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Possibilistic Minmax Regret Sequencing Problems
with Fuzzy Parameters

Adam Kasperski and Paweł Zieliński

Abstract—In this paper a class of sequencing problems with
uncertain parameters is discussed. The uncertainty is modeled
by using fuzzy intervals, whose membership functions are re-
garded as possibility distributions for the values of unknown
parameters. It is shown how to use possibility theory to find
robust solutions under fuzzy parameters - this paper presents a
general framework together with applications to some classical
sequencing problems. First, the interval sequencing problems
with the minmax regret criterion are discussed. The state of
the art in this area is recalled. Next, the fuzzy sequencing
problems, in which the classical intervals are replaced with
fuzzy ones, are investigated. A possibilistic interpretation of such
problems, solution concepts, and algorithms for computinga
solution are described. In particular, it is shown that every fuzzy
problem can be efficiently solved if a polynomial algorithm for the
corresponding interval problem with the minmax regret crit erion
is known. Some methods of dealing with NP-hard problems are
also proposed and the efficiency of these methods is explored.

Index Terms—Sequencing, minmax regret, possibility theory,
fuzzy interval, fuzzy optimization.

I. I NTRODUCTION

I N a sequencing problem we wish to find a feasible order of
elements, called jobs, to achieve some goal. This goal typi-

cally depends on job completion times and may also depend on
some other job parameters such as due dates or weights. There
are a lot of deterministic sequencing problems with different
computational properties and a comprehensive descriptionof
them can be found, for example, in [1]. Unfortunately, most of
sequencing problems turned out to be NP-hard, but there are
also some important problems for which efficient polynomial
algorithms exist.

Sequencing problems involve many parameters whose exact
values are often ill-known. For instance, a job processing time,
which is the crucial parameter in all sequencing problems,
is seldom precisely known. Also such job parameters as due
dates or weights may be ill-known. This difficulty has been
noticed very early in [2], where the author proposed to model
uncertain job processing times by probability distributions and
tried to minimize the expected sum of weighted completion
times of jobs. Since then, there has been an extensive literature
on stochastic scheduling, i.e. scheduling problems, in which
uncertain parameters are modeled as random variables (see [3]
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for a survey of recent results and [4] for a bibliography). Inthe
overwhelming part of the stochastic scheduling literature, it is
assumed that the probability distributions describing uncertain
parameters are known in advance. Usually, special classes of
distributions such as exponential or Gaussian are applied to
model the uncertainty of parameters and typically the expected
cost of a solution is minimized (see, e.g., [5]). Unfortunately,
most of the stochastic scheduling problems are at least NP-
hard [6], [7] (#P-hard) and they are tractable only when
some assumptions are imposed. Another difficulty, not always
pointed out, is the possible lack of statistical data validating the
choice of the parameter distributions. In fact, the probability
distributions permit us to model the variability of repetitive
parameters, but this approach becomes debatable when dealing
with the uncertainty caused by a lack of information [8], [9].
Even if statistical data are available, they may be partially
inadequate, because each problem may take place in a specific
environment, and is not the exact replica of the past ones.

In practice, modeling the uncertainty of parameters in the
form of intervals is natural and simple - a decision maker
just needs to provide a minimal value of a parameter and a
maximal one. Moreover, allowing a collection of the minimal
and maximal values may be felt more realistic, if the elicita-
tion process forces the decision maker to provide as narrow
intervals as possible. Assigning some interval to a parameter
means that it will take some value within the interval, but
it is not possible to predict at present which one. In this
paper, each precise instantiation of the parameter values will
be called ascenario (it is also called aconfigurationor a
possible worldin formal logic). So ascenario set, the set
containing all the possible realizations of the parameterswhich
may occur, is the Cartesian product of all the uncertainty
intervals. No probability distribution over the scenario set is
given. A natural criterion for choosing a solution under this
interval uncertainty is themaximal regret, which expresses
the maximum “distance” of a solution from optimality over
all scenarios [10]. A deeper discussion on using the maximal
regret criterion in decision making under uncertainty can be
found in [10], [11].

The maximal regret criterion has been applied to many
interval versions of basic combinatorial optimization problems
such as: the minimum spanning tree, the shortest path and the
minimum assignment (see [12] for a survey). It has been also
successfully applied to energy [13], water [14] and waste [15],
[16] management. The class of minmax regret sequencing
problems with interval parameters has been discussed in a
number of papers, for example in [17], [18], [19], [20], [21],
[22], [23], [24]. We describe the known results in this area in
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Section III-A, because they form a basis of the more general
framework for dealing with sequencing problems with ill-
known parameters presented in this paper.

A decision maker may find it difficult to provide narrowed
intervals for parameters (because she/he may be wrong).
The interval uncertainty may also be considered as poorly
expressive. So we do not propose the use of intervals as
the final answer to scheduling under uncertainty. A more
elaborate approach could be to collect both the intervals
and plausible values from decision makers and, in this case,
fuzzy intervals may be useful. Resorting to fuzzy sets and
possibility theory [25] for modelling ill-known parameters, the
model considered in this paper may help building a trade-
off between the lack of expressive power of mere intervals
and the computational difficulties of the stochastic scheduling
techniques. In recent years, the application of fuzzy sets
to modeling the imprecision in optimization has attracted a
considerable attention. A good review of different concepts in
fuzzy optimization can be found in [26]. In papers [27], [28],
[29] some single machine sequencing problems with fuzzy
processing times, fuzzy due dates and fuzzy precedence con-
straints have been discussed. In these papers, a fuzzy due date
expresses a degree of satisfaction with a job completion time
and a sequence is computed which maximizes the minimum
satisfaction or the sum of satisfactions over all jobs. In [30], the
model of uncertainty is the same as the one considered in this
paper, but the assumed solution concepts are different. Namely,
the possibility or necessity of job delays is minimized. In [31]
an optimality evaluation of sequences under fuzzy parameters
has been investigated and this approach is extended here.

In this paper we propose a general framework for dealing
with sequencing problems with uncertain parameters. We
generalize the minmax regret approach to the fuzzy case
by extending the interval uncertainty representation to the
fuzzy interval one. Fuzzy parameters induce a possibility
distribution over the scenario set, which becomes then richer
in information. We provide a possibilistic interpretationof
the fuzzy problem obtained and describe a solution concept
being an adaptation of the elegant one, originally proposed
in [32], [33] for fuzzy linear programming. This solution
concept has been recently adopted in [34] for a class of
combinatorial optimization problems. Apart from showing a
general framework, we also point out some difficulties which
arise when one tries to solve a particular problem. Contrary
to the class of combinatorial optimization problems described
in [34], the sequencing problems are typically harder to solve
and there are very few general properties which are valid for
all these problems. However, as for the problems described
in [34], the main computational difficulties of sequencing
problems under uncertainty are in the interval case and the
algorithms known for the interval uncertainty representation
can be generalized to the fuzzy case by using a binary search.
This method is efficient if the corresponding minmax regret
sequencing problem is polynomially solvable. If the minmax
regret sequencing problem is NP-hard, then we propose a
mixed integer programing formulation, which can be solved by
using some available software. For some particular problems,
a parametric approach can also be applied.
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Fig. 1. A permutation flow shop problem with three machines and a schedule
that corresponds to the sequence(2, 1, 3).

