
Approximating the minmax (regret) selecting items problem∗

Adam Kasperski†

Institute of Industrial Engineering and Management, Wroc law University of Technology,

Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland, adam.kasperski@pwr.wroc.pl

Adam Kurpisz, Pawe l Zieliński

Faculty of Fundamental Problems of Technology, Wroc law University of Technology,

Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland, {adam.kurpisz,pawel.zielinski}@pwr.wroc.pl

Abstract

In this paper the problem of selecting p items out of n available to minimize the total
cost is discussed. This problem is a special case of many important combinatorial opti-
mization problems such as 0-1 knapsack, minimum assignment, single machine scheduling,
minimum matroid base or resource allocation. It is assumed that the item costs are un-
certain and they are specified as a scenario set containing K distinct cost scenarios. In
order to choose a solution the min-max and min-max regret criteria are applied. It is
shown that both min-max and min-max regret problems are not approximable within any
constant factor unless P=NP, which strengthens the results known up to date. In this
paper a deterministic approximation algorithm with performance ratio of O(lnK) for the
min-max version of the problem is also proposed.

1 Preliminaries

Let U = {u1, . . . , un} be a set of items. In the deterministic case, each item u ∈ U has a
nonnegative cost cu ≥ 0 and we wish to choose a subsetX ⊆ U of exactly p items, i.e. |X| = p,
to minimize the total cost F (X) =

∑
u∈X cu. We will use Φ to denote the set of all feasible

solutions, i.e. Φ = {X ⊆ U : |X| = p}. This problem, denoted by Selecting Items, is one
of the simplest combinatorial optimization problems and it is straightforward to check that
every optimal solution is composed of p items of the smallest costs. This optimal solution can
be computed in O(n) time. The Selecting Items problem can be seen as a basic resource
allocation problem [6]. Some other applications of this problem are described, for example,
in [2, 4, 9]. We list below some important problems, whose special and polynomially solvable
case is Selecting Items:

1. 0-1 Knapsack: we wish to minimize
∑n

i=1 cixi subject to the constraints
∑n

i=1 xiwi ≥
W and xi ∈ {0, 1} for i = 1, . . . , n. Clearly, we get an optimal solution of Selecting
Items if w1 = . . . = wn = 1 and W = p.

2. The single machine scheduling problem 1|pi = 1|∑wiXi, (see, e.g., [10]): we are given
a set of jobs J = {1, . . . , n} with unit processing times, due date windows [di, di] and

∗This work was partially supported by Polish Committee for Scientific Research, grant N N206 492938.
†Corresponding author

1

weights wi for i ∈ J . A solution is a sequence of the jobs. A job is early/tardy in a
given sequence if its completion time Ci is such that Ci 6∈ [di, di]. The aim is to find
a sequence which minimizes the weighted number of early/tardy jobs. It is easily seen
that we obtain an optimal solution of Selecting Items when wi = ci, di = p + 1,
di = n for i ∈ J .

3. Minimum Assignment: we are given a bipartite graph G = (V1 ∪ V2, E), |V1| = |V2|
with costs cij for i ∈ V1 and j ∈ V2. We seek an assignment (perfect matching) in G
of the minimum cost. It can be easily verified that we obtain an optimal solution of
Selecting Items by solving the minimum assignment problem in graph G depicted in
Figure 1.

0

0

cu1

cu1

cu1

1

2

p

p + 1

n

u1

u2

un

Figure 1: A cost preserving reduction from Selecting Items to Minimum Assignment.
The arcs from the nodes u2, . . . , un are not shown.

4. Minimum Matroid Base: we are given a finite set of elements E = {e1, . . . , en} with
costs ce, e ∈ E. Let F be a family of subsets of E such that if A ⊆ B and B ∈ F ,
then A ∈ F and for all A,B ∈ F if |A| < |B|, then there is an element e ∈ B \ A
such that A ∪ {e} ∈ F . A base is a maximal (under inclusion) element of F and the
set of solutions Φ consists of all the bases. The deterministic matroidal problems are
one of the simplest combinatorial optimization problems for which an efficient greedy
algorithms works (see, e.g. [12]). It is easy to see that the selecting items problem has
a matroidal structure, where E = U and F = {X ⊆ U : |X| ≤ p}.

In this paper we discuss the case in which the item costs are uncertain. Namely, a scenario
set Γ is specified, which contains all the possible realizations of the item costs. No probability
distribution in Γ is given. Each scenario is a vector S = (cu1

(S), . . . , cun
(S)) ∈ Γ of the

item costs which can appear with positive but perhaps unknown probability. Without loss
of generality we can assume that all the item costs are nonnegative integers. In the popular
and widely discussed in the literature robust approach we minimize a solution cost in the
worst case [9]. Let F (X,S) =

∑
u∈X cu(S) be the cost of solution X ∈ Φ under scenario

S and let F ∗(S) be the cost of an optimal solution under S. In order to choose a solution,
two robust criteria, called the min-max and the min-max regret, can be adopted. In the
Min-max Selecting Items problem, we seek a solution which minimizes the largest cost
over all scenarios, that is

OPT1 = min
X∈Φ

cost1(X) = min
X∈Φ

max
S∈Γ

F (X,S). (1)

2

In the min-max regret selecting items problem, we wish to find a solution which mini-
mizes the maximal regret, that is

OPT2 = min
X∈Φ

cost2(X) = min
X∈Φ

max
S∈Γ

(F (X,S) − F ∗(S)).

