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Abstract—In this paper a class of sequencing problems with for a survey of recent results and [4] for a bibliography)tha
uncertain parameters is discussed. The uncertainty is moded  overwhelming part of the stochastic scheduling literatitris
by using fuzzy intervals, whose membership functions are e 545;med that the probability distributions describingeutain

garded as possibility distributions for the values of unknavn t K in ad U I ial clag
parameters. It is shown how to use possibility theory to find parameters are known In advance. Usually, Special ClaSses 0

robust solutions under fuzzy parameters - this paper presets a  distributions such as exponential or Gaussian are apptied t
general framework together with applications to some classal model the uncertainty of parameters and typically the etgqaec
sequencing problems. First, the interval sequencing prolims cost of a solution is minimized (see, e.g., [5]). Unfortuetat

with the minmax regret criterion are discussed. The state of most of the stochastic scheduling problems are at least NP-

the art in this area is recalled. Next, the fuzzy sequencing
problems, in which the classical intervals are replaced wikt hard [6], [7] @P-hard) and they are tractable only when

fuzzy ones, are investigated. A possibilistic interpretaon of such SOme assumptions are imposed. Another difficulty, not adway
problems, solution concepts, and algorithms for computinga pointed out, is the possible lack of statistical data vaimtpthe

solution are described. In particular, it is shown that evey fuzzy  choice of the parameter distributions. In fact, the proligbi
problem can be efficiently solved if a polynomial algorithm br the distributions permit us to model the variability of rept

corresponding interval problem with the minmax regret criterion . .
is known. Some methods of dealing with NP-hard problems are parameters, but this approach becomes debatable whengleall

also proposed and the efficiency of these methods is explored With the uncertainty caused by a lack of information [8],.[9]
Even if statistical data are available, they may be paytiall

inadequate, because each problem may take place in a specific
environment, and is not the exact replica of the past ones.
In practice, modeling the uncertainty of parameters in the
. INTRODUCTION form of intervals is natural and simple - a decision maker
N a sequencing problem we wish to find a feasible order pfst needs to provide a minimal value of a parameter and a
elements, called jobs, to achieve some goal. This goal typitaximal one. Moreover, allowing a collection of the minimal
cally depends on job completion times and may also depend@td maximal values may be felt more realistic, if the elicita
some other job parameters such as due dates or weights. Titiere process forces the decision maker to provide as narrow
are a lot of deterministic sequencing problems with diffiéreintervals as possible. Assigning some interval to a paramet
computational properties and a comprehensive descripionmeans that it will take some value within the interval, but
them can be found, for example, in [1]. Unfortunately, mdst dt is not possible to predict at present which one. In this
sequencing problems turned out to be NP-hard, but there amper, each precise instantiation of the parameter valiles w
also some important problems for which efficient polynomidle called ascenario (it is also called aconfigurationor a
algorithms exist. possible worldin formal logic). So ascenario setthe set
Sequencing problems involve many parameters whose exe@ntaining all the possible realizations of the parametérish
values are often ill-known. For instance, a job processingt may occur, is the Cartesian product of all the uncertainty
which is the crucial parameter in all sequencing problemigtervals. No probability distribution over the scenarigt $
is seldom precisely known. Also such job parameters as dgigen. A natural criterion for choosing a solution understhi
dates or weights may be ill-known. This difficulty has beeinterval uncertainty is themaximal regret which expresses
noticed very early in [2], where the author proposed to modéie maximum “distance” of a solution from optimality over
uncertain job processing times by probability distribni@nd all scenarios [10]. A deeper discussion on using the maximal
tried to minimize the expected sum of weighted completioiggret criterion in decision making under uncertainty can b
times of jobs. Since then, there has been an extensivetlitera found in [10], [11].
on stochastic scheduling.e. scheduling problems, in which The maximal regret criterion has been applied to many
uncertain parameters are modeled as random variables3[seérterval versions of basic combinatorial optimization piems
such as: the minimum spanning tree, the shortest path and the
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Section llI-A, because they form a basis of the more general 1: | J2 J1 Js |
framework for dealing with sequencing problems with ill- 2| s Ji Js |
known parameters presented in this paper. N | 7 | T3 |
A decision maker may find it difficult to provide narrowed
intervals for parameters (because she/he may be Wror\ﬂé: 1. A permutation flow shop problem with three machines aischedule
The interval uncertainty may also be considered as pootht corresponds to the sequeri@el, 3).
expressive. So we do not propose the use of intervals as
the final answer to scheduling under uncertainty. A more
elaborate approach could be to collect both the intervalsWe present several applications of the proposed framework
and plausible values from decision makers and, in this case,some classical sequencing problems with fuzzy parame-
fuzzy intervals may be useful. Resorting to fuzzy sets arters. Namely, we discuss single-machine sequencing prable
possibility theory [25] for modelling ill-known parametgithe with the objective function of maximum lateness, maximum
model considered in this paper may help building a tradereighted tardiness, total flow time and weighted number
off between the lack of expressive power of mere intervatd late jobs. We also consider the two-machine flow shop
and the computational difficulties of the stochastic scliadu problem. Hence we provide a set of efficient algorithms for
techniques. In recent years, the application of fuzzy sdteese classical sequencing problems with fuzzy parameters
to modeling the imprecision in optimization has attracted a This paper is organized as follows. In Section Il we recall a
considerable attention. A good review of different conséapt definition of the classical deterministic sequencing peatl
fuzzy optimization can be found in [26]. In papers [27], [28]In Section Il we present the minmax regret approach to
[29] some single machine sequencing problems with fuzzgquencing problems with interval parameters - we provide a
processing times, fuzzy due dates and fuzzy precedence ageneral formulation and recall some known results in thésar
straints have been discussed. In these papers, a fuzzy thie e Section IV we introduce a class of sequencing problems
expresses a degree of satisfaction with a job completioa tiwith fuzzy parameters. We give a link between the fuzzy
and a sequence is computed which maximizes the minimyroblems and the minmax regret ones. We present a general
satisfaction or the sum of satisfactions over all jobs. Bj[the framework and show some methods of solving the fuzzy prob-
model of uncertainty is the same as the one considered in tléms. Finally, in Section V we discuss several applicatiohs
paper, but the assumed solution concepts are differenteNamthe proposed framework to the classical sequencing prablem
the possibility or necessity of job delays is minimized. 31] with fuzzy parameters.
an optimality evaluation of sequences under fuzzy paraimete
has been investigated and this approach is extended here.
In this paper we propose a general framework for dealing
with sequencing problems with uncertain parameters. WeWe are given a set gbbs.J = {Ji, ..., J,}, which may be
generalize the minmax regret approach to the fuzzy cagartially ordered by somprecedence constraintsf the form
by extending the interval uncertainty representation te th — j, wherei, j € J. For the simplicity of notation we will
fuzzy interval one. Fuzzy parameters induce a possibiliigentify each jobJ; € J with its index: € {1,...,n}. A
distribution over the scenario set, which becomes thererictsolution is asequencépermutation)s = (o(1),...,0(n)) of
in information. We provide a possibilistic interpretatiai J and it represents an order in which the jobs are processed.
the fuzzy problem obtained and describe a solution concépisequencer is feasibleif ¢ — j implies that jobj occupies
being an adaptation of the elegant one, originally propospdsition afteri in o. We will denote by2 the set of all feasible
in [32], [33] for fuzzy linear programming. This solutionsequences. We will us€;(c) to denote thecompletion time
concept has been recently adopted in [34] for a class @fjob i in sequence. In asingle machinease, a processing
combinatorial optimization problems. Apart from showing &me p; is given for each jobi € J and if i = o(k), then
general framework, we also point out some difficulties whict’;(c) = Zlepg(j). If every job must be processed an >
arise when one tries to solve a particular problem. Contratymachines, first on machine 1, next on machine 2 and so on,
to the class of combinatorial optimization problems démti then we get germutation flow shop problenm this casep;;
in [34], the sequencing problems are typically harder toesolis a processing time of job on machinej and C;(o) is the
and there are very few general properties which are valid fime when jobi is finished on then-th machine (see Fig. 1).
all these problems. However, as for the problems described
in [34], the main computational difficulties of sequencing For each jobi € J, there is a functionf; : R — R,
problems under uncertainty are in the interval case and tivbich measures the cost of completirigat time ¢. The
algorithms known for the interval uncertainty represeatat popular cost functions arateness L;(t) = t — d;, tardiness
can be generalized to the fuzzy case by using a binary seafE{¢) = max{0,t — d;} andunit penaltyU;(t) =1 if ¢t > d;
This method is efficient if the corresponding minmax regreind U;(¢) = 0 otherwise. One can also consider the weighted
sequencing problem is polynomially solvable. If the minmawersions of these functions, namely; L;(¢), w;T;(t) and
regret sequencing problem is NP-hard, then we proposewdJ;(t). Finally, F(c) denotes a cost of sequenceThere are
mixed integer programing formulation, which can be solved iwo general types of this cost function, namelpaettleneck