We present several applications of the proposed framework
to some classical sequencing problems with fuzzy parame-
ters. Namely, we discuss single-machine sequencing problems
with the objective function of maximum lateness, maximum
weighted tardiness, total flow time and weighted number
of late jobs. We also consider the two-machine flow shop
problem. Hence we provide a set of efficient algorithms for
these classical sequencing problems with fuzzy parameters.

This paper is organized as follows. In Section II we recall a
definition of the classical deterministic sequencing problem.
In Section III we present the minmax regret approach to
sequencing problems with interval parameters - we provide a
general formulation and recall some known results in this area.
In Section IV we introduce a class of sequencing problems
with fuzzy parameters. We give a link between the fuzzy
problems and the minmax regret ones. We present a general
framework and show some methods of solving the fuzzy prob-
lems. Finally, in Section V we discuss several applicationsof
the proposed framework to the classical sequencing problems
with fuzzy parameters.

II. D ETERMINISTIC SEQUENCING PROBLEMS

We are given a set ofjobsJ = {J1, . . . , Jn}, which may be
partially ordered by someprecedence constraintsof the form
i→ j, wherei, j ∈ J . For the simplicity of notation we will
identify each jobJi ∈ J with its index i ∈ {1, . . . , n}. A
solution is asequence(permutation)σ = (σ(1), . . . , σ(n)) of
J and it represents an order in which the jobs are processed.
A sequenceσ is feasibleif i→ j implies that jobj occupies
position afteri in σ. We will denote byΩΩΩ the set of all feasible
sequences. We will useCi(σ) to denote thecompletion time
of job i in sequenceσ. In a single machinecase, a processing
time pi is given for each jobi ∈ J and if i = σ(k), then
Ci(σ) =

∑k
j=1 pσ(j). If every job must be processed onm >

1 machines, first on machine 1, next on machine 2 and so on,
then we get apermutation flow shop problem. In this casepij
is a processing time of jobi on machinej andCi(σ) is the
time when jobi is finished on them-th machine (see Fig. 1).

For each jobi ∈ J , there is a functionfi : R → R,
which measures the cost of completingi at time t. The
popular cost functions arelateness, Li(t) = t − di, tardiness
Ti(t) = max{0, t− di} and unit penaltyUi(t) = 1 if t > di
andUi(t) = 0 otherwise. One can also consider the weighted
versions of these functions, namelywiLi(t), wiTi(t) and
wiUi(t). Finally,F (σ) denotes a cost of sequenceσ. There are
two general types of this cost function, namely abottleneck
cost functionF (σ) = maxi=1,...,n fi(Ci(σ)) and asum cost
functionF (σ) =

∑n
i=1 fi(Ci(σ)).
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In a deterministic sequencing problem we seek a feasible
sequence with the minimum cost, that is we wish to solve the
following optimization problem:

min
σ∈ΩΩΩ

F (σ). (1)

Our analysis in the next sections of this paper will be
based on the concept of adeviation. In the deterministic case
the deviation of a sequenceσ expresses its “distance” to the
optimum and it is defined as follows:

δσ = F (σ)−min
ρ∈ΩΩΩ

F (ρ). (2)

Obviously,σ is optimal if and only ifδσ = 0. If the deviation
is positive, then it measures a “distance” ofσ from optimality.

Sequencing problems are usually described by using the
convenient Graham’s notation (see, e.g., [1]). Namely, every
sequencing problem can be denoted by a tripleα|β|γ, where
α is the machine environment (α = 1 for the single machine
case),β specifies the job characteristic andγ describes the
objective function. The following sequencing problems are
important from both theoretical and practical point of view
(see also [1]):

• 1|prec|Lmax. In this problem we seek a feasible se-
quence, which minimizes the maximumlateness. The
problem can be solved in polynomial time by using
the well known Lawler’s algorithm [35]. Furthermore, if
there are no precedence constraints between jobs, then an
optimal sequence can be obtained by ordering jobs with
respect to nondecreasing due dates.

• 1|prec|maxwiTi. In this problem wish to find a feasible
sequence minimizing the maximum weightedtardiness.
This problem can also be solved in polynomial time by
Lawler’s algorithm.

• 1||
∑

Ci. In this problem there are no precedence con-
straints between jobs and we seek a sequence for which
the sum of completion times of all jobs, i.e. thetotal
flow time, is minimal. An optimal sequence can be easily
obtained by ordering jobs with respect to nondecreasing
processing times (see, e.g., [1]).

• 1|pi = 1|
∑

wiUi. In this problem there are no prece-
dence constraints between jobs and all the jobs have unit
processing times. The cost ofσ is the weighted number
of late jobs. This problem can be solved in polynomial
time by a greedy algorithm [36].

• Fm||Cmax. This is the permutation flow shop problem
with m > 1 machines. There are no precedence con-
straints between jobs and the cost ofσ is the completion
time of the last job on the last machine. This problem
is polynomially solvable only whenm = 2 by Johnson’s
algorithm (see, e.g., [1]) and becomes strongly NP-hard
for m ≥ 3 (see [37]).

The above examples illustrate a large variety of basic se-
quencing models. As we will see in the next section, they have
quite different computational properties under uncertainty.

III. I NTERVAL SEQUENCING PROBLEMS

In practice, the exact values of the parameters in a se-
quencing problem such as processing times, due dates or

weights may be not precisely known. Assume that we have
l parameters and the value of a parameterξi, i = 1, . . . , l,
may fall within a closed interval[ξ

i
, ξi] independently of

the values of the other parameters, but it is not possible to
predict at present which value from[ξ

i
, ξi] the parameter

takes. We call a parameterξi preciseif ξ
i
= ξi. Every vector

S = (s1, . . . , sl) ∈ R
l such thatsi ∈ [ξ

i
, ξi] is called a

scenarioand it expresses a possible state of the world, where
ξi = si for i = 1, . . . , l. A scenario is calledextreme if
all the parameters take the lower or upper bounds in their
uncertainty intervals. We useΓ to denote the set of all the
possible scenarios. HenceΓ is the Cartesian product of all the
uncertainty intervals. Now, the cost of a sequenceσ depends
on scenarioS ∈ Γ and we will denote it byF (σ, S). We will
also denote byF ∗(S) the cost of an optimal sequence under
scenarioS. In order to obtain the value ofF ∗(S) we need to
solve problem (1) under the fixed realization of parametersS.
It is clear that the deviation ofσ also depends on scenarioS
and we will denote it byδσ(S) = F (σ, S)− F ∗(S).

