Π(∧e∈E(we = ve)) = min
e∈E

Π(we = ve) = min
e∈E

µfWe
(ve).

Let us denote by Pλ, λ ∈ [0, 1], the interval-valued problem P with element weights W̃ λ
e =

[wλ
e , w

λ
e ], e ∈ E. Note that the configuration set in Pλ is composed of all configurations

www such that π(www) ≥ λ, that is whose possibility of occurrence is not less than λ. In the
next sections we will show that the optimality evaluation and the problem of choosing a
solution under fuzzy weights can be reduced to examining a family of interval problems
Pλ, λ ∈ [0, 1]. In consequence, the results obtained for the interval-valued case can be
applied to the fuzzy problems as well.

4.2.1 The optimality evaluation and fuzzy deviation interval

According to possibility theory, the degrees of possibility and necessity that a solution
X ∈ Φ is optimal are defined as follows:

Π(X is optimal) = sup
{www:X is optimal to P for www}

π(www), (6)

N(X is optimal) = 1 − Π(X is not optimal) = inf
{www:X is not optimal to P for www}

(1 − π(www)).(7)
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Similarly, the degrees of possibility and necessity that an element f ∈ E is optimal are
defined as follows:

Π(f is optimal) = sup
{www:f is optimal to P for www}

π(www), (8)

N(f is optimal) = 1 − Π(f is not optimal) = inf
{www:f is not optimal to P for www}

(1 − π(www)). (9)

It is easy to check that Π(X is optimal) ≤ mine∈X Π(e is optimal) and N(X is optimal) ≤
mine∈X N(e is optimal).

We now show that, similarly to the interval-valued case (see Section 3), we can express
the degrees of possible and necessary optimality in terms of a deviation interval. In the
fuzzy case, however, the deviation interval becomes a fuzzy one and it represents a pos-
sibility distribution for a solution (element) deviation. The possibility distribution that
represents more or less plausible values of deviation δX of a solution X is defined in the
following way:

Π(δX = v) = µ∆̃X
(v) = sup

{www: δX(www)=v}

π(www), (10)

where Π(δX = v) stands for the possibility degree that δX = v. Since the statement
“X is optimal under www” is equivalent to the condition δX(www) = 0, we get the following
relationships between optimality degrees (6), (7) and deviation (10):

Π(X is optimal) = sup
{www:δX(www)=0}

π(www) = Π(δX = 0) = µ∆̃X
(0),

N(X is optimal) = 1 − sup
{www:δX(www)>0}

π(www) = N(δX = 0) = 1 − sup
v>0

µ∆̃X
(v).

Using (3) we can express µ∆̃X
in the following way:

µ∆̃X
(v) = sup{λ : v ∈ ∆̃λ

X}, (11)

where ∆̃λ
X = [δλ

X , δ
λ

X ], λ ∈ [0, 1], is the interval of possible values of deviation of solution

X in problem Pλ. It is easy to verify that δλ
X is a nondecreasing and δ

λ

X is a nonincreasing
function of λ. We thus have

Π(X is optimal) = µ∆̃X
(0) = sup{λ : 0 ∈ ∆λ

X} = sup{λ : δλ
X = 0} (12)

and Π(X is optimal) = 0 if δ0
X > 0. A similar reasoning leads to the following equality:

N(X is optimal) = 1 − inf{λ : δ
λ

X = 0} (13)

and N(X is optimal) = 0 if δ
1

X > 0. Exactly the same reasoning can be applied to elements.
It is enough to replace X with f in formulae (10)-(13).