The motivation of the min-max (regret) approach and a deeper discussion on the two robust
criteria can be found in [9].

Previous results The min-max and min-max regret version of Selecting Items were
discussed in several papers. We briefly recall some known results on both robust problems.
It turns out that their computational complexity strongly depends on the way in which the
scenario set Γ is defined. For the interval uncertainty representation, each item cost cu is
only known to belong to a closed interval [cu, cu] and Γ is the Cartesian product of all the
uncertainty intervals. In this case both Min-max Selecting Items and Min-max Regret
Selecting Items are polynomially solvable. In fact, Min-max Selecting Items is trivial,
since it is enough to compute an optimal solution for the pessimistic scenario (cu)u∈U . On
the other hand, Min-max Regret Selecting Items is more complex but it can also be
solved in polynomial, O(nmin{p, n−p}), time (see [2, 4]). It is worth pointing out that Min-
max Regret Selecting Items is one of a few nontrivial min-max regret combinatorial
optimization problem with interval costs which is known to be polynomially solvable (see [1]
for a survey).

Another method of defining the scenario set Γ, which is later discussed in this paper, is
to list all possible scenarios - the discrete scenario uncertainty representation. Hence Γ =
{S1, . . . , SK} contains K ≥ 1 distinct and explicitly given cost vectors. When K is constant,
it has been shown in [2] that Min-max Selecting Items is weakly NP-hard for two scenarios
(i.e. when K = 2). Using a slightly modified proof one can also show that Min-max Regret
Selecting Items is weakly NP-hard for K = 2. For constant K, the Min-max (Regret)
Selecting items problem admits a fully polynomial time approximation scheme (FPTAS),
which easily follows from the results obtained in [1, 7, 9]. This FPTAS, however, is exponential
in K, so its applicability is limited. On the other hand, if K is unbounded (it is a part
of the input), then Min-max (Regret) Selecting Items is strongly NP-hard and not
approximable within 2− ǫ for any ǫ > 0 unless P=NP [8]. In this case, both robust problems
have a simple deterministic K-approximation algorithm, which outputs an optimal solution
for the average costs cu = 1

K

∑
S∈Γ cu(S), u ∈ U , (see, e.g., [1]). Furthermore, Min-max

Selecting Items admits a randomized O(lnK)-approximation algorithm [8].
It is worth noting that Min-max Selecting Items under the discrete scenario uncer-

tainty representation can be seen as an optimization problem in [0,∞)K denoted here by
Selecting Vectors. Namely, we are given a set U of n K-dimensional vectors xxx1, . . . ,xxxn
from [0,∞)K . The goal is to choose a subset X ⊆ U of exactly p vectors that minimizes
||∑u∈X xxxu||∞, where || · ||∞ denotes the standard l∞ norm.

Our results Up to now, it has been an open problem whether Min-max (Regret) Se-
lecting Items can be approximated within a constant factor whenK is unbounded. Provid-
ing an answer is important, because Selecting Items is one of the simplest combinatorial
optimization problems and it is a special case of some other basic problems listed at the
beginning of this section. In this paper we show that the answer is negative. Namely, for
any γ > 1 there is no γ-approximation algorithm for Min-max (Regret) Selecting Items

3

unless P=NP. Note that this result remains valid for the minmax (regret) versions of all the
more general problems listed at the beginning of this section. Moreover, we will construct
a deterministic polynomial time approximation algorithm with performance ratio of O(lnK)
for Min-max Selecting Items, which strengthens the result obtained in [8], where only a
randomized O(lnK)-approximation algorithm was designed. We also show that in some cases
the approximation ratio of the algorithm is better than O(lnK).

2 Hardness of approximation of Min-max (Regret) Selecting
Items

In this section we prove the main result of this paper. We start by recalling some graph-
theoretic definitions. Let G = (V,E) be an undirected graph. We use deg(v) to denote the
degree of node v ∈ V and deg(G) = maxv∈V deg(v) to denote the maximal node degree in
G. Recall that an independent set W in G is a subset of the nodes of G such that no two
nodes in W are incident in G. The number α(G) is called the independence number of G and
denotes the size of the largest independent set in G. A clique in G is a subset of the nodes of
G which forms a complete subgraph of G. The number ω(G) is called the clique number of
G and denotes the size of the largest clique in G. In [3] (Lemma 4.3) a relationship between
α(G) and ω(G) was provided. For completeness, we prove now a similar but a little bit more
precise result.

Lemma 1. Let G = (V,E) and l ≥ 1 If deg(G) < l, then α(G) ≥
⌈
|V |
l+1

⌉
.