Now the optimality of a sequenceσ can be characterized
by a deviation interval[δσ, δσ], where

δσ = min
S∈Γ

δσ(S) = min
S∈Γ
{F (σ, S)− F ∗(S)}, (3)

δσ = max
S∈Γ

δσ(S) = max
S∈Γ
{F (σ, S)− F ∗(S)}. (4)

The lower boundδσ is the minimal deviation and the upper
bound δσ is the maximal deviation ofσ over the set of
scenariosΓ. In the existing literature, the quantityδσ is called
the maximal regretof σ (see, e.g. [10]) and it expresses the
largest “distance” ofσ from the optimum over the scenario
set Γ. A scenarioSσ, for which the deviation ofσ attains
maximum, is called theworst case scenariofor σ. So, under
the interval uncertainty representation, we only know that
δσ ∈ [δσ, δσ] and we can give the following characterization
of a feasible sequence: a sequenceσ is possibly optimalif
δσ = 0 and it is necessarily optimalif δσ = 0. Notice that a
sequence is possibly optimal if and only if it is optimal for
some scenarioS ∈ Γ and it is necessarily optimal if and only
if it is optimal for all scenariosS ∈ Γ.

Now the question arises, which sequence ofΩΩΩ should
be chosen. A necessarily optimal one is a natural choice.
However, it may rarely exist in most practical situations,
because the necessary optimality is very strong criterion.A
set of potential solutions can be characterized by the concept
of a minimal dominant set[38], [39], that is a minimal under
inclusion setΩΩΩD ⊆ ΩΩΩ of sequences, which contains an optimal
sequence under each scenarioS ∈ Γ. It is easy to see
that the minimal dominant set is a subset of the set of all
possibly optimal sequences. Furthermore,ΩΩΩD contains only
one sequenceσ if and only if σ is necessarily optimal. The
cardinality ofΩΩΩD can be seen as a measure of uncertainty in
a sequencing problem with interval data and, in the extreme
case,ΩΩΩD = ΩΩΩ.

In this paper, in order to choose a sequence under the
interval structure of uncertainty, we will consider the following
minmax regret sequencing problem(or shortly interval prob-
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lem):
min
σ∈ΩΩΩ

δσ = min
σ∈ΩΩΩ

max
S∈Γ

δσ(S). (5)

We call an optimal solution to (5) aminmax regret sequence.
In the next section we briefly recall some known facts on
problem (5) and its particular cases.

A. Complexity of Minmax Regret Sequencing Problems

The first problem arising while analyzing a particular min-
max regret sequencing problem is the computation of the
maximal regret of a given sequenceσ, that is the quantity
δσ (see (4)). Unfortunately, contrary to the class of problems
discussed in [34], there is no general method of performing
this task. For the problems considered in [34], it is possible to
find two extreme scenarios that maximize or minimize the de-
viation and, consequently, the computation of the maximal re-
gret has the same complexity as the deterministic problem. For
sequencing problems the situation is much more complex. First
of all, for some problems there may be no extreme scenario
that maximizes (minimizes) the deviation [40]. Furthermore,
computing the maximal regret may be much more time con-
suming than solving a deterministic problem. For instance,in
the minmax regret1||

∑

Ci problem with interval processing
times, computingδσ requires solving an assignment problem,
while an optimal sequence under a given scenario can be
computed inO(n logn) time [10], [17]. An extreme case has
been described in [21], where a permutation flow shop problem
with m machines, interval processing times, and with only 2
jobs has been discussed. Since the solution set contains only
two sequences, the total computational effort is focused on
computing the maximal regret of a given sequence. Also, for
the class of combinatorial problems discussed in [34], it iseasy
to show that every minmax regret solution is possibly optimal.
No such general property is known for sequencing problems.
However, this is the case for some particular problems, for
example1||

∑

Ci with interval processing times [10].
It is not surprising that the minmax regret sequencing

problems are typically hard to solve. There are only several
problems which are known to be polynomially solvable. A
polynomial algorithm for1|prec|Lmax with interval process-
ing times and interval due dates has been constructed in [18].
A polynomial algorithm for1|prec|maxwiTi with interval
weights, precise processing times and precise due dates has
been proposed in [20] and extended to interval processing
times and interval due dates in [41]. Apart from these two
problems, only some very special cases are known to be
polynomially solvable, for instanceFm||Cmax with interval
processing times and only two jobs [21] and1|pi = 1|

∑

wiUi

with interval weights and a precise common due date (d1 =
d2 = · · · = dn) [40]. This latter problem is equivalent to the
minmax regret version of the selecting items problem, which
is known to be polynomially solvable [40], [42].

Among the negative results known to date, the most im-
portant one has been obtained in [22], where it has been
shown that the minmax regret1||

∑

Ci problem with interval
processing times is NP-hard. This problem is also known
to be approximable within a ratio of 2 [24] and can be

solved by using a mixed integer programming formulation
proposed in [23]. However, the complexity status of a number
of basic problems is still unknown. One does not know
whetherF2||Cmax with interval processing times is NP-hard.
One can, however, compute in polynomial time the maximal
regret of a given sequence and solve the problem by using a
branch and bound algorithm [19], [10]. Similarly, the problem
1|pi = 1|

∑

wiUi with interval weights and arbitrary precise
due dates and the problem1|prec|maxwiLi with interval
processing times, interval due dates and precise weights are
open. Note that, the former problem can be solved by a
mixed integer programming formulation [40]. There are alsoa
large number of different sequencing problems whose minmax
regret versions have never been investigated and they should
be the subject of further research.

IV. FUZZY SEQUENCINGPROBLEMS

In this section we extend the minmax regret approach,
presented in the previous section, to the fuzzy case. We model
the uncertain parameters by means of fuzzy intervals and
apply possibility theory to define the solution concepts. For
a comprehensive description of possibility theory we referthe
reader to [25].

A. Basic Notions on Possibility Theory

A fuzzy intervalÃ is a fuzzy set inR whose membership
functionµÃ is normal, quasi concave and upper semicontinu-
ous. It is typically assumed that the support of a fuzzy interval
is bounded. The main property of a fuzzy interval is the fact
that all its λ-cuts, i.e. the sets̃A[λ] = {x : µÃ(x) ≥ λ},
λ ∈ (0, 1], are closed intervals. We will assume thatÃ[0] is
the smallest closed set containing the support ofÃ. So, every
fuzzy intervalÃ can be represented as a family of closed inter-
valsÃ[λ] = [a[λ], a[λ]], parametrized by the value ofλ ∈ [0, 1].
In many practical applications, the class oftrapezoidal fuzzy
intervals is used. A trapezoidal fuzzy interval, denoted by a
quadruple(a, a, α, β), can be represented as the family of
intervals[a−α(1−λ), a+β(1−λ)] for λ ∈ [0, 1]. Notice that
this representation contains classical intervals (α = β = 0) and
real numbers (additionallya = a) as the special cases.