II. DETERMINISTIC SEQUENCING PROBLEMS

a parametric approach can also be applied. function F'(o) = Y"1, fi(Ci(0)).



In a deterministic sequencing problem we seek a feasiMeights may be not precisely known. Assume that we have

sequence with the minimum cost, that is we wish to solve tligparameters and the value of a paraméteri = 1,...,1,
following optimization problem: may fall within a closed interva[éi,fi] independently of
. the values of the other parameters, but it is not possible to
min F (o). Q) . : e
ceQ predict at present which value froig ,¢;] the parameter
Our analysis in the next sections of this paper will btakes. We call a parametér preciseif {, = ;. Every vector
based on the concept ofdeviation In the deterministic case S = (s1,...,s;) € R! such thats; € [51_,81-] is called a
the deviation of a sequenee expresses its “distance” to thescenarioand it expresses a possible state of the world, where
optimum and it is defined as follows: & = s; for i = 1,...,1. A scenario is callecextremeif

all the parameters take the lower or upper bounds in their
uncertainty intervals. We usE to denote the set of all the
Obviously,o is optimal if and only if5, — 0. If the deviation possiblg sceparios. Henteis the Cartesian product of all the
is positive, then it measures a “distance’sofrom optimality, UNCcertainty intervals. Now, the cost of a sequencéepends
Sequencing problems are usually described by using g ScenarioS € I' and we will denote it by (o, 5). We will
convenient Graham's notation (see, e.g., [1]). Namelypeve?iSO denote by (S) the cost of an optimal sequence under
sequencing problem can be denoted by a trigléy, where scenarioS. In order to obtain _the valug df”_*(S) we need to
o is the machine environment (= 1 for the single machine SCIVe problem (1) under the fixed realization of paramesers
case),3 specifies the job characteristic anddescribes the 't iS clear that the deviation of also depends on scenaitb
objective function. The following sequencing problems af@d we will denote it by, () = F(0, 5) — £7*(5).
important from both theoretical and practical point of view Now the optimality of a sequence can be characterized

b0 = F(o) — min F(p). )