Formulae (12) and (13) suggest a method for computing the optimality degrees. In
order to compute the degree of possible optimality we need to find the largest value of
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λ ∈ [0, 1] for which δλ
X = 0 (resp. δλ

f = 0), which is equivalent to asserting whether X
(resp. f) is possibly optimal in Pλ. This can be done by halving the [0, 1] interval (a binary
search) and solving a sequence of the interval-valued problems Pλ. Computing the degree
of necessary optimality is similar. Hence both degrees for a given solution or element can
be computed in O(f(n) log ǫ−1) time, where ǫ > 0 is a given precision and f(n) is the
time required to solve the corresponding interval problem Pλ. We can see now that the
running time heavily relies on the interval case because it boils down to optimality analysis
on λ-cuts. In consequence, if we can characterize efficiently the optimality of a solution
(element) in the interval case, then we can compute efficiently its degrees of optimality as
well. Recall, that deciding whether an element is possibly optimal for some basic problems
is NP-hard. So, computing the degree of possible optimality in this case is also NP-hard.
It follows from the fact that the classical closed interval is a special case of a fuzzy one.

For a given solution X ∈ Φ it is sometimes possible to determine the whole possibility
distribution µ∆̃X

. Making use of the properties shown in Section 3, we can compute the

bounds δλ
X and δ

λ

X of ∆̃λ
X . That is, we compute the deviations of X in two extreme

configurations www−λ
X and www+λ

X . In www−λ
X we fix the weights of elements e ∈ X to wλ

e and
the weights of the remaining elements to wλ

e . The configuration www+λ
X is symmetric. It

holds: δλ
X =

∑
e∈X wλ

e − F ∗(www−λ
X ), λ ∈ [0, 1] and δ

λ

X =
∑

e∈X wλ
e − F ∗(www+λ

X ), λ ∈ [0, 1]. In

order to compute functions F ∗(www−λ
X ) and F ∗(www+λ

X ) for λ ∈ [0, 1], some known parametric
techniques can be applied. If wλ

e and wλ
e are linear functions of λ for all e ∈ E, then

for some particular problems such as Shortest Path or Minimum Spanning Tree

their parametric counterparts can be efficiently solved (see, e.g. [13, 26]). In consequence,

bounds δλ
X and δ

λ

X can be efficiently computed if trapezoidal fuzzy intervals are used to
model the uncertain weights. Having a family of λ-cuts of ∆̃X we can derive the possibility
distribution µ∆̃X

using (11). Contrary to solutions, computing µ∆̃f
for a given element f

is more complex. It follows from the fact that there is no an easy method for determining
extreme configurations that maximize and minimize element deviation in the interval case.

4.2.2 Choosing a best solution

We now present some concepts of choosing a solution in the fuzzy-valued problem P. A
best solution seems to be the one with the maximal degree of necessary optimality, i.e. an
optimal solution to the following problem:

max
X∈Φ

N(X is optimal) = max
X∈Φ

N(δX = 0). (14)

This solution is called a best necessarily optimal solution. For such solution with the highest
degree we are certain that it is optimal. Using (13) we can rewrite problem (14) as follows:

min λ

s.t. δ
λ

X = 0,
λ ∈ [0, 1],
X ∈ Φ.

(15)
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If problem (15) is infeasible then N(X is optimal) = 0 for all X ∈ Φ. The constraint

δ
λ

X = 0 stands for the necessary optimality of X in the interval-valued problem Pλ. The
problem (15) can be solved in polynomial time if problem P with deterministic weights is
polynomially solvable. An algorithm is based on a binary search, that is, we halve the unit
interval of possible values of λ to compute the minimum value of λ such that there exists a
necessarily optimal solution in the interval-valued problem Pλ. At each iteration finding a
necessarily optimal solution, if it exists, can be done in polynomial, say in f(n), time (see
Section 3). Thus the overall complexity of the algorithm is O(f(n) log ǫ−1), where ǫ > 0 is
a given precision.