In this paper we adopt a possibilistic interpretation of a
fuzzy interval [25]. Assume that for an uncertain real quan-
tity ξ a fuzzy interval with membership functionµξ is given.
This membership function expresses apossibility distribution
for the values ofξ, namelyπξ = µξ, which describes the
set of more or less plausible, mutually exclusive values of the
quantityξ. It plays a role similar to a probability density, while
it encodes a family of probability functions [43]. The value
of πξ(x) represents the possibility degree of the assignment
ξ = x, i.e. Π(ξ = x) = πξ(x) = µξ(x), whereΠ(ξ = x) is
the possibility of the event thatξ will take the value ofx. It

is easily seen that eachλ-cut [ξ[λ], ξ
[λ]
], λ ∈ [0, 1], contains

all the values ofξ, whose possibility of occurrence is not
less thanλ. In particular, the interval[ξ[0], ξ

[0]
] contains all

the possible values ofξ, while the interval[ξ[1], ξ
[1]
], called

a core, contains the most plausible ones. Some methods of
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Fig. 2. N(ξ ∈ G̃) = 1− λ∗.

obtaining the possibility distribution of an unknown quantity
can be found in [25], [44].

Let G̃ be a fuzzy set inR with membership functionµG̃.
Then ξ ∈ G̃ is a fuzzy eventand the necessity thatξ ∈ G̃
holds is defined in the following way (see, e.g., [45]):

N(ξ ∈ G̃) = 1−Π(ξ /∈ G̃) = 1− sup
x∈R

min{µξ(x), 1−µG̃(x)}

(6)
where1 − µG̃(x) is the membership function of the comple-
ment of G̃. It is not difficult to see that ifG̃ = (0, g, 0, β),
then the following equality is true:

N(ξ ∈ G̃) = 1− inf{λ ∈ [0, 1] : ξ
[λ]
≤ g[1−λ]} (7)

andN(ξ ∈ G̃) = 0 if ξ
[1]

> g[0]. Equality (7) is illustrated in
Fig. 2.

B. Possibilistic Sequencing Problem

Assume that for each ill-known parameterξi, i = 1, . . . , l,
in a sequencing problem a fuzzy interval with membership
functionµξi is specified. According to the possibilistic inter-
pretation,µξi is a possibility distribution for the values ofξi.
As in Section III, S = (s1, . . . , sl) is a scenario denoting
a particular realization of the problem parameters. Under the
assumption that all the parameters are unrelated, there is apos-
sibility distribution over all scenariosS = (s1, . . . , sl) ∈ R

l

defined as follows (see, e.g., [46]):

π(S) = Π

(

l
∧

i=1

[ξi = si]

)

= min
i=1,...,l

Π(ξi = si) (8)

= min
i=1,...,l

µξi(si).

So the value ofπ(S) is the possibility of the event that the
scenarioS will occur. Notice that we generalize in this way
the scenario setΓ ⊂ R

l described in Section III. Indeed, for
the interval uncertainty representationπ(S) = 1 if S ∈ Γ
and π(S) = 0 otherwise. In the fuzzy caseπ(S) may take
any value in the interval[0, 1], so fuzzy intervals allow us to
model the uncertainty in a more sophisticated manner.

In the interval case the value of deviationδσ falls within a
closed interval. Analogously, in the fuzzy case it falls within a
fuzzy interval with membership functionµδσ . Of course,µδσ

is a possibility distribution for the values ofδσ and, according
to possibility theory, it is defined as follows:

µδσ(x) = Π(δσ = x) = sup
{S: δσ(S)=x}

π(S). (9)

Recall that the statement ”‘σ is optimal”’ is equivalent to the
assertionδσ = 0. Consequently, we can define the degrees
of possible and necessary optimality of a given sequence as
follows:

Π(σ is optimal) = Π(δσ = 0) = µδσ (0), (10)

N(σ is optimal) = N(δσ = 0) = 1−Π(δσ > 0) (11)

= 1− sup
x>0

µδσ(x).

As in the interval case, the question of which sequence
should be chosen arises. In order to provide an answer we
adopt a concept first applied to fuzzy linear programming
in [32], [33]. Assume that a decision maker knows his/her
preference about the sequence deviation and expresses it by
using a fuzzy intervalG̃ = (0, g, 0, β). The values of the
deviation in[0, g] are fully accepted, the values in[g+ β,∞)
are not at all accepted and the degree of acceptance decreases
from 1 to 0 in [g, g + β]. Our aim is to compute a feasible
sequenceσ ∈ ΩΩΩ, for which the necessity of the eventδσ ∈ G̃ is
maximal, namely we wish to solve the following optimization
problem, called afuzzy problem:

max
σ∈ΩΩΩ

N(δσ ∈ G̃). (12)

Observe that (12) can also be expressed as

min
σ∈ΩΩΩ

Π(δσ ∈ G̃d),

whereG̃d is the complement of̃G with membership function
1 − µG̃(x). If we fix G̃ = (0, 0, 0, 0) in (12), then we get
a special case of the fuzzy problem (12), in which we seek
a feasible sequence that maximizes the degree of necessary
optimality:

max
σ∈ΩΩΩ

N(δσ = 0) = max
σ∈ΩΩΩ

N(σ is optimal). (13)

According to equality (7), the problem (12) is equivalent to
the following optimization problem:

min λ

s.t. δ
[λ]

σ ≤ g[1−λ]

σ ∈ ΩΩΩ
λ ∈ [0, 1]

(14)

If λ∗ is the optimal objective value andσ∗ is an optimal
solution to problem (14), thenN(δσ∗ ∈ G̃) = 1 − λ∗. If
problem (14) is infeasible, thenN(δσ ∈ G̃) = 0 for all feasible
sequencesσ. Of course, if we replace expressiong[1−λ] with 0
in (14), then we get an equivalent formulation of problem (13).

Let us focus now on the quantityδ
[λ]

σ . The closed interval

[δ[λ]σ , δ
[λ]

σ ], λ ∈ [0, 1], contains all the values of deviationδσ,
whose possibility of occurrence is not less thanλ. So

δ
[λ]

σ = sup
{S :π(S)≥λ}

{F (σ, S)− F ∗(S)} (15)

is the least upper bound onδσ, whose possibility of occurrence
is not less thanλ. From the definition ofπ(S) (see (8)),

it is easy to see that{S : π(S) ≥ λ} = [ξ[λ]
1
, ξ

[λ]

1 ] ×

· · · × [ξ[λ]
l
, ξ

[λ]

l ] = Γ[λ]. Consequently, the quantityδ
[λ]

σ is
the maximal regret ofσ in the minmax regret version of the
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underling sequencing problem with scenario setΓ[λ] (see (4)).

In particular, the conditionδ
[λ]

σ = 0 means thatσ is necessarily
optimal underΓ[λ].

The fuzzy problem (12) is a generalization of the minmax
regret sequencing problem (5). It follows from the fact that
the interval uncertainty representation is a special case of the
fuzzy one (a closed interval is a special case of a trapezoidal
fuzzy interval). If we additionally fixG̃ = (0, 0, 0,M) for
a sufficiently largeM , then (14) is equivalent to computing
a minmax regret sequence. Hence the fuzzy problem is not
simpler than the corresponding minmax regret one and, in
particular, it is NP-hard if the underlying minmax regret
problem is NP-hard. We now discuss three methods of solving
the fuzzy problem (12).