(see also [1]): by adeviation interval[d,, d,], where
o l|prec|Lmax. In this problem we seek a feasible se-
quence, which minimizes the maximutateness The 4, = ming,(5) =min{F(o,5) - F*(5)}, ()
problem can be solved in polynomial time by using

the well known Lawler’s algorithm [35]. Furthermore, if o = 1?21)55”(8) - %12%({””’ S)-F(8)} @)

there are no precedence constraints between jobs, then an
optimal sequence can be obtained by ordering jobs witthe lower bound), is the minimal deviation and the upper
respect to nondecreasing due dates. bound §, is the maximal deviation ot over the set of

o 1|prec| maxw;T;. In this problem wish to find a feasiblescenariod’. In the existing literature, the quantidy is called
sequence minimizing the maximum weighteddiness the maximal regretof o (see, e.g. [10]) and it expresses the
This problem can also be solved in polynomial time biargest “distance” ofr from the optimum over the scenario
Lawler’s algorithm. setI'. A scenarioS,, for which the deviation ofs attains

e 1]| 3> C;. In this problem there are no precedence comaximum, is called thevorst case scenarifor o. So, under
straints between jobs and we seek a sequence for whtble interval uncertainty representation, we only know that
the sum of completion times of all jobs, i.e. thetal J, € [J,,d,] and we can give the following characterization
flow time is minimal. An optimal sequence can be easilpf a feasible sequence: a sequencés possibly optimalif
obtained by ordering jobs with respect to nondecreasidg = 0 and it is necessarily optimaif 6, = 0. Notice that a
processing times (see, e.g., [1]). sequence is possibly optimal if and only if it is optimal for

e 1llp; = 1| >, w;U;. In this problem there are no precesome scenarié € I" and it is necessarily optimal if and only
dence constraints between jobs and all the jobs have ufiit is optimal for all scenariosS € T'.

processing times. The cost ofis the weighted number Now the question arises, which sequence €fshould
of late jobs. This problem can be solved in polynomiade chosen. A necessarily optimal one is a natural choice.
time by a greedy algorithm [36]. However, it may rarely exist in most practical situations,
o I'm||Cpax. This is the permutation flow shop problempecause the necessary optimality is very strong criterfon.
with m > 1 machines. There are no precedence coBet of potential solutions can be characterized by the qince
straints between jobs and the costofs the completion of a minimal dominant sef38], [39], that is a minimal under
time of the last job on the last machine. This problenmclusion sef2” C Q of sequences, which contains an optimal
is polynomially solvable only whem = 2 by Johnson’s sequence under each scenafioc T. It is easy to see
algorithm (see, e.g., [1]) and becomes strongly NP-hafat the minimal dominant set is a subset of the set of all
for m > 3 (see [37]). possibly optimal sequences. Furthermd®) contains only
The above examples illustrate a large variety of basic sere sequence if and only if o is necessarily optimal. The
quencing models. As we will see in the next section, they haeardinality ofQ” can be seen as a measure of uncertainty in
quite different computational properties under uncetyain  a sequencing problem with interval data and, in the extreme
case P = Q.
Il. INTERVAL SEQUENCING PROBLEMS In this paper, in order to choose a sequence under the
In practice, the exact values of the parameters in a daterval structure of uncertainty, we will consider theléating
guencing problem such as processing times, due datesndnmax regret sequencing problegfor shortlyinterval prob-



lem): solved by using a mixed integer programming formulation
min ¢, = min max 5+(S). (5) proposed in [23]. However, the complexity status of a number
oeQ o€ Ser of basic problems is still unknown. One does not know

We call an optimal solution to (5) minmax regret sequence whetherF2||Cy,.x With interval processing times is NP-hard.

In the next section we briefly recall some known facts o@ne can, however, compute in polynomial time the maximal

problem (5) and its particular cases. regret of a given sequence and solve the problem by using a

branch and bound algorithm [19], [10]. Similarly, the preiol

1lp; = 11> w;U; with interval weights and arbitrary precise

due dates and the problefiprec| maxw;L; with interval

The first problem arising while analyzing a particular minprocessing times, interval due dates and precise weights ar

max regret sequencing problem is the computation of tlkpen. Note that, the former problem can be solved by a

maximal regret of a given sequeneeg that is the quantity mixed integer programming formulation [40]. There are aso

0, (see (4)). Unfortunately, contrary to the class of probleniarge number of different sequencing problems whose minmax

discussed in [34], there is no general method of performimggret versions have never been investigated and theydhoul

this task. For the problems considered in [34], it is possibl be the subject of further research.

find two extreme scenarios that maximize or minimize the de-

viation and, consequently, the computation of the maxireal r IV. FUZZY SEQUENCING PROBLEMS

gret has the same complexity as the deterministic problem. F . ) _

sequencing problems the situation is much more complest Fir !N this section we extend the minmax regret approach,

of all, for some problems there may be no extreme Scenaﬂgesented in the previous section, to the fuzzy case. We Imode

that maximizes (minimizes) the deviation [40]. Furthermor (N€ uncertain parameters by means of fuzzy intervals and

computing the maximal regret may be much more time cofPPly Possibility theory to define the solution conceptst Fo
suming than solving a deterministic problem. For instaiice, @ COmprehensive description of possibility theory we réffer

the minmax regret|| 3~ C; problem with interval processing reader to [25].
times, computing, requires solving an assignment problem,
while an optimal sequence under a given scenario can Ae Basic Notions on Possibility Theory

computed inO(nlogn) time [10], [17]. An extreme case has 5 fuzzy intervalA is a fuzzy set inR whose membership

bgen describgd in [,21]' where a permuta}tion flow shqp prOblqmﬁction 1z is normal, quasi concave and upper semicontinu-
with m machines, interval processing times, and with onlyg s. Itis typically assumed that the support of a fuzzy irger

jobs has been discussed. Since the solution set contaigs %Hbounded. The main property of a fuzzy interval is the fact
two sequences, the total computational effort is focused Bt all its \-cuts. i.e. the setsilt — (2 pi(z) > A}
, 1LE. — . A = ’