The criterion of choosing a solution used in (14) is very strong. Namely, a solution X
such that N(X is optimal) > 0 may not exist or even if it exists, its necessary optimality
degree may be very small. We apply now a more soft solution concept originally proposed
for fuzzy linear programming in [17, 18]. The idea consists in replacing the optimality
requirement for a solution (δX = 0) with a suboptimality one. Let us introduce a fuzzy

goal G̃ on the value of the deviation of X, where µ eG : [0, +∞) → [0, 1] is a nonincreasing
function such that µ eG

(0) = 1. Function µ eG
is given in advance and the value of µ eG

(δX)
expresses the degree to which deviation δX satisfies a decision maker. The degree of
necessity that a solution X is soft optimal is defined as follows [17, 18]:

N(X is soft optimal) = inf
www

max{1 − π(www), µ eG(δX(www))}. (16)

Using (5) we can check that N(X is soft optimal) = N(δX ∈ G̃). N(X is soft optimal) = α
means that for all configurations www such that π(www) > 1 − α it holds µ eG

(δX(www)) ≥ α or

equivalently δX(www) ∈ G̃α = [0, µ−1
eG

(α)], which represents the suboptimality of X. Function

µ−1
eG

: [0, 1] → R ∪ {+∞} is a pseudo-inverse of µ eG that is µ−1
eG

(α) = sup{v : µ eG(v) ≥ α}.

Observe that if we define µ eG
(0) = 1 and µ eG

(x) = 0 for x > 0, then N(X is soft optimal) =
N(X is optimal). Now, a more reasonable solution is an optimal one to the following
problem:

max
X∈Φ

N(X is soft optimal). (17)

This solution is called a best necessarily soft optimal solution. It can be shown (the proof
is similar to that in [18]) that problem (17) is equivalent to the following one:

min λ

s.t. δ
λ

X ≤ µ−1
eG

(1 − λ),

λ ∈ [0, 1],
X ∈ Φ.

(18)

If problem (18) is infeasible then N(X is soft optimal) = 0 for all solutions X ∈ Φ. If λ∗ is
the optimal objective value of (18) and X is the best necessarily soft optimal solution, then

N(X is soft optimal) = 1 − λ∗. Since δ
λ

X is nonincreasing and µ−1
eG

(1 − λ) is nondecreasing

function of λ, problem (18) can also be solved by a binary search on λ ∈ [0, 1]. We must
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find the smallest value of λ for which condition δ
λ

X ≤ µ−1
eG

(1 − λ) is satisfied for some

solution X ∈ Φ. Since δ
λ

X is the maximal regret of X in Pλ, a solution that minimizes δ
λ

X

is an optimal minmax regret solution in Pλ. We thus can see that problem (18) consists
of solving a family of minmax regret Pλ problems. Hence the concept of a necessary
soft optimality is a natural extension of the minmax regret approach to the fuzzy case.
Therefore, solving (18) is more complex than solving (15) and it depends on the complexity
of the minmax regret version of problem P.

5 Conclusions

In this paper, we have studied a general combinatorial optimization problem with ill-known
element weights modeled by closed intervals and fuzzy intervals. Our aim was to present
some general concepts and some relationships among them. We have discussed first the
interval-valued case and then we have shown how the notions introduced for the interval-
valued problem can be naturally generalized to the fuzzy-valued one. We have also explored
some computational aspects of the optimality evaluation. We have seen that characterizing
the optimality of elements is, in general, more complex than characterizing the optimality
of solutions.

The fuzzy problem has an interpretation in the setting of possibility theory. Applying
this theory we can describe the notion of optimality and choose a robust solution under
imprecision. The possibilistic analysis appears to be much easier than a probabilistic
modeling. In particular, the computation of the possibility distribution of a solution or
element deviation in a possibilistic framework is easier, than with a probabilistic model.

We have shown that the optimality evaluation and choosing a solution in the fuzzy
problem is not harder than in the interval-valued case. In fact, every fuzzy problem boils
down to solving a small number of interval problems. Thus the interval uncertainty repre-
sentation seems to be a core problem in which the combinatorial structure of problem P
plays a crucial role. Every result obtained for the interval problem can also be applied to
its fuzzy counterpart as well. Furthermore, if some problem is hard in the interval case,
then its fuzzy counterpart is not easier.
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[8] S. Chanas, P. Zieliński, The computational complexity of the criticality problems in
a network with interval activity times, European Journal of Operational Research 136
(2002) 541–550.
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