1) Binary Search Method:The most general method of
solving the fuzzy problem is binary search (see, e.g., [47]).

It is based on the fact thatδ
[λ]

σ is nonincreasing function of
λ ∈ [0, 1] and g[1−λ] is nondecreasing one. In consequence,
the formulation (14) can be solved by the standard binary
search if we can only decide whether there is a feasible
sequenceσ ∈ ΩΩΩ fulfilling inequality δ

[λ]

σ ≤ g[1−λ] for a fixed
λ ∈ [0, 1]. This task can be done, if we have an algorithm
for the corresponding minmax regret sequencing problem
with interval parameters (5). After solving this problem for
scenario setΓ[λ], we get a minmax regret sequenceσ∗. Then

δ
[λ]

σ ≤ g[1−λ] for someσ ∈ ΩΩΩ if and only if δ
[λ]

σ∗ ≤ g[1−λ].
The binary search algorithm is shown in Fig. 3. In lines 2
and 8 an algorithm for solving the minmax regret sequencing
problem with interval parameters (5) is used. It is easy to
check that if this algorithm runs inf(n) time, then the fuzzy
problem (12) is solvable inO(f(n) log ǫ−1) time, whereǫ > 0
is a given error tolerance. Therefore, iff(n) is a polynomial
in n then the fuzzy problem is polynomially solvable. We thus
see that the problem with fuzzy parameters can be reduced to
that of solving a small number of minmax regret sequencing
problems. So, every exact algorithm for the minmax regret
problem can easily be adapted to the more general fuzzy
case. Notice that in the problem (13) it is enough to detect

a necessarily optimal sequence (i.e. such thatδ
[λ]

σ = 0) for
scenario setΓ[λ]. This may be computationally easier than
solving the minmax regret problem.

2) Mixed Integer Programming Formulation:The binary
search algorithm, shown in the previous point, is the most
general method of solving (12). But it requires an exact
algorithm for the minmax regret sequencing problem (5) to be
executed multiple times, which may be time consuming if the
underlying interval problem is NP-hard. The formulation (14)
sometimes allows us to design an exact algorithm based on
a mixed integer linear programming (MIP) formulation (see,
e.g., [48]). The obtained MIP model can be then solved
by using some standard off-the-shelf MIP solvers. We will
illustrate this approach in Section V.

3) Parametric Approach:If a decision maker specifies a
fuzzy goalG̃, then he/she gets an optimal solution according
to this goal. However, it is still possible to provide a solution
concept for the fuzzy problem (12) even if the fuzzy goal is

1: {Call an algorithm for the minmax regret sequencing problem (5)}
2: Find a minmax regret sequenceσ underΓ[1]

3: if δ
[1]

σ > g[0] then return ∅
4: λ1 ← 0.5, k ← 1, λ2 ← 0
5: while |λ1 − λ2| ≥ ǫ do
6: λ2 ← λ1

7: {Call an algorithm for the minmax regret sequencing problem (5)}
8: Find a minmax regret sequenceρ underΓ[λ1]

9: if δ
[λ1]

ρ ≤ g[1−λ1] then
10: λ1 ← λ1 − 1/2k+1, σ ← ρ
11: else
12: λ1 ← λ1 + 1/2k+1

13: end if
14: k ← k + 1
15: end while
16: return σ

Fig. 3. The binary search algorithm for solving the problem (12) with a
given error toleranceǫ ∈ (0, 1). The algorithm returns∅ if N(δσ ∈ G̃) = 0
for all σ ∈ ΩΩΩ.

not given a priori. Let us define

δ
[λ]

= min
σ∈ΩΩΩ

δ
[λ]

σ , λ ∈ [0, 1]. (16)

Notice that (16) is a parametric version of the minmax regret
sequencing problem (5). A solution to this problem is a parti-
tion of the unit interval0 = λ0 < λ1 < · · · < λk = 1 together
with sequencesσ1, . . . , σk such thatσi = argminσ∈ΩΩΩ δ

[λ]

σ for
all λ ∈ [λi−1, λi]. In other words,σi minimizes the maximal
regret under scenario setΓ[λ] for eachλ ∈ [λi−1, λi]. In the
absence of fuzzy goal, we can regard the set of sequences
ΩΩΩ∗ = {σ1, . . . , σk} as a solution to the fuzzy problem. We
can provide the following interpretation of the solution set
ΩΩΩ∗. The first sequenceσ1 is the most conservative one. It
minimizes the maximal regret over all scenariosS such that
π(S) > 0. It should be chosen by very pessimistic or very risk-
averse decision maker. On the other hand, the last sequence
σk minimizes the maximal regret only over the most plausible
scenariosS, i.e. such thatπ(S) = 1. It may be chosen by
an optimistic decision maker, who considers only the most
possible states of the world. So the sequences inΩΩΩ∗ represent
the solutions of different degree of risk or conservatism. It
is easy to see that if a fuzzy goal is introduced, then one of
the sequences inΩΩΩ∗ is an optimal solution to (12). Indeed,
according to (14), we choose the sequenceσi such that
λ∗ ∈ [λi−1, λi], where

λ∗ = arg min
λ∈[0,1]

{δ
[λ]
, g[1−λ]}. (17)

Solving the parametric problem (16) may be time consuming
(see [49], [50], [51] and the references given there) and a
solution algorithm should be constructed for every particular
sequencing problem (see, e.g., [52], [53]). An example of an
efficient method for a particular sequencing problem will be
provided in Section V.
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V. A PPLICATIONS

In this section, we provide several applications of the
framework presented in Section IV. Namely, we show how
to solve the fuzzy counterparts of the classical sequencing
problems presented in Section II. We propose algorithms,
which allow us to solve large problems arising in practice.

A. The fuzzy1|prec|Lmax problem

Assume that for each jobi ∈ J a possibility distributionµpi

for its processing time and a possibility distributionµdi
for its

due date are specified. Under each scenario, the cost ofσ is the
maximal lateness inσ. The fuzzy1|prec|Lmax problem can be
solved inO(n4 log ǫ−1) time by the binary search algorithm
shown in Fig. 3, whereǫ > 0 is a given error tolerance. In
lines 2 and 8 theO(n4) algorithm proposed in [18] is called
as a subroutine.

We now consider a restricted version of the1|prec|Lmax

problem, where only the due dates are fuzzy. For the simplicity
of presentation, we will also assume that there are no prece-
dence constraints between the jobs (the reasoning can be easily
extended to the problem with arbitrary precedence constraints).
We will show how to apply the parametric approach, described
in Section IV-B3, to this problem. LetS[λ]

j ∈ Γ[λ] be scenario

under which the due date of jobj is d
[λ]
j and the due dates

of all the remaining jobsi ∈ J \ {j} ared
[λ]

i . Notice that the
job processing times are the same under all scenarios, which
follows from the assumption that all the processing times are
precise. The following theorem is a direct consequence of the
result proven in [18]:

Theorem 1:Given λ ∈ [0, 1] an optimal minmax regret
sequence under scenario setΓ[λ] can be obtained by ordering
jobs with respect to nondecreasing values ofd

[λ]
i + F ∗(S

[λ]
i ).