computing the maximal regret of a given sequence. Also, fgr - (0,1], are closed intervals. We will assume th&lt! is
the class of comblnat_onal problems d|s§:us§ed N [34]’%'5}' the smallest closed set containing the supporfioSo, every
to show that every minmax regret solution is pos_S|ny Ophma1‘uzzy intervalA can be represented as a family of closed inter-
No such ger_ler_al property is known for sequencing problemvsalsgm — [alV, 3], parametrized by the value afe [0, 1].
Howevleri th'SCLS thti <_:atse f(l)r some partL(_:uIar [?Lr(())blems, fﬂ{ many practical applications, the classtodpezoidal fuzzy
example 152Ci With Interval processing times [10]. _intervalsis used. A trapezoidal fuzzy interval, denoted by a
It is not surprising that the minmax regret sequenci adruple(a, @, , 3), can be represented as the family of
problems are typically hard to solve. There. are only sever ervals[g—_a(l—)\),a—i-ﬂ(l—/\)] for A € [0, 1]. Notice that
problemg which are known to be polynqm|ally solvable. Anis representation contains classical intervals{ 5 = 0) and
_polynomlal aIg_orlthm forl|prec|Linax with interval ProCess- o5l numbers (additionally = @) as the special cases.
ing times and interval due dates has been constructed in [1§]In this paper we adopt a possibilistic interpretation of a

A polynomial algorithm forl|prec| maxw;T; with interval fuzzy interval [25]. Assume that for an uncertain real quan-
weights, precise processing times and precise due dates hgs
i

A. Complexity of Minmax Regret Sequencing Problems

. ; tity~¢ a fuzzy interval with membership functign: is given.
peen propqsed in [20] and e>.<tended to interval processi is membership function expressep@ssibility distribution
times and interval due dates in [41]. Apart from these tw

bl | ial K ‘ r the values of¢, namelyr: = p¢, which describes the
problems, only Some Very special cases areé Known 10 9& ot more or less plausible, mutually exclusive valuesef t
polynomially solvable, for instancé'm||Cy,.x with interval

tity&. It pl le similar t bability density, whil
processing times and only two jobs [21] ang; = 1| > w;U; quantity¢. It plays a role similar to a probability density, while

it encodes a family of probability functions [43]. The value
with interval weights and a precise common due date=£ yorp ty [43]

f ts th ibility d f th i t

dy = --- = d,) [40]. This latter problem is equivalent to theo jg(x-) represEn S 76 pOSSLI 'y egre;e ° egsmg_nmen
. . o ¢ =z, e II({ = z) = me(x) = pe(x), wherell(§ = z) is
minmax regret version of the selecting items problem, WhIC[ e possibility of the event that will take the value ofz. It

* Among the negatie esUts known to cate, he most il €251 seen that eachut ¢ €, 3 & [0, 1], contans
portant one has been obtained in [22], where it has be%lrll the values ofg,-whose p0155|b|llty of 9[§]°””e”°_e s not
shown that the minmax regret] S° C;, problem with interval €SS than. In particular, the interval¢”’, €] contains all

processing times is NP-hard. This problem is also knowthe possible values of, while the interval[g[”,f[l]], called

to be approximable within a ratio of 2 [24] and can bea core contains the most plausible ones. Some methods of



Recall that the statementd”is optimal™ is equivalent to the
assertiond, = 0. Consequently, we can define the degrees
of possible and necessary optimality of a given sequence as

follows:
II(c is optimal) = TI(d, = 0) = us, (0), (10)
N(o is optimal) = N(§, =0)=1-TI(6, > 0) (11)
= 1l—sup us, (o).
>0

As in the interval case, the question of which sequence
should be chosen arises. In order to provide an answer we
adopt a concept first applied to fuzzy linear programming
in [32], [33]. Assume that a decision maker knows his/her
preference about the sequence deviation and expresses it by
using a fuzzy intervalG = (0,7,0,3). The values of the
deviation in[0,g] are fully accepted, the values i+ 3, c0)
are not at all accepted and the degree of acceptance dexrease
from 1 to O in[g,g + 5]. Our aim is to compute a feasible
N(¢ € é) =1-I(¢ ¢ é) = 1—supmin{ue(z),1 —ps(r)} sequence € Q, for which the necessity of the evefit € Gis

zeR maximal, namely we wish to solve the following optimization

obtaining the possibility distribution of an unknown quant
can be found in [25], [44].

Let G be a fuzzy set iR with membership function.
Then¢ € G is afuzzy evenand the necessity thdt € G
holds is defined in the following way (see, e.g., [45]):

. . . (6) problem, called duzzy problem
wherel — ug(z) is the membership function of the comple- ' 3
ment of G. It is not difficult to see that ifG = (0,g,0, 8), max N(d, € G). (12)

then the following equality is true: ocQ

. I Observe that (12) can also be expressed as
NEe@)=1—mf{re0,1]: &7 <gt "y (7

R ) min T1(6, € G%),
andN(E e G)=01if £ > gl Equality (7) is illustrated in o€

Fig. 2. whereG? is the complement ofy with membership function
1 — pg(x). If we fix G = (0,0,0,0) in (12), then we get
B. Possibilistic Sequencing Problem a special case of the fuzzy problem (12), in which we seek
Assume that for each ill-known parametgr i = 1,...,l, a feasible sequence that maximizes the degree of necessary

in a sequencing problem a fuzzy interval with membershigptimality:
function p, is specified. According to the possibilistic inter-