Proof. Let us choose any node v1 ∈ V . Let us remove the node v1 and all its incident nodes
from G. We have thus removed at most ⌈l⌉ nodes from G. We then choose one of the
remaining nodes, say v2 and repeat the previous construction. We proceed in this way until
all the nodes of G are removed. As a result we obtain a sequence of nodes v1, v2, . . . , vk which

form an independent set in G. Hence α(G) ≥ k =
⌈
|V |
⌈l⌉

⌉
≥

⌈
|V |
l+1

⌉
.

Lemma 2. Let G = (V,E) and l ∈ {1, . . . , |V |}. If ω(G) ≤ l, then α(G) ≥
⌊
|V |1/l

⌋
.

Proof. We prove this lemma by induction on l. The case l = 1 is obvious. Suppose that the
lemma is true for all integers 1, . . . , l − 1 and assume that ω(G) = l. We consider two cases.
(i) deg(G) < |V |(l−1)/l. Then, according to Lemma 1, we get

α(G) ≥
⌈ |V |
|V |(l−1)/l + 1

⌉
=

⌈ |V |
|V |(l−1)/l

− |V |
|V |2(l−1)/l + |V |(l−1)/l

⌉
≥ ⌊|V |1/l⌋,

where the last inequality follows from the fact that l ≥ 2 and |V |/(|V |2(l−1)/l+ |V |(l−1)/l) < 1.
(ii) deg(G) ≥ |V |(l−1)/l. Let us choose a node v ∈ V in G with the maximum degree. Let us
form graph G′ = (V ′, E′) induced by the nodes incident to v. It must hold ω(G′) ≤ l − 1.
Indeed, if ω(G′) = l, then G′ contains a clique of size l, which together with node v would
create a clique of size l+1 in G which is a contradiction. Now, using the induction hypothesis
and the fact that |V ′| ≥ |V |(l−1)/l, we get α(G) ≥ α(G′) ≥ ⌊|V ′|1/(l−1)⌋ ≥ ⌊|V |1/l⌋.

In order to prove the main result, we use a type of decision problem, called a gap problem
(see, e.g. [5]). In a gap version of an optimization (maximization) problem we are given two
functions s(n) and b(n) of the input size n. The set of instances is the union of all yes-instances

4

whose cost is at least b(n) and all no-instances whose cost is less than s(n). Consider the
following gap version of the Max Independent Set problem, denoted as gapIndSetb,s. We
are given an undirected graph G = (V,E). The graph G is a yes-instance if α(G) ≥ b(|V |) and
it is a no-instance if α(G) < s(|V |). An algorithm for solving gapIndSetb,s should distinguish
between the yes and no instances, provided that G is either yes or no instance. The following
theorem states that any such polynomial time algorithm would imply P=NP:

Theorem 1 ([16]). For every ǫ ∈ (0, 1/2), gapIndSetbǫ,sǫ is NP-hard, where bǫ(|V |) = |V |1−ǫ

and sǫ(|V |) = |V |ǫ.

We now prove the following result:

Theorem 2. For any constant γ > 1 and for every graph G = (V,E) we can construct in
polynomial time an instance (U, p,Γ) of Min-max Selecting Items such that

(i) if α(G) ≥ ⌈|V |1−ǫ⌉, then there is a feasible solution X ∈ Φ such that cost1(X) ≤ 1,

(ii) if α(G) < ⌊|V |ǫ⌋, then every feasible solution X ∈ Φ is such that cost1(X) > γ,

where ǫ > 0 is such that 1
1+γ ≥ ǫ.

Proof. Let us fix the constant C = ⌊γ⌋ and let us fix ǫ such that 1
1+γ ≥ ǫ. The construction

is as follows. We associate with each node v ∈ V an item u, hence U = V and n = |V |.
Then we form scenario set Γ as follows. We enumerate all the cliques in G of size C + 1.
For each such a clique, namely {vi1 , . . . , viC+1

}, we create scenario S ∈ Γ under which the
costs of all vi1 , . . . , viC+1

are 1 and the costs of all the remaining items are 0. Obviously

|Γ| ≤
(|V |
C+1

)
= O(|V |C+1). Finally, we set p = ⌈|V |ǫγ⌉. The presented construction is

polynomial in the size of G, provided that γ is a constant.
We now prove the implication (i). Assume that α(G) ≥ ⌈|V |1−ǫ⌉. Since 1

1+γ ≥ ǫ, α(G) ≥
⌈|V |ǫγ⌉. So there exists an independent set V

′ ⊆ V in G of size ⌈|V |ǫγ⌉ = p. Consider the
solution X = V ′. If, on the contrary cost1(X) > 1, then there is scenario S ∈ Γ such that
F (X,S) > 1. This implies that there are two nodes vi, vj ∈ V ′ which belong to some clique
of size C + 1 > 1, which contradicts the assumption that V ′ is independent.