Consider a sample problem shown in Fig. 4. Recall that

2 4 7 9 10 12 17 18

1

8 13 15

d̃1 d̃2 d̃3 d̃4

λ0

λ1

Fig. 4. A sample problem with 4 jobs, deterministic processing timesp1 = 8,
p2 = 4, p3 = 5, p4 = 10 and fuzzy due dates.

F ∗(S
[λ]
i ) can be obtained by sorting the jobs with respect

to nondecreasing due dates underS
[λ]
i . Observe that the

ordering of the due dates underS[λ]
i is the same between the

subsequent intersection pointsλ0, λ1, λ2, . . . of the fuzzy due
dates (see Fig. 4). So, the sequenceσ such thatF (σ, S

[λ]
i ) =

F ∗(S
[λ]
i ) is the same for allλ ∈ [λj−1, λj ]. In conse-

quence, it is easy to compute the functiond[λ]i + F ∗(S
[λ]
i )

for λ ∈ [0, 1], which is a piecewise linear one with the
possible breakpoints inλ0, λ1, . . . . Furthermore, the number
of such breakpoints is polynomial in the number of jobs. The
functions d

[λ]
i + F ∗(S

[λ]
i ) for all i = 1, . . . , 4 are shown

11

14

20

1

16

0 0.37 0.7 λ

d
[λ]
i

+ F ∗(S
[λ]
i

)

i = 1

i = 2

i = 3

i = 4

Fig. 5. The functionsd[λ]
i

+ F ∗(S
[λ]
i

) for i = 1, . . . , 4.

in Fig. 5. Now, according to Theorem 1, a solution to the
parametric problem (16) is the partition0 < 0.37 < 0.7 < 1
together with the sequences(2, 3, 1, 4), (2, 1, 3, 4), (1, 2, 3, 4).
So, the solution to the fuzzy1|prec|Lmax problem is
ΩΩΩ∗ = {(2, 3, 1, 4), (2, 1, 3, 4), (1, 2, 3, 4)}. Introducing a fuzzy
goal G̃, which expresses the preferences of a decision maker,
allows us to choose one of the sequences ofΩΩΩ∗.

B. The fuzzy1|prec|maxwiTi problem

In this problem, for each jobi ∈ J the possibility
distributionsµpi

, µdi
and µwi

for its processing time, due
date and weight are given. Under each scenario the cost of
σ is the maximum weighted tardiness inσ. Under some
restrictions, the fuzzy1|prec|maxwiTi problem can be solved
in polynomial time by the binary search algorithm shown in
Fig. 3. If only the weights are fuzzy (the processing times
and due dates are precise), then in lines 2 and 8 theO(n3)
algorithm designed in [20] can be applied. In this case, the
fuzzy 1|prec|maxwiTi problem is solvable inO(n3 log ǫ−1)
time. If the weights and due dates are fuzzy (the processing
times are precise), then in lines 2 and 8 theO(n4) algorithm
proposed in [41] can be used and the fuzzy problem is solvable
in O(n4 log ǫ−1) time. This algorithm can also be applied if
the processing times are fuzzy. In this case we must, however,
make a technical assumption thatw

[λ]
i = 0 for all i ∈ J and

λ ∈ [0, 1] (see [41]).

C. The fuzzy1||
∑

Ci problem

Assume that for each jobi ∈ J a possibility distribution
µpi

for its processing time is specified. Under each scenario,
the cost ofσ is the total flow time inσ. The fuzzy1||

∑

Ci

problem is computationally difficult, because its intervalcoun-
terpart is NP-hard [22]. However, using the formulation (14),
we will provide a method of solving the problem based on the
mixed integer linear programming.

Let A be the set of all binary vectors(xij), i = 1, . . . , n,
j = 1 . . . , n, fulfilling the so calledassignment constraints,
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i.e.
∑n

i=1 xij = 1 for all j = 1, . . . , n and
∑n

j=1 xij = 1 for
all i = 1, . . . , n. A vector (xij) ∈ A represents the sequence
σ in which xij = 1 if job i ∈ J occupies positionj in σ.
Obviously, there is one to one correspondence between the
sequences of the set of jobsJ and the vectors inA (recall
that there are no precedence constraints inJ). If (xij) ∈ A
corresponds to sequenceσ, then the maximal regret ofσ under
scenario setΓ[λ] can be computed in the following way [10],
[23]:

δ
[λ]

σ = max
(zij)∈A

n
∑

i=1

n
∑

j=1

c
[λ]
ij zij , (18)

where

c
[λ]
ij = p

[λ]
i

j
∑

k=1

(j − k)xik + p[λ]
i

n
∑

k=j+1

(j − k)xik. (19)

Observe that, for a fixedλ, (18) is the classical assignment
problem with the cost coefficients of form (19). We can
construct the dual of (18) and it is well known that this dual
has the same optimal objective function value as (18). So, it
holds:

δ
[λ]

σ = min
n
∑

i=1

θi +
n
∑

i=1

ωi

s.t. θi + ωj ≥ c
[λ]
ij for i, j = 1, . . . , n

(20)

whereθi andωi, i = 1, . . . , n, are unrestricted dual variables
associated with the assignment constraints. Now, using formu-
lation (14), we can represent the fuzzy1||

∑

Ci problem in
the following way:

min λ

s.t.
n
∑

i=1

θi +

n
∑

i=1

ωi ≤ g[1−λ]

θi + ωj ≥ c
[λ]
ij for i, j = 1, . . . , n

(xij) ∈ A
λ ∈ [0, 1]

(21)

where c
[λ]
ij has the form (19). If trapezoidal fuzzy intervals

(p
i
, pi, αi, βi), i = 1, . . . , n, are used to model the uncertain

processing times, then we can substitutep
[λ]
i = pi+(1−λ)βi

and p[λ]
i

= p
i
− (1 − λ)αi in (19). The resulting model is

still not linear because some expressions of the formλxij

appear. However, we can linearize the model by substituting
tij = λxij and adding additional constraintstij − xij ≤ 0,
λ− tij+xij ≤ 1, −λ+ tij ≤ 0, tij ≥ 0 for all i, j = 1, . . . , n.
Hence, the resulting model is a mixed integer linear one and
can be solved by using an available software.

In order to check the efficiency of the MIP formulation
we performed some computational tests. We concluded that
this efficiency depends on the number of jobs and the so
called degree of uncertainty, which is the largest length of
the support of the fuzzy processing times. Namely, the degree
of uncertainty equal toD, means that the support of each
processing time, i.e. the interval[p[0]

i
, p

[0]
i ], i ∈ J , is fully

contained in the interval[0, 100] and its length is at most
D. For each number of jobsn = 20, 30, . . . , 60 and for

each degree of uncertaintyD = 10, 20, . . . , 50, we generated
randomly 5 sample problems. For each instance we fixed the
fuzzy goalG̃ = (0, g, 0, βg), whereg = D andβg = n/3∗D.
We used CPLEX 12.1 solver and a computer equipped with
Intel Core 2 CPU 1.83GHz processor and 1GB RAM to solve
the generated instances. The obtained results are shown in
Table I.