; i S S N(6, =0) = N(o is optimal). 13
pretation, ., is a possibility distribution for the values &f. oea ( ) bea (o is optimal) (13)
As in Section lll, 5 = (s1,...,s;) is a scenario denoting according to equality (7), the problem (12) is equivalent to

a particular realization of the problem parameters. Unber ttne following optimization problem:
assumption that all the parameters are unrelated, thengds-a

sibility distribution over all scenario$ = (si,...,s;) € R min )\A
defined as follows (see, e.g., [46]): st oo <gh=A (14)
l oceN
m(S) = 1 (/\[&- = si]> = min TI(§ =s:) (8) A€ 0,1]
\i=1 B If \* is the optimal objective value and* is an optimal
- mml“fi(si)' solution to problem (14), theN(5,- € G) = 1 — \*. If

i=1,..., o
. .. problem (14) is infeasible, theX\i(é, € G) = 0 for all feasible
So the value ofr(S) is the possibility of the event that thesequences. Of course, if we replace expressigt— with 0

scenarios W'” oceur. lNOt'Ce _that we gen_erahze in this WaYin (14), then we get an equivalent formulation of problem)(13
the scenario sefft ¢ R* described in Section 1ll. Indeed, for =[] .
Let us focus now on the quantld, . The closed interval

the interval uncertainty representatiaitS) = 1if S € T’ Y ) o
and 7(S) = 0 otherwise. In the fuzzy case(S) may take (95 ;05 |, A € [0,1], contains all the values of deviatian,

any value in the interva, 1], so fuzzy intervals allow us to Whose possibility of occurrence is not less thanSo
model the uncertainty in a more sophisticated manner. <A _ o
In the interval case the value of deviatiop falls within a 00 = (s :f(ngZA}{F(U’ S) — F1(9) (15)
closed interval. Analogously, in the fuzzy case it fallshirita .
fuzzy interval with membership functioms_. Of course,us IS the least upper bound db, whosg .p_OSSIbI|Ity of occurrence
is a possibility distribution for the values 6§ and, according !S .not less thanh. From the definition ofr(S) [)SSE_?}\](S)),
to possibility theory, it is defined as follows: It Is easy t([)A]see thaf{s : 7(S) = A} = [ 751)\]] x
po) =TIy =) = s a(S). (@ - * [€%8"] = TP Consequently, the quantify,’ is
7 {S: 6, (S)=a} the maximal regret o& in the minmax regret version of the



1: {Call an algorithm for the minmax regret sequencing problém} (
2: Find a minmax regret sequeneeunderT'[!]
3. if 300 > g% then return 0
4: M1+ 05, k<1, <0
5: while |[A; — Az > e do
6: Ao — A\
{CaII an algorithm for the minmax regret sequencing probléi)} (
Find a minmax regret sequenpeunderl’*1]
if 5" < 5= then
A A —1/2M g p

underling sequencing problem with scenariolsét (see (4)).

In particular, the conditioﬁ[j] = 0 means that is necessarily
optimal unded[],

The fuzzy problem (12) is a generalization of the minmax
regret sequencing problem (5). It follows from the fact that
the interval uncertainty representation is a special cAsheo _.
fuzzy one (a closed interval is a special case of a trapelzoida,
fuzzy interval). If we additionally fixG = (0,0,0, M) for _
a sufficiently largeM, then (14) is equivalent to computing o
a minmax regret sequence. Hence the fuzzy problem is not

simpler than the corresponding minmax regret one and, H els/\e A\ k+1
particular, it is NP-hard if the underlying minmax regret12: dl'l‘(_ 1+1/2
problem is NP-hard. We now discuss three methods of solvirﬁ: Zr:_ Ik: 1

the fuzzy problem (12). 15 end while

1) Binary Search MethodThe most general method of 15 return o
solving the fuzzy problem is binary search (see, e.g., [47])

It is based on the fact tha_i[f] is nonincreasing function of Fig- 3.  The binary search algorithm for solving the problet)(with a
=] ; . iven error tolerance € (0, 1). The algorithm returng if N(6- € G) =0

X € [0,1] andgl'~* is nondecreasing one. In consequenc rall o e Q.

the formulation (14) can be solved by the standard binary

search if we can only decide whether there is a feasible

sequence € Q fulfilling inequality 3 < g~ for a fixed ot given a priori. Let us define

A € [0,1]. This task can be done, if we have an algorithm

for the corresponding minmax regret sequencing problem by . =\

with interval parameters (5). After solving this problent fo 0 = f}g%% 0o AE[0,1]. (16)

scenario sef'’, we get a minmax regret sequenge Then

32] < g~ for somes € Q if and only if g[o_’\] < glt=N. Notice that (16) is a parametric version of the minmax regret

The binary search algorithm is shown in Fig. 3. In lines $equencing problem (5). A solution to this problem is a parti

and 8 an algorithm for solving the minmax regret sequencifign of the unitinterval = Ao < Ay <--- <Ay =110 Aether

problem with interval parameters (5) is used. It is easy twith sequencesy, ..., o) such that; = argminsecq d, for

check that if this algorithm runs irfi(n) time, then the fuzzy all A € [A\;_1, \;]. In other wordsg; minimizes the maximal

problem (12) is solvable i®(f(n)loge ') time, wheres > 0 regret under scenario s&t? for each\ € [\;_1, \;]. In the

is a given error tolerance. Therefore,fifn) is a polynomial absence of fuzzy goal, we can regard the set of sequences

in n then the fuzzy problem is polynomially solvable. We thu®* = {o1,...,0%} as a solution to the fuzzy problem. We

see that the problem with fuzzy parameters can be reduced@n provide the following interpretation of the solutiort se

that of solving a small number of minmax regret sequencify’. The first sequence; is the most conservative one. It

problems. So, every exact algorithm for the minmax regrgtinimizes the maximal regret over all scenari®ssuch that

problem can easily be adapted to the more general fuzz¢S) > 0. It should be chosen by very pessimistic or very risk-

case. Notice that in the problem (13) it is enough to deteaterse decision maker. On the other hand, the last sequence

a necessarily optimal sequence (i.e. such ﬁjﬁt = 0) for ok Minimizes the maximal regret only over the most plausible

scenario sef"™. This may be computationally easier tharfcenarioss, i.e. such thatr(S) = 1. It may be chosen by

solving the minmax regret problem. an optimistic decision maker, who considers only the most

possible states of the world. So the sequencd¥*imepresent

the solutions of different degree of risk or conservatism. |

; X . t that if a fi | is introduced, th f
general method of solving (12). But it requires an exaI casy fo see fhal It a fuzzy goal IS introduce eh one o