We now prove the implication (ii) by proving its contraposition. Assume that there is a
feasible solution X such that cost1(X) = maxS∈Γ F (X,S) ≤ γ. Since cost1(X) is integer,
cost1(X) ≤ C. Let GX be the subgraph of G induced by the nodes corresponding to the
items in X. It holds ω(GX) ≤ C, since otherwise V ′ = X contains a clique of size C + 1 and
F (X,S) > C for some scenario S ∈ Γ. After applying Lemma 2 to GX we get α(GX) ≥ ⌊p1/C⌋
and α(G) ≥ ⌊p1/C⌋, which is due to the fact that GX is a subgraph of G. Since C ≤ γ and
p = ⌈|V |ǫγ⌉, we get α(G) ≥ ⌊⌈|V |ǫγ⌉1/γ⌋ ≥ ⌊|V |ǫ⌋.

We now prove the following theorem, which is the main result in this paper:

Theorem 3. For any constant γ > 1, there is no polynomial time algorithm that approximates
Min-max Selecting Items within γ unless P=NP.

Proof. This result follows from Theorems 1 and 2. Indeed, having a γ-approximation al-
gorithm for Min-max Selecting Items , we could solve in polynomial time the NP-hard
problem gapIndSet|V |1−ǫ,|V |ǫ for some ǫ ∈ (0, 1/2), which would imply P=NP.

5

Theorem 4. For any constant γ > 1, there is no polynomial time algorithm that approximates
Min-max Regret Selecting Items within γ unless P=NP.

Proof. We show a simple cost preserving reduction from Min-max Selecting Items to
Min-max Regret Selecting Items . Given an instance (U, p,Γ) of Min-max Selecting
Items we add to U additional p dummy items, which have costs equal to 0 under all scenarios
in Γ. We also add one additional scenario S′ under which all the dummy items have a large
cost, say

∑
u∈U

∑
S∈Γ cu(S), and the costs of all the original items are 0. It is clear that

F ∗(S) = 0 for all scenarios in Γ′, where Γ′ = Γ ∪ {S′} is the extended scenario set. Since
each dummy item has a large cost under S′, no such an item will be contained in an optimal
solution. Now its clear that F (X,S) = F (X,S) − F ∗(S) for all X ∈ Φ and S ∈ Γ′. Hence
cost1(X) = cost2(X) for all X ∈ Φ.

The following corollary follows immediately from Theorems 3 and 4.

Corollary 1. If P 6= NP , then for any constant γ > 1 there is no polynomial time algorithm
that approximates within γ the following problems: Min-max (Regret) 0-1 Knapsack,
Min-max (Regret) 1|pi = 1|∑wiXi, Min-max (Regret) Minimum Assignment, Min-
max (Regret) Minimum Matroid Base and Selecting Vectors.

3 Approximation algorithm for Min-max Selecting Items

In this section, we construct a deterministic approximation algorithm for the Min-max Se-
lecting Items problem, whose performance ratio is O(lnK). Let us fix a parameter C > 0
and let U(C) ⊆ U be the set of all the items u ∈ U for which cu(S) ≤ C for all scenarios
S ∈ Γ. Consider the following linear program:

LP (C) :
∑

u∈U(C)

xu = p,

∑

u∈U(C)

cu(S)xu ≤ C for S ∈ Γ,

0 ≤ xu ≤ 1 for u ∈ U,

(2)

We set xu = 0 for all u /∈ U(C). From now on C∗ denotes the smallest value of the parameter C
for which LP (C) is feasible. Clearly, C∗ is a lower bound on OPT1. Let α > 1 be a given
scaling parameter, whose precise value will be specified later and let cmax = maxu∈U,S∈Γ cu(S).
Consider a randomized algorithm for the Min-max Selecting Items problem shown in
the form of Algorithm 1. This algorithm performs, in Step 5, a randomized rounding of a
solution (x∗u)u∈U(C∗) ∈ [0, 1]n to the linear program LP (C∗). We derandomize this step and
execute Step 6 (if necessary) to obtain a feasible solution to Min-max Selecting Items,
whose cost is no more than O(lnK) times the optimal value OPT1. To analyze Step 5 of
the algorithm, we will use the following well-known versions of Chernoff bounds [11, 13]:

Theorem 5. Let a1, a2, . . . , ar be reals in (0, 1]. Let Z1, . . . , Zr be independent Poisson trials
with E[Zj] = pj . Let Ψ =

∑r
j=1 ajZj , µ = E[Ψ] > 0 and δ > 0. Then Pr[Ψ > (1 + δ)µ] <

F (µ, δ), where F (µ, δ) = (eδ/(1 + δ)(1+δ))µ.

6

Algorithm 1: Randomized algorithm for Min-max Selecting Items

Step 1. Solving LP relaxation: Use a binary search to find the minimal value
C∗ ∈ [0, pcmax] such that there exists a feasible solution (x∗u)u∈U(C∗) to LP (C∗). Let
r = |U(C∗)| ≥ p.
Step 2. Let us number the items in U(C∗) so that x∗1 ≥ x∗2 ≥ · · · ≥ x∗r .
Step 3. Scaling: Let x′i = min{αx∗i , 1} for i ∈ [r] and let i∗ = |{i ∈ [r] : x′i ≥ 1}|
Step 4. If p− i∗ < 2 ln(K + 1) then X := {1, . . . , p} and return X.
Step 5. Rounding: If p− i∗ ≥ 2 ln(K + 1) then X := {1, . . . , i∗} and for each
j = i∗ + 1, . . . , r add item j to X with probability x′j.
Step 6. If |X| > p then remove some arbitrary items from X so that |X| = p.
Step 7. Return X.