TABLE I
THE AVERAGE COMPUTATIONAL TIMES IN SECONDS FOR VARIOUS

VALUES n AND D.

n/D 10 20 30 40 50
20 0.633 1.248 2.452 3.054 6.713
30 4.065 19.73 33.47 40.55 45.20
40 34.91 80.65 307.93 1489.05 2010.23
50 47.80 632.35 1225.17 2851.81 >3600
60 710.41 1808.84 >3600 >3600 >3600

As we can see from the obtained results, the MIP approach
is efficient if the degree of uncertainty is not large (D ≤ 20).
However, if the degree of uncertainty becomes large, then one
can solve efficiently the problems having up to 60 jobs.

The fuzzy1||
∑

Ci problem is NP-hard. However, its spe-
cial case (13), in which we seek the most necessarily optimal
sequence, can be solved in polynomial time. Namely, let us
fix λ ∈ [0, 1] and consider the interval1||

∑

Ci problem with
scenario setΓ[λ] = [p[λ]

i
, p

[λ]
i ]× · · · × [p[λ]

n
, p

[λ]
n ]. Consider the

scenarioS ∈ Γ[λ] under which the processing timespi(S),
i ∈ J , are of the formpi(S) =

1
2 (p

[λ]
i

+ p
[λ]
i ) for all i ∈ J .

Now we can compute inO(n logn) time an optimal sequence

ρ underS. It turns out thatδ
[λ]

ρ ≤ 2δ
[λ]

σ for all sequences
σ (see [24]). In consequence, if there is a necessarily optimal
sequenceσ such thatδ

[λ]

σ = 0, thenρ must also be necessarily
optimal. We thus have an efficient method of detecting a
necessarily optimal sequence and problem (13) can be solved
in O(n log n log ǫ−1) time by using the binary search shown
in Fig. 3.

D. The fuzzy1|pi = 1|
∑

wiUi problem

In this problem each jobi ∈ J has a unit processing
time, pi = 1, and a precise due datedi. The weights of
jobs i ∈ J are the uncertain parameters, for which possi-
bility distributions µwi

are given. Under each scenario, the
cost of σ is the weighted number of late jobs inσ. The
computational complexity of the fuzzy problem is unknown.
However, if all the due dates are equal, that isd1 = d2 =
· · · = dn = d, then the interval1|pi = 1|

∑

wiUi problem
can be solved inO(nmin{d, n − d}) time [42], [40] and,
consequently, the fuzzy1|pi = 1|

∑

wiUi problem is solvable
in O(nmin{d, n−d} log ǫ−1) time by the binary search shown
in Fig. 3.

If the due dates are not equal, then a method based on
a mixed integer programming model for solving the fuzzy
1|pi = 1|

∑

wiUi problem can be provided. Assume that
the jobs are numbered so thatd1 ≤ d2 ≤ · · · ≤ dn. Let us
introduce binary variablesxi ∈ {0, 1}, i ∈ J , wherexi = 1
if the completion time of jobi does not exceeddi. It can be
shown that under each scenario the number of such on-time



9

jobs in an optimal solution is the same and equalsp (see,
e.g., [36]). Furthermore, the value ofp can be determined in
O(n2) time by a greedy algorithm. In consequence, the set
of the feasible solutions can be described by the following
system of constraints:

x1 ≤ d1
x1 + x2 ≤ d2
. . .
x1 + x2 + · · ·+ xn ≤ dn
x1 + x2 + · · ·+ xn = p
xi ∈ {0, 1} for i ∈ J

(22)

Having a solution to (22), we can construct a sequence by
first processing all the on-time jobs (withxi = 1) in order
of nondecreasing due dates and then all the remaining jobs in
any order. If solution(xi) corresponds to sequenceσ, then the
maximal regret ofσ under scenario setΓ[λ] can be computed
in the following way [40]:

δ
[λ]

σ =

n
∑

i=1

w
[λ]
i xi −min

n
∑

i=1

(w
[λ]
i xi + (w

[λ]
i (1 − xi))yi

y1 ≤ d1
y1 + y2 ≤ d2
. . .
y1 + y2 + · · ·+ yn ≤ dn
y1 + y2 + · · ·+ yn = p
yi ∈ {0, 1} for i ∈ J

(23)
Since the constraints matrix in (23) is totally unimodular,using
the linear programming duality, we can transform (23) into the
following equivalent formulation:

δ
[λ]

σ = min

n
∑

i=1

w
[λ]
i xi +

n
∑

i=1

diθi +

n
∑

i=1

ωi − pγ

−
n
∑

i=j

θi − ωj + γ ≤ w
[λ]
j xj + w

[λ]
j (1− xj) for j ∈ J

θi, ωi ≥ 0 for i ∈ J
(24)

Now, using (14), the final model for the fuzzy1|pi =
1|
∑

wiUi problem takes the following form:

min λ

s.t.
n
∑

i=1

w
[λ]
i xi +

n
∑

i=1

diθi +
n
∑

i=1

ωi − pγ ≤ g[1−λ]

−
n
∑

i=j

θi − ωj + γ ≤ w
[λ]
j xj + w

[λ]
j (1− xj) for j ∈ J

x1 ≤ d1
x1 + x2 ≤ d2
. . .
x1 + x2 + · · ·+ xn ≤ dn
x1 + x2 + · · ·+ xn = p
xi ∈ {0, 1} for i ∈ J
θi, ωi ≥ 0 for i ∈ J

(25)
We can use trapezoidal fuzzy intervals to model the uncertain
weights and make the formulation (25) linear in the same way
as in the fuzzy1||

∑

Ci problem (see Section V-C).

In order to check the efficiency of the MIP approach
we performed some computational tests. As for the problem
discussed in the previous section, this efficiency depends on
the number of jobs and the degree of uncertainty, which is the
largest length of the support of the fuzzy weights. Namely,
the degree of uncertainty equal toD means, that the support
of each fuzzy weight, i.e. the interval[w[0]

i , w
[0]
i ], i ∈ J , is

fully contained in the interval[0, 100] and its length is at most
D. For each number of jobsn = 200, 300, . . . , 600 and for
each degree of uncertaintyD = 10, 20, . . . , 50, we generated
randomly 5 sample problems. For each instance we fixed the
fuzzy goalG̃ = (0, g, 0, βg), whereg = D andβg = n/3∗D.
We used CPLEX 12.1 solver and a computer equipped with
Intel Core 2 CPU 1.83GHz processor and 1GB RAM to solve
the generated instances. The obtained results are shown in
Table II.

TABLE II
THE AVERAGE COMPUTATIONAL TIMES IN SECONDS FOR VARIOUS

VALUES n AND D.

n/D 10 20 30 40 50
200 0.764 0.761 0.614 0.561 0.636
300 1.201 1.323 3.042 4.034 14.95
400 11.06 11.60 12.7 20.13 37.73
500 6.12 19.28 191.32 127.99 781.00
600 8.707 28.79 60.55 428.21 >3600

As we can see from the obtained results, the MIP formu-
lation allows us to solve quite large problems, having up to
600 jobs. The computation times depends on the degree of
uncertainty, especially for the instances with large number of
jobs.