: . ) e sequences if2* is an optimal solution to (12). Indeed,

algorithm for the minmax regret sequencing problem (5) to be .
. . - : 7 - according to (14), we choose the sequengesuch that
executed multiple times, which may be time consuming if th € [\i_1, \i], where
underlying interval problem is NP-hard. The formulatiod)1 e
sometimes allows us to design an exact algorithm based on . RSV RN
a mixed integer linear programming (MIP) formulation (see, A" =arg Agl[énl]w ,g- ) (17)
e.g., [48]). The obtained MIP model can be then solved ’
by using some standard off-the-shelf MIP solvers. We Wi\ ing the parametric problem (16) may be time consuming
illustrate this approach in Section V. (see [49], [50], [51] and the references given there) and a
3) Parametric Approach:If a decision maker specifies asolution algorithm should be constructed for every patdicu

fuzzy goalG, then he/she gets an optimal solution accordirggquencing problem (see, e.g., [52], [53]). An example of an
to this goal. However, it is still possible to provide a saut efficient method for a particular sequencing problem will be
concept for the fuzzy problem (12) even if the fuzzy goal iprovided in Section V.

2) Mixed Integer Programming FormulationThe binary
search algorithm, shown in the previous point, is the m



V. APPLICATIONS s 4 Fr(s)
In this section, we provide several applications of the
framework presented in Section IV. Namely, we show how
to solve the fuzzy counterparts of the classical sequencing
problems presented in Section Il. We propose algorithms,

which allow us to solve large problems arising in practice.

A. The fuzzy |prec|Liax problem

Assume that for each jobe J a possibility distributiony,,
for its processing time and a possibility distributiop, for its
due date are specified. Under each scenario, the cesisdhe
maximal lateness ia. The fuzzyl |prec|Lmax problem can be
solved inO(n*loge~1) time by the binary search algorithm
shown in Fig. 3, where > 0 is a given error tolerance. In
lines 2 and 8 the)(n?) algorithm proposed in [18] is called
as a subroutine.

We now consider a restricted version of therec|Lmax  Fig. 5. The functionsi™ + F* (™) for i = 1,...,4.
problem, where only the due dates are fuzzy. For the sintplici
of presentation, we will also assume that there are no prece-
dence constraints between the jobs (the reasoning canibe edd Fig. 5. Now, according to Theorem 1, a solution to the
extended to the problem with arbitrary precedence comsjai Parametric problem (16) is the partitién< 0.37 < 0.7 < 1
We will show how to apply the parametric approach, describé@gether with the sequencés, 3,1,4),(2,1,3,4),(1,2,3,4).
in Section IV-B3, to this problem. Le$!" € I'M be scenario SO, the solution to the fuzzyl|prec|Lmax problem is

under which the due date of jopis d.’\] and the due datesQ* :~{(2’3.’ 1,4),(2,1,3,4),(1,2,3,4)}. Introducmg_a_fuzzy
J goal G, which expresses the preferences of a decision maker,

L ) —[A] .
of all the remaining jobs € J \ {j} ared; . Notice that the 3jlows us to choose one of the sequenceQf
job processing times are the same under all scenarios, which

follows from the assumption that all the processing times

precise. The following theorem is a direct consequence ef ) _ o
result proven in [18]; In this problem, for each jobi € J the possibility

Theorem 1:Given A € [0,1] an optimal minmax regret distributions iy, yia; and p,, for its processing time, due
sequence under scenario &t can be obtained by orderingdaté and weight are given. Under each scenario the cost of
jobs with respect to nondecreasing values_iBf+F*(SlW) o is the maximum weighted tardiness m Under some

Consider a sample problem shown in Fig. 4. Recall thigstrictions, the fuzzy|prec| max w;T; problem can be solved
in polynomial time by the binary search algorithm shown in

Fig. 3. If only the weights are fuzzy (the processing times
and due dates are precise), then in lines 2 and 8he*)
algorithm designed in [20] can be applied. In this case, the
fuzzy 1|prec| max w,T; problem is solvable ifO(n3loge™1!)
time. If the weights and due dates are fuzzy (the processing
. times are precise), then in lines 2 and 8 the:*) algorithm

. Y proposed in [41] can be used and the fuzzy problem is solvable
2 [ in O(n*loge!) time. This algorithm can also be applied if
Fig. 4. A sample problem with 4 jobs, deterministic procegdimesp; = 8,  the processing times are fuzzy. In this case we must, however
p2 =4, p3 = 5, p4 = 10 and fuzzy due dates. make a technical assumption thgf] =0 forall i € J and

A € ]0,1] (see [41)).

F*(Slm) can be obtained by sorting the jobs with respect
to nondecreasing due dates undﬁ}”. Observe that the c. The fuzzyi|| 3 C; problem

ordering of the due dates u_ndﬁj’\] is the same between the  Aggme that for each job € J a possibility distribution
subsequent intersection pointg, A1, Az, ... of the fuz[zg]/ due . for its processing time is specified. Under each scenario,
dates (see Fig. 4). So, the sequenceuch thatF'(s, 5,"') = the cost ofo is the total flow time ino. The fuzzyl|| S C;
F*(sY) is the same for allx € [A;j_1,)\;]. In conse- problem is computationally difficult, because its intersatin-
qguence, it is easy to compute the functi@ﬁ] + F*(SZW) terpart is NP-hard [22]. However, using the formulation)(14
for A € [0,1], which is a piecewise linear one with thewe will provide a method of solving the problem based on the

v

0 037 0.7 RS

?ﬁ. The fuzzyl |prec| max w;T; problem

possible breakpoints g, A1, . ... Furthermore, the numbermixed integer linear programming.
of such breakpoints is E)olynomial in the number of jobs. The Let A be the set of all binary vector;;), i = 1,...,n,
functions QEA] + F*(SZ[A) forall ¢ = 1,...,4 are shown j = 1...,n, fulfilling the so calledassignment constraints



ie. >z =1forall j=1,.

ali=1,..