Let us fix ǫ > 0 and let ∆(µ, ǫ) be the value of δ for which F (µ, δ) = ǫ, that is
F (µ,∆(µ, ǫ)) = ǫ. The following bounds on ∆(µ, ǫ) can be found in [13]:

∆(µ, ǫ) ≤
{
(e− 1)

√
(ln 1/ǫ)/µ for µ > ln 1/ǫ,

e ln 1/ǫ
µ ln((e ln 1/ǫ)/µ) for µ ≤ ln 1/ǫ.

(3)

Theorem 6. Let Z1, . . . , Zr be independent Poisson trials with E[Zj] = pj. Let Ψ =
∑r

j=1 Zj,
µ = E[Ψ] > 0 and 0 < δ ≤ 1. Then Pr[Ψ < (1 − δ)µ] < H(µ, δ), where H(µ, δ) =
(e−δ/(1− δ)(1−δ))µ.

Set c∗max = maxu∈U(C∗),S∈Γ cu(S). Notice that c∗max ≤ C∗ ≤ OPT1. Let us define for each

scenario S ∈ Γ the corresponding scaled scenario Ŝ under which cu(Ŝ) = cu(S)/c
∗
max for all

u ∈ U(C∗). Accordingly, cu(Ŝ) ≤ Ĉ∗ ≤ ÔPT 1 for each u ∈ U(C∗), where Ĉ∗ = C∗/c∗max

and ÔPT 1 = OPT1/c
∗
max and also ĉost1(X) = cost1(X)/c∗max. From now on, cu(Ŝ) ∈ [0, 1]

for each u ∈ U(C∗). Let Zi∗+1, . . . , Zr ∈ {0, 1} be independent Poisson trials with Pr[Zi =
1] = x

′

i ∈ [0, 1), i = i∗ + 1, . . . , r, such that Zi = 1 if the item i is added to X in Step 5. Let

β = 1 +∆(αĈ∗, 1/(K + 1)).

Lemma 3. Let α > (3 +
√
5)/2. If p− i∗ ≥ 2 ln(K + 1), then

1. there exists a feasible solution X such that ĉost1(X) ≤ αβĈ∗,

2. and the solution X can be constructed in polynomial time.

Proof. We will first prove part 1 of the lemma (the nonconstructive part) by showing that
the event that the solution X constructed in Step 5 is such and |X| ≥ p and satisfies the
inequality ĉost1(X) ≤ αβĈ∗ holds with a non-zero probability, i.e. we will prove that a
good approximation solution exists. If |X| > p, then additional items can be removed so
that |X| = p. Consider any scaled scenario Ŝk for k ∈ [K]. Define random variables Yk =∑r

i=i∗+1 ci(Ŝk)Zi for k ∈ [K] and YK+1 =
∑r

i=i∗+1 Zi. Hence Yk denotes the random cost of
the items chosen in Step 5 under scenario k and YK+1 is the random number of items chosen
in Step 5. The bad event, ξξξk, that the cost of X under Ŝk exceeds αβĈ∗ is given by

ξξξk ≡ “Yk > µk(1 + δk)”, µk = E[Yk] =

r∑

i=i∗+1

ci(Ŝ)x
′
i, δk =

αβĈ∗ −
∑i∗

i=1 ci(Ŝk)x
′

i

µk
− 1, (4)

7

where µk > 0, if µk = 0 then Yk = 0 and so Pr[ξξξk] = 0. The bad event ξξξK+1 that the
cardinality of X is less than p is given by

ξξξK+1 ≡ “YK+1 < µK+1(1− δK+1)”, µK+1 = E[YK+1] =

r∑

i=i∗+1

x′i, δK+1 = 1− p−∑i∗

i=1 x
′

i

µK+1
.

(5)
Clearly, µK+1 > 0. It is easy to check that δk > 0 for each k ∈ [K + 1]. Furthermore, if
δK+1 ≥ 1 then Pr[ξξξK+1] = 0, because

∑r
i=i∗+1 Zi ≥ 0. So, we have δK+1 ∈ (0, 1). From

Theorem 5, we get Pr[ξξξk] < F (µk, δk) for each k ∈ [K]. Observe that µk +
∑i∗

i=1 ci(Ŝk)x
′

i ≤
αĈ∗ with

∑i∗

i=1 ci(Ŝk)x
′

i ≥ 0, µk > 0. An analysis similar to that in the proof of Lemma 3.2

in [14] shows that F (µk, δk) is maximized, when µk = αĈ∗ and
∑i∗

i=1 ci(Ŝk)x
′

i = 0. Hence,

F (µk, δk) ≤ F (αĈ∗, β − 1) for each k ∈ [K]. By using the definition of β, we obtain:

Pr[ξξξk] < F (µk, δk) ≤ F (αĈ∗,∆(αĈ∗, 1/(K + 1))) = 1/(K + 1). (6)

