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Abstract

Complexity results for problems of evaluating the criticality of activities in planar networks with duration time intervals
are presented. We show that the problems of asserting whether an activity is possibly critical, and of computing bounds on
the 2oat of an activity in these networks are NP-complete and NP-hard, respectively.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Project management and scheduling; Complexity; Data intervals

1. Introduction

The critical path method (CPM), worked out by
Kelly and Walker [5] in 1959, is one of the most fre-
quently used tools in Operations Research. It is applied
to the analysis of complex projects from the point of
view of the planning and control of their realization
in time. The essence of the CPM is the representation
of the project by an activity network, where activities
with given duration times are related to each other by
means of precedence constraints. The identiAcation,
in such a network, of the so-called critical activities,
i.e. the activities which, under the assumption of min-
imum project duration, have no time 2oat for their
execution and must be started and completed on
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exactly determined moments, is an important task in
practice.

When the durations of activities are precisely
known, all of the critical activities are easy to identify
in the network by means of the CPM. This problem
reduces to determining the longest or critical paths
in an acyclic activity network. In case of ill-known
activity duration times, the problem becomes more
complicated even if their estimations are modeled by
intervals containing possible duration times. Such a
situation is natural, since many of the activities may
be executed in the project for the Arst time. Strangely
enough, this problem, with such a simple form of
uncertainty representation for activity durations, has
not been analyzed in-depth in the literature so far.
Recently, the authors have studied the possible criti-
cality of paths and activities in networks with duration
time intervals. A path (an activity) is possibly critical
in a network only when there exists a set of exact
values of durations, such that the path (the activity) is
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critical in the usual sense in the network, in which the
time intervals have been replaced by the exact times.
In [1,2], it has been proved that the problem of evalu-
ating the possible criticality of an activity is probably
intractable (NP-complete in the strong sense) for
general networks. At the same time, Fargier et al.
[3] provided polynomial algorithms for this problem
and some related ones, such as the problems of com-
puting bounds on the 2oat and on the latest starting
time of an activity, for the case of series-parallel
networks.

In this paper we show that the problems of evaluat-
ing the possible criticality of an activity and of com-
puting bounds on the 2oat of an activity are probably
intractable even when a network is restricted to be pla-
nar and regular of degree three, exhausting in this way
the analysis of the problems from the point of view of
their computational complexity.

2. Preliminaries

A network S=〈V; A〉 being a project activity-on-arc
model, is given. V is the set of nodes (events), |V | =
n, and A is the set of arcs (activities), |A| = m. The
network S is a directed, connected and acyclic graph.
The set V = {1; 2; : : : ; n} is labeled in such a way that
i¡ j for each activity (i; j)∈A. Weights of the arcs
(activity durations) (i; j)∈A are to be chosen from
intervals Tij = [ tij ; Ktij], tij¿ 0, two nodes 1 and n are
distinguished as the initial and Anal node, respectively.

Let T be a realization of the activity durations
tij ∈Tij, (i; j)∈A, in S. We use tij(T) to denote the
duration of activity (i; j), (i; j)∈A, in realization T.
We denote the set of all paths in S from node 1 to
node n by P.

Let us introduce the notions of possible criticality
of activities and paths in the network S.

De�nition 1. An activity (k; l)∈A (respectively a
path p∈P) is possibly critical in S if there exists a
realization of times T such that (k; l) (respectively
p) is critical in S in the usual sense; after replacing
the time intervals Tij by exact values tij(T); (i; j)∈A.

Similar concepts are proposed in [6] for the span-
ning tree problem. The terms weak tree, weak edge
are used.

In view of the above deAnition we deAne the prob-
lem PAPC: assert whether a given activity (k; l)∈A
is possibly critical in S.

The following statement is obvious. It results from
the deAnition given previously.

Statement 1. An activity (k; l)∈A is possibly critical
in S if and only if it belongs to some possibly critical
path p∈P.