N andz Lz =1 for

o in Which xz;; = 1 if job ¢ € J occupies positiory in o.
Obviously, there is one to one correspondence between We used CPLEX 12.1 solver and a computer equipped with

sequences of the set of jobsand the vectors ind (recall

that there are no precedence constraints)nlf (z;;) € A
corresponds to sequeneethen the maximal regret af under Table I.

scenario sef' can be computed in the following way [10],

[23]:
<[]
0, = max Zids 18
o zu)eAz;; ig ~4 (18)
where
—pzA]ZJ— k)i, + pi Z j—k)zi.  (19)

k=j+1

each degree of uncertainfy = 10, 20,...,50, we generated

,n. A vector (x”) € A represents the sequenceandomly 5 sample problems. For each instance we fixed the

fuzzy goalG = (0, 9,0, 3,), whereg = D and 8, = n/3 D.
Intel Core 2 CPU 1.83GHz processor and 1GB RAM to solve
the generated instances. The obtained results are shown in

TABLE |
THE AVERAGE COMPUTATIONAL TIMES IN SECONDS FOR VARIOUS
VALUES n AND D.

n/D | 10 20 30 40 50

20 0.633 1.248 2.452 3.054 6.713
30 4.065 19.73 33.47 40.55 45.20
40 34.91 80.65 307.93 1489.05 2010.23
50 47.80 632.35 1225.17  2851.81 >3600

60 710.41 1808.84 >3600 >3600 >3600

Observe that, for a fixed, (18) is the classical assignment As we can see from the obtained results, the MIP approach
problem with the cost coefficients of form (19). We cafk efficient if the degree of uncertainty is not large € 20).
construct the dual of (18) and it is well known that this dughowever, if the degree of uncertainty becomes large, then on
has the same optimal objective function value as (18). SocHin solve efficiently the problems having up to 60 jobs.

holds:

SB] = min i 0; + iwi
i=1 i=1

S.t.

wheref; andw;, i =1,...,

(20)

9+w720 for i,7=1,.

n, are unrestricted dual variables; € J, are of the formp;(S) = %(_E ]

The fuzzyl|| Y_ C; problem is NP-hard. However, its spe-
cial case (13), in which we seek the most necessarily optimal
sequence, can be solved in polynomial time. Namely, let us
fix A € [0,1] and consider the interval|| >~ C; problem with
scenario sef'M = [pp],p?}] X o [pl, 7). Consider the
scenarioS € T under which the processing times(S),
_E’\]) for all i € J.

associated with the assignment constraints. Now, usimgder Now we can compute i) (n 1og n) time an optimal sequence

lation (14), we can represent the fuzzjf >  C; problem in , ynderS. It turns out thats (A

the following way:

min

S.t.

where ¢

(p pmo"uﬂl) Z - 1
processmg times, then we can substr@ifé p;,+(1—

and p

A

Z 0; + Zwi <gt

i=1 (21)
0; +w3>c[]for i,j=1,.

(xi5) € A

A€ 0,1]

A)Bi

still not linear because some expressions of the four)
appear. However, we can linearize the model by substitutiogmputational complexity of the fuzzy problem is unknown.

t;; = Azy; and adding additional constraintsg
A=ty +xi < 1,

— x5 <0,
—A+1t;; <0, t; >0foralld,j=1,...,n

< 233] for all sequences

o (see [24]). In consequence if there is a necessarily optima

<A :

sequence such thav,, = 0, thenp must also be necessarily
optimal. We thus have an efficient method of detecting a
necessarily optimal sequence and problem (13) can be solved
in O(nlognloge~1) time by using the binary search shown
in Fig. 3.

D. The fuzzyl|p;, = 1] > w;U; problem

ij has the form (19). If trapezoidal fuzzy intervals | this problem each job € J has a unit processing
;n, are used to model the uncertaifime, ), = 1, and a precise due dai. The weights of
jobs i € J are the uncertain parameters, for which possi-
= p, — (1 = N)a; in (19). The resulting model is bility distributions 1., are given. Under each scenario, the

cost of o is the weighted number of late jobs . The

However, if all the due dates are equal, thatdis= d, =
- = d, = d, then the intervall|p; = 1| w;U; problem

Hence, the resulting model is a mixed integer linear one agen be solved iNO(nmin{d,n — d}) time [42], [40] and,
can be solved by using an available software.
In order to check the efficiency of the MIP formulationn O(n min{d,n—d}loge~!) time by the binary search shown

we performed some computational tests. We concluded tlat=ig. 3.
this efficiency depends on the number of jobs and the solf the due dates are not equal, then a method based on
called degree of uncertaintywhich is the largest length of a mixed integer programming model for solving the fuzzy

the support of the fuzzy processing times. Namely, the degrgp; =
of uncertainty equal taD, means that the support of eaclthe jobs are numbered so thét < dy <

processing time, i.e. the |nterv@b£0],p o i e J, is fully

contained in the interval0, 100] and its length is at most if the completion time of job does not exceed,.