E. The fuzzyF2||Cmax problem

In this problem, each jobi ∈ J must be processed on
two machines, first on machine 1 and then on machine 2.
So we have possibility distributionsµpi1

and µpi2
for the

processing times of jobi on machine 1 and 2, respectively. The
computational complexity of the intervalF2||Cmax problem
is unknown. However, it can be solved by the branch and
bound algorithm proposed in [17], which performs quite well.
Thus, one can use that algorithm as a subroutine in the binary
search presented in Fig. 3 (lines 2 and 8) and obtain a method
of solving the fuzzyF2||Cmax problem. Of course, the effort
required to obtain an optimal solution grows fast with the
problem size. Therefore, developing a better algorithm is a
subject of further research.

VI. CONCLUSIONS

In this paper we have proposed a general framework for
dealing with sequencing problems with uncertain parameters.
The uncertainty has been modeled by possibility distributions
for the values of unknown parameters. Our approach has
several advantages. It collects from a decision maker both
the interval uncertainty representation and likely valuesof
the parameters. Thus, getting this information may be easier
than estimating the probability distributions. Namely, a fuzzy
parameter can be modeled as a trapezoidal fuzzy interval
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whose support contains all the possible parameter values
and the core contains the most likely ones. Furthermore, the
fuzzy problems are generally computationally easier than the
stochastic ones. Finally, the solution concept used in thispaper
is consistent with the popular and widely accepted robust
approach to optimization, where decision makers are interested
in minimizing a solution cost in the worst case. Apart from
showing the general framework, we have also described some
methods to compute a solution. It is very important that
determining an optimal sequence in the fuzzy problem (12)
is not much harder than in the interval case (5). On the other
hand, the NP-hardness of the interval problem implies that the
fuzzy problem is NP-hard as well.

Our approach has also a drawback which, however, ap-
pears in most approaches that model uncertainty. Namely, the
underlying minmax regret sequencing problems with interval
parameters are mostly hard to solve. Furthermore, they do not
possess such nice and general properties which hold true for
the combinatorial problems discussed in [34]. So analyzing
and solving the sequencing problems is more challenging. In
this paper we have applied the fuzzy framework to several
basic problems. There is, however, a large number of different
problems to which this framework can also be applied. Each
of these problems may have its own properties, which should
be explored and this is a subject of further research.

REFERENCES

[1] P. Brucker,Scheduling Algorithms, 5th edition. Hedielberg: Springer
Verlag, 2007.

[2] M. Rothkopf, “Scheduling with random service times,”Management
Science, vol. 12, pp. 707–713, 1966.

[3] M. Uetz, “Algorithms for Deterministic and Stochastic Scheduling,”
Ph.D. dissertation, Institut für Mathematik, TechnischeUniversität
Berlin, 2001.

[4] R. Weber, “Stochastic Scheduling Bibliography,”
http://www.statslab.cam.ac.uk/˜rrw1/stoc_sched/ ,
1995.

[5] X. Wu and X. Zhou, “Stochastic scheduling to minimize expected
maximum lateness,”European Journal of Operational Research, vol.
190, no. 1, pp. 103–115, 2008.

[6] J. Kleinberg, Y. Rabani, and́E. Tardos, “Allocating bandwidth for bursty
connections,”SIAM Journal on Computing, vol. 30, pp. 191—217, 2000.

[7] J. N. Hagstrom, “Computational complexity of pert problems,” Net-
works, vol. 18, pp. 139–147, 1988.

[8] D. Dubois, H. Prade, and P. Smets, “Representing partialignorance,”
IEEE Trans. on Systems, Man and Cybernetics, vol. 26, pp. 361–377,
1996.

[9] S. Ferson and L. Ginzburg, “Different methods are neededto propagate
ignorance and variability,”Reliability Engineering and Systems Safety,
vol. 54, pp. 133–144, 1996.

[10] P. Kouvelis and G. Yu,Robust discrete optimization and its applications.
Boston: Kluwer Academic Publishers, 1997.

[11] R. D. Luce and H. Raiffa,Games and decisions. Introduction and critical
survey. New York: Dover Publications, INC., 1957.

[12] H. Aissi, C. Bazgan, and D. Vanderpooten, “Min–max and min–max
regret versions of combinatorial optimization problems: Asurvey,”
European Journal of Operational Research, vol. 197, pp. 427–438, 2009.

[13] R. Loulou and A. Kanudia, “Minimax regret strategies for greenhouse
gas abatement: methodology and application,”Operation Research Let-
ters, vol. 25, pp. 219–230, 1999.

[14] Y. P. Li, G. H. Huang, and S. L. Nie, “A robust interval-based
minimax-regret analysis approach for the identification ofoptimal water-
resources-allocation strategies under uncertainty,”Resources, Conserva-
tion and Recycling, vol. 54, pp. 86–96, 2009.

[15] Y. P. Li and G. H. Huang, “Minimax Regret Analysis for Municipal Solid
Waste Management: An Interval-Stochastic Programming Approach,”
Journal of the Air & Waste Management Association, vol. 56, pp. 931–
944, 2006.

[16] N. B. Chang and E. Davila, “Siting and Routing Assessment for Solid
Waste Management Under Uncertainty Using the Grey Mini-MaxRegret
Criterion,” Environmental Management, vol. 38, pp. 654–672, 2006.

[17] R. L. Daniels and P. Kouvelis, “Robust scheduling to hedge against
processing time uncertainty in single stage production,”Management
Science, vol. 41, pp. 363–376, 1995.

[18] A. Kasperski, “Minimizing maximal regret in the singlemachine se-
quencing problem with maximum lateness criterion,”Operation Re-
search Letters, vol. 33, no. 4, pp. 431–436, 2005.

[19] P. Kouvelis, R. L. Daniels, and G. L. Vairaktarakis, “Robust scheduling
of a two-machine flow shop with uncertain processing times,”IIE
Transactions, vol. 32, pp. 421–432, 2000.

[20] I. Averbakh, “Minmax regret solutions for minimax optimization prob-
lems with uncertainty,”Operation Research Letters, vol. 27, no. 2, pp.
57–65, 2001.

[21] ——, “The minmax regret permutation flow-shop problem with two
jobs,” European Journal of Operational Research, vol. 169, pp. 761–
766, 2006.

[22] V. Lebedev and I. Averbakh, “Complexity of minimizing the total flow
time with interval data and minmax regret criterion,”Discrete Applied
Mathematics, vol. 154, no. 15, pp. 2167–2177, 2006.

[23] R. Montemanni, “A mixed integer programming formulation for the total
flow time single machine robust scheduling problem with interval data,”
Journal of Mathematical Modelling and Algorithms, vol. 6, no. 2, pp.
287–296, 2007.
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