From Theorem 6 and the fact that
∑i∗

i=1 x
′

i = i∗ < p we obtain:

Pr[ξξξK+1] < H(µK+1, δK+1) =

(
e−δK+1

(1− δK+1)(1−δK+1)

)µK+1

=
µp−i∗

K+1e
p−i∗−µK+1

(p− i∗)p−i∗
. (7)

It holds µK+1 + αi∗ ≥ αp. Let us fix all the parameters but µK+1 in the last term of (7).
This term is a decreasing function of µK+1 for µK+1 > p − i∗ and it is maximized when
µK+1+αi∗ = αp (the reasoning is similar in spirit to that in the proof of Lemma 5.1 in [15]).
Substituting µK+1 = α(p − i∗) > p− i∗ into (7) yields:

Pr[ξξξK+1] < H(µK+1, δK+1) ≤ H(α(p− i∗), 1− 1/α) = (αe−(α−1))(p−i∗) ≤ (αe−(α−1))2 ln(K+1),
(8)

where the last inequality follows from the assumption that p−i∗ ≥ 2 ln(K+1) and the inequal-
ity αe−(α−1) < 1. The right hand side of (8) can be upper bounded by (eln(K+1))−(α−1)2/α

(see [15, Lemma 5.1]). Thus, for any α > (3 +
√
5)/2

Pr[ξξξK+1] < H(µK+1, δK+1) ≤ H(α(p − i∗), 1− 1/α) ≤ (K + 1)−(α−1)2/α < 1/(K + 1). (9)

By the union bound and (6) and (9), we get

Pr[
K+1⋃

k=1

ξξξk] ≤
K+1∑

k=1

Pr[ξξξk] <
K∑

k=1

F (µk, δk) +H(µK+1, δK+1) < (K + 1)(1/(K + 1)) = 1, (10)

so X is such that |X| ≥ p and satisfies ĉost1(X) ≤ αβĈ∗ with a non-zero probability.
The proof of part 2 (the constructive part), i.e. the construction of X in polynomial time,

is deferred to Appendix A.

The following theorem shows the approximation bounds of the derandomized Algorithm 1:

Theorem 7. Let α ≥ 2.62 ((3 +
√
5)/2 ≈ 2.62) and let X be a solution returned by the

derandomized Algorithm 1. Then the following inequalities hold:

(i) if p− i∗ < 2 ln(K + 1), then cost1(X) ≤ (α+ 2 ln(K + 1))OPT1

8

(ii) if p− i∗ ≥ 2 ln(K + 1) then

cost1(X) ≤
{
(α+ e ln(K + 1))OPT1 for αĈ∗ ≤ ln(K + 1),

eαOPT1 for αĈ∗ > ln(K + 1).

Proof. Consider first the case (i). In this case Algorithm 1 deterministically returns, in Step 4,
a feasible solution X composed of the items numbered from 1 to p. Under each scenario Ŝ it
holds

∑i∗

i=1 ci(Ŝ) ≤ α
∑i∗

i=1 ci(Ŝ)x
∗
i ≤ αĈ∗ and

∑p
i=i∗+1 ci(Ŝ) ≤ (p− i∗)Ĉ∗ ≤ (2 ln(K+1))Ĉ∗.

Hence
∑p

i=1 ci(Ŝ) ≤ (α + 2 ln(K + 1))Ĉ∗ ≤ (α + 2 ln(K + 1))ÔPT1. Since cost1(X) =

ĉost1(X)c∗max and OPT1 = ÔPT 1c
∗
max, we have (i).

Let us turn to the case (ii), in which the derandomized Step 5 and Step 6 (if necessary) are
executed. From Lemma 3, it follows that, in this case, the returned solution X is such that
|X| = p and ĉost1(X) ≤ αβĈ∗. Recall that β = 1+∆(αĈ∗, 1/(K + 1)). If αĈ∗ ≤ ln(K + 1),

then according to (3), ∆(αĈ∗, 1/(K + 1)) ≤ e ln(K+1)

αĈ∗ ln((e ln(K+1))/αĈ∗)
≤ (e ln(K + 1))/(αĈ∗)

and thus ĉost1(X) ≤ αĈ∗ + e ln(K + 1) ≤ αÔPT 1 + e ln(K + 1). Hence and cost1(X) =

ĉost1(X)c∗max, OPT1 = ÔPT 1c
∗
max and c∗max ≤ OPT1, we get the first case in (ii). If αĈ∗ >

ln(K + 1), then according to (3), ∆(αĈ∗, 1/(K + 1)) ≤ (e − 1)

√
ln(K + 1)/(αĈ∗) ≤ e − 1,

consequently ĉost1(X) ≤ eαĈ∗ ≤ eαÔPT 1. Since cost1(X) = ĉost1(X)c∗max and OPT1 =

ÔPT 1c
∗
max, we obtain the second case in (ii).

The following corollary summarizes the results presented in this section:

Corollary 2. Min-max Selecting Items has a polynomial O(lnK)-approximation algo-
rithm, when K is unbounded.