D. For each number of jobs = shown that under each scenario the number of such on-time

20,30, . ..,

60 and for

consequently, the fuzzyip; = 1| >_ w;U; problem is solvable

11> w;U; problem can be provided. Assume that
- < d,. Let us
introduce binary variables; € {0,1}, i € J, wherex; = 1
It can be



jobs in an optimal solution is the same and equalésee, In order to check the efficiency of the MIP approach
e.g., [36]). Furthermore, the value pfcan be determined in we performed some computational tests. As for the problem
O(n?) time by a greedy algorithm. In consequence, the seiscussed in the previous section, this efficiency depemds o
of the feasible solutions can be described by the followirthe number of jobs and the degree of uncertainty, which is the
system of constraints: largest length of the support of the fuzzy weights. Namely,
the degree of uncertainty equal I» means, that the support
of each fuzzy weight, i.e. the intervéb!”, _EO]], ielJ, is
fully contained in the interval0, 100] and its length is at most
(22) D. For each number of jobs = 200, 300, ...,600 and for
each degree of uncertainfy = 10, 20, ...,50, we generated
randomly 5 sample problems. For each instance we fixed the
fuzzy goalG = (0, 9,0, 3,), whereg = D and 8, = n/3x D.
Having a solution to (22), we can construct a sequence We used CPLEX 12.1 solver and a computer equipped with
first processing all the on-time jobs (with; = 1) in order Intel Core 2 CPU 1.83GHz processor and 1GB RAM to solve
of nondecreasing due dates and then all the remaining jobghe generated instances. The obtained results are shown in
any order. If solutior(z;) corresponds to sequeneethen the Table II.
maximal regret ofr under scenario sdtl* can be computed

z1 < dy
T+ xo < do

T1t T2+ oy S<dy

T1+Ta+ -+ Tp =D
z; € {0,1} for ieJ

TABLE Il

in the following way [40]: THE AVERAGE COMPUTATIONAL TIMES IN SECONDS FOR VARIOUS
VALUES n AND D.
s Al A
0y Zw i — mlnz @+ (w1 - 2y n/D |10 20 30 40 50
200 0.764 0.761 0.614 0.561 0.636
yl S dl 300 1.201 1.323 3.042 4.034 14.95
Y1+ 1y < do 400 11.06 11.60 12.7 20.13 37.73

500 6.12 19.28 191.32 127.99 781.00
600 8.707 28.79 60.55 428.21 >3600

Yi+y2+t-tyn=p

e {01} forie J As we can see from the obtained results, the MIP formu-
Yi ) 1

23) lation allows us to solve quite large problems, having up to

600 jobs. The computation times depends on the degree of
uncertainty, especially for the instances with large nundie
jobs.

Since the constraints matrix in (23) is totally unimodulesing
the linear programming duality, we can transform (23) ifie t .
following equivalent formulation:

g[a/\] _ minzng\]xi + Z d;0; + Zwi —py E. The fuzzyf'2||Cr.ax problem
In this problem, each job € J must be processed on
_Zo —wi < w[ ]I +w[ ](1 —zj)forje two machines, firs_t on machine_ 1 and then on machine 2.
So we have possibility distributiong,,, and p,,, for the

i=j . . . . .
0;,w; >0foricJ processing times of jobon machine 1 and 2, respectively. The
(24) computational complexity of the intervadl2||Cy,.x problem
Now, using (14), the final model for the fuzzy|p; = is unknown. However, it can be solved by the branch and
1) 3> w;U; problem takes the following form: bound algorithm proposed in [17], which performs quite well
. Thus, one can use that algorithm as a subroutine in the binary
min /\n . . search presented in Fig. 3 (lines 2 and 8) and obtain a method
St ngx]xi n Z 4:0; + Zwi < g[l_’\] of solving the fuzzyF2||Ci,.x problem. Of course, the effort

required to obtain an optimal solution grows fast with the
N o problem size. Therefore, developing a better algorithm is a
—Y w4+ <W; a; +w;)" (1 —x;) for j € J  subject of further research.
i=j

ii i;i; <d VI. CONCLUSIONS

In this paper we have proposed a general framework for
T+ T+t <d, dealing with sequencing problems with uncertain pararseter
T+ To+ T, =p The uncertainty has been modeled by possibility distrdngi

z; €{0,1} forie J for the values of unknown parameters. Our approach has
0;,w; >0forieJ several advantages. It collects from a decision maker both

(25) the interval uncertainty representation and likely valués
We can use trapezoidal fuzzy intervals to model the uncertahe parameters. Thus, getting this information may be easie
weights and make the formulation (25) linear in the same wélyan estimating the probability distributions. Namely,ua#y
as in the fuzzyl|| }_ C; problem (see Section V-C). parameter can be modeled as a trapezoidal fuzzy interval
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whose support contains all the possible parameter values N. B. Chang and E. Davila, “Siting and Routing Assesstrien Solid
and the core contains the most likely ones. Furthermore, the
fuzzy problems are generally computationally easier tien 17
stochastic ones. Finally, the solution concept used ingaper

is consistent with the popular and widely accepted rob
approach to optimization, where decision makers are istede

U3k,

in minimizing a solution cost in the worst case. Apart from

showing the general framework, we have also described soH@

methods to compute a solution. It is very important that
determining an optimal sequence in the fuzzy problem (12p]
is not much harder than in the interval case (5). On the other
hand, the NP-hardness of the interval problem implies thet t;,,;
fuzzy problem is NP-hard as well.

Our approach has also a drawback which, however, a%-
pears in most approaches that model uncertainty. Namaly,
underlying minmax regret sequencing problems with interva
parameters are mostly hard to solve. Furthermore, they tlo i8]

possess such nice and general properties which hold true for

the combinatorial problems discussed in [34]. So analyzing
and solving the sequencing problems is more challenging. [f4!
this paper we have applied the fuzzy framework to several
basic problems. There is, however, a large number of difterg2s)
problems to which this framework can also be applied. Each
of these problems may have its own properties, which sholfd
be explored and this is a subject of further research.
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