Fargier et al. [3] studied the criticality of activities
from the point of view of 2oats. They considered the
problem of determining the interval Fkl of possible
values of the 2oat fkl for a given activity (k; l)∈A,
i.e. the interval Fkl = [f

kl
; Kfkl] formed by the f

kl
=

minfkl(T) and Kfkl = maxfkl(T), where min and
max are taken over all possible realizations of the
activity durations. fkl(T) is the 2oat of activity (k; l)
in realization T. Float fkl(T) is computed by means
of formula the fkl(T) = tlkl(T) − tekl(T) − tkl(T),
where tekl(T) and tlkl(T) are the earliest start and the
latest Anish times of activity (k; l)∈A in realization T
under the assumption of the minimum project duration
in this realization. A 2oat fkl ∈Fkl if and only if there
exists a realization of times T such that fkl=fkl(T).
The second problem considered in this paper is PAF:
compute bounds on ;oat, f

kl
and Kfkl, of a given

activity (k; l)∈A.
There is an obvious connection between PAPC and

PAF:

Statement 2. An activity (k; l)∈A is possibly critical
in S if and only if f

kl
= 0.

3. Complexity results

In this section we explore the full picture of the
computational complexity of the problems of evalu-
ating the possible criticality and the related ones in a
network with activity duration intervals.

The notions of the possible criticality were thor-
oughly investigated before [1,2]. It was shown there
that the problems of determining an arbitrary possibly
critical path, and of asserting whether a Axed path is
possibly critical, can be solved in polynomial time
(O(n2) and O(n) for general and planar networks,
respectively) and that PAPC for general networks
is strongly NP-complete. Making use of the results
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obtained there and Statement 2, we can now state
that PAF is strongly NP-hard for general networks.
In case of series-parallel networks, PAPC and PAF
were solved by Fargier et al. [3]. They provided O(n)
algorithms for both problems. However, there is an
important class of networks for which complexity
results for the considered problems have not been
obtained, namely, planar networks. The following
results All a gap in the computational complexity of
PAPC and PAF. They give a complete answer to the
question about the complexity of these problems in
the case of planar networks.

Theorem 1. The problem PAPC is NP-complete
even if S is restricted to a planar graph.

Proof. We begin by deAning the problem PAPC for
a planar network:

Input: A connected acyclic planar network S(A; V ),
weights on the arcs (activity duration times) (i; j)∈A
are to be chosen from intervals Tij = [tij ; Ktij], tij¿ 0,
a speciAed activity (k; l)∈A, two nodes 1 and n are
distinguished as the initial and Anal node, respectively.

Question: Is the activity (k; l) possibly critical in S?
In [2], the authors have shown that PAPC for a

general network belongs to NP. The same proof still
goes for PAPC when S is restricted to be planar. It is
based on Statement 1 and the fact that a path p∈P
is possibly critical in S if and only if it is critical in
S in the usual sense when the duration intervals of
all activities on p are at their upper bounds and the
duration intervals of all the remaining activities are at
their lower bounds.

We show now NP-hardness of PAPC for a planar
network by reducing a certain modiAed PARTITION
problem, denoted MPARTITION, to it.

The MPARTITION problem is:
Input: A Anite set A of positive integers, A =

{a1; : : : ; aq}, having the overall sum of 2b and a pos-
itive integer K ¡q.

Question: Is there a subset A′ ⊂ A that sums up
exactly to b and |A′| = K?

It is well known that MPARTITION is NP-complete
(see for instance [4] and comments on PARTITION
given there).

We claim that an instance of MPARTITION is poly-
nomially transformable to an instance of PAPC for a
planar network.

The transformation proceeds as follows. To each
instance of MPARTITION, we associate a net-
work S ′(A′; V ′) with 4q + 3 nodes (events) labeled
1; 2; : : : ; 4q+3 (see Fig. 1). Node 2i, i=1; : : : ; q, is ad-
jacent to nodes 2i−1, 2i+1 and 2(2q−i+2). Arcs (ac-
tivities) (2i−1; 2i), (2i; 2i+1) and (2i; 2(2q− i+2)),
i = 1; : : : ; q, have weight intervals [0; qai], [0; 0] and[
q
∑q

j=i+1 aj + q− i + 1; q
∑q

j=i+1 aj + q− i + 1
]
,

respectively. The one-point intervals have been writ-
ten in Fig. 1 as precise times. There are arcs (2(2q−
i+2)−1; 2(2q− i+2)) with weight interval [0; 0] and
(2(2q− i+ 2); 2(2q− i+ 2) + 1) with weight interval
[0; qaq−i+1], for i=1; : : : ; q. Between nodes 2i−1 and
2i + 1, and similarly, between 2(2q− i + 2) − 1 and
2(2q − i + 2) + 1 there are arcs (2i − 1; 2i + 1) and
(2(2q−i+2)−1; 2(2q−i+2)+1) with weight interval
[1; 1], for i=1; : : : ; q. Node 2q+2 is adjacent to nodes