4 Concluding remarks

In this paper, we have investigated the Min-max Selecting Items and Min-max Regret
Selecting Items problems with a discrete unbounded scenario set. We have proved that
both problems are hard to approximate within any constant factor. These hardness results
apply also to the min-max (regret) versions of other important combinatorial optimization
problems such as: 0-1 knapsack, minimum assignment, single machine scheduling, minimum
matroid base or resource allocation. However, there are still some open questions concerning
Min-max (Regret) Selecting Items. The best known approximation ratios of O(lnK) for
the min-max version and K for the min-max regret version are still possible to be improved,
which is an interesting subject of further research.

References

[1] H. Aissi, C. Bazgan, and D. Vanderpooten. Min–max and min–max regret versions
of combinatorial optimization problems: A survey. European Journal of Operational
Research, 197:427–438, 2009.

[2] I. Averbakh. On the complexity of a class of combinatorial optimization problems with
uncertainty. Mathematical Programming, 90:263–272, 2001.

9

[3] C. Chekuri and S. Khanna. On Multi-dimensional Packing Problems. SIAM Journal on
Computing, 33:837–851, 2004.

[4] E. Conde. An improved algorithm for selecting p items with uncertain returns according
to the minmax regret criterion. Mathematical Programming, 100:345–353, 2004.

[5] O. Goldreich. On Promise Problems: A Survey. In O. Goldreich, A. L. Rosenberg, and
A. L. Selman, editors, Essays in Memory of Shimon Even, volume 3895 of Lecture Notes
in Computer Science, pages 254–290. Springer-Verlag, 2006.

[6] T. Ibaraki and N. Katoh. Resource Allocation Problems. The MIT Press, 1988.

[7] H. Iida. A note on the max-min 0-1 knapsack problem. Journal of Combinatorial Opti-
mization, 3:89–94, 2004.

[8] A. Kasperski and P. Zieliński. A randomized algorithm for the min-max selecting items
problem with uncertain weights. Annals of Operations Research, 172:221–230, 2009.

[9] P. Kouvelis and G. Yu. Robust Discrete Optimization and its applications. Kluwer
Academic Publishers, 1997.

[10] A. Lann and G. Mosheiov. Single machine scheduling to minimize the number of early
and tardy jobs. Computers & Operations Research, 23:769–781, 1996.

[11] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

[12] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and com-
plexity. Dover Publications Inc., 1998.

[13] P. Raghavan. Probabilistic Construction of Deterministic Algorithms: Approximating
Packing Integer Programs. Journal of Computer and System Sciences, 37:130–143, 1988.

[14] A. Srinivasan. Improved Approximation Guarantees for Packing and Covering Integer
Programs. SIAM Journal on Computing, 29:648–670, 1999.

[15] A. Srinivasan. An Extension of the Lovász Local Lemma, and its Applications to Integer
Programming. SIAM Journal on Computing, 36:609–634, 2006.

[16] D. Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3:103–128, 2007.

A The proof of Lemma 3 (part 2)

We need to show that solution X can be constructed in polynomial time. In order to do this,
we will apply the standard method of conditional probabilities and pessimistic estimators (see,
e.g. [13]). Let us define a vector (zi∗+1, . . . , zr), where zi = 1 if the item i is picked in Step 5
of Algorithm 1 and zi = 0 otherwise, i = i∗ + 1, . . . , r. We say that a failure occurs if,
after performing Step 5, the cost of X under some scenario Ŝk, k ∈ [K], exceeds αβĈ∗, or
|X| < p, i.e. “fail ≡ ⋃K

k=1 ξξξk ∪ ξξξK+1” Let Pi(fail|zi∗+1, . . . , zi−1) be the probability of failure
for items i, . . . , r conditioned by the event that variables zi∗+1, . . . , zi−1 have been already

10

fixed. It is clear that Pi∗+1(fail) ≥ min{Pi∗+2(fail|zi∗+1 = 0), Pi∗+2(fail|zi∗+1 = 1)}. We
can thus assign 0 or 1 to zi∗+1 without increasing the probability of failure. Determining
an assignment zi∗+1, . . . , zr can be seen as walking down a binary decision tree whose levels
correspond to the subsequent variables and the sons of each node, except for the leaves,
correspond to the possible assignments to a variable. The nodes of the tree are labeled by the
conditional probabilities, in particular the root is labeled by Pi∗+1(fail) and the leaves are
labeled as Pr+1(fail|zi∗+1, . . . , zr). Hence, each 0-1 assignment to zi∗+1, . . . , zr corresponds
to a path from the root to a leaf. For each node, except for the leaves, there is a son whose
label is not greater than a label of the node and by choosing at each step such a son we get
an assignment which satisfies

Pr+1(fail|zi∗+1, . . . , zr) ≤ Pr(fail|zi∗+1, . . . , zr−1) ≤ · · · ≤ Pi∗+2(fail|zi∗+1) ≤ Pi∗+1(fail).

However, from part 1 of the lemma we know that Pi∗+1(fail) < 1 (see (10)) and, since
zi∗+1, . . . , zr is a complete assignment, it holds Pr+1(fail|zi∗+1, . . . , zr) = 0. Unfortunately,
computing the conditional probabilities is not an easy task. However, we can estimate them
from above by using the so-called pessimistic estimators Ui(fail|zi∗+1, . . . , zi−1), which can
be computed in polynomial time. Using Markov’s inequality we get for any tk > 0, k ∈ [K],
tK+1 > 0:

Pr[ξξξk] = Pr[etkYk > etkµk(1+δk)] < e−tkµk(1+δk)E
[
etkYk

]

= e−tkµk(1+δk)
r∏

i=i∗+1

E[etkci(Ŝk)Zi] = e−tkµk(1+δk)
r∏

i=i∗+1

(x′ie
tkci(Ŝk) + (1− x′i)), (11)

Pr[ξξξK+1] = Pr[e−tK+1YK+1 > e−tK+1µK+1(1−δK+1)] < etK+1µK+1(1−δK+1)E
[
e−tK+1YK+1

]

= etK+1µK+1(1−δK+1)
r∏

i=i∗+1

(x
′

ie
−tK+1 + (1− x

′

i)). (12)

The above inequalities are strict in (11) and (12), since δk, µk > 0, k ∈ [K], δK+1, µK+1 >
0. The values of δk, µk, k ∈ [K], and δK+1, µK+1 are given, respectively, in (4) and (5).
Using (11), (12) and the union bound we get

Pi∗+1(fail) <
∑

k∈[K]

e−tkµk(1+δk)
r∏

i=i∗+1

(x
′

ie
tkci(Ŝk) + (1− x

′

i))+

+ etK+1µK+1(1−δK+1)
r∏

i=i∗+1

(x
′

ie
−tK+1 + (1− x

′

i)) = Ui∗+1(fail). (13)

A routine computation shows that setting tk = ln(1 + δk) and tK+1 = ln(1/(1 − δK+1))
in (13) yields Ui∗+1(fail) ≤

∑
k∈[K]F (µk, δk) +H(µK+1, δK+1) (see, e.g., the proofs of Theo-

rems 4.1 and 4.2 in [11]). From (10), we have
∑

k∈[K]F (µk, δk) +H(µK+1, δK+1) < 1. Thus
Pi∗+1(fail) < Ui∗+1(fail) < 1. We now examine the effect of fixing the variable zi∗+1. It holds

Ui∗+1(fail) = x′i∗+1Ui∗+2(fail|zi∗+1 = 1) + (1− x′i∗+1)Ui∗+2(fail|zi∗+1 = 0),

11

where

Ui∗+2(fail|zi∗+1 = 1) =
∑

k∈[K]

e−tkµk(1+δk)etkci∗+1(Ŝk)
r∏

i=i∗+2

(x′ie
tkci(Ŝk) + (1− x′i))

+ etK+1µK+1(1−δK+1)e−tK+1

r∏

i=i∗+2

(x′ie
−tK+1 + (1− x

′

i)),

Ui∗+2(fail|zi∗+1 = 0) =
∑

k∈[K]

e−tkµk(1+δk)
r∏

i=i∗+2

(x′ie
tkcu(Ŝk) + (1− x′i))

+ etK+1µK+1(1−δK+1)
r∏

i=i∗+2

(x′ie
−tK+1 + (1− x′i)).

The estimator Ui∗+2(fail|zi∗+1 = 1) is an upper bound on the probability Pi∗+2(fail|zi∗+1 = 1)
and the reasoning is the same as in formula (13), so Pi∗+2(fail|zi∗+1 = 1) < Ui∗+2(fail|zi∗+1 =
1). Similarly Pi∗+2(fail|zi∗+1 = 0) < Ui∗+2(fail|zi∗+1 = 0). Since Ui∗+1(fail) is a convex com-
bination of Ui∗+2(fail|zi∗+1 = 1) and Ui∗+2(fail|zi∗+1 = 0), Ui∗+1(fail) ≥ min{Ui∗+2(fail|zi∗+1 =
1), Ui∗+2(fail|zi∗+1 = 0)}. Therefore, we set variable zi∗+1 to 1, if Ui∗+2(fail|zi∗+1 = 1)
is the minimum and to 0 otherwise. After this assignment we have Pi∗+2(fail|zi∗+1) <
Ui∗+2(fail|zi∗+1) ≤ Ui∗+1(fail) < 1. Proceeding in this way and applying the same argument
to the remaining variables i∗ + 2, . . . , r, we get a complete 0-1 assignment to zi∗+1, . . . , zr,
corresponding to a path from the root to a leaf, such that

1 > Ui∗+1(fail) ≥ Ui∗+1(fail|zi∗+1) ≥ · · · ≥ Ur+1(fail|zi∗+1, . . . , zr) > Pr+1(fail|zi∗+1, . . . , zr).

From the above it follows that 1 > Pr+1(fail|zi∗+1, . . . , zr), so Pr+1(fail|zi∗+1, . . . , zr) must
be 0 and zi∗+1, . . . , zr determine a solution X such that |X| ≥ p and ĉost1(X) ≤ αβĈ∗.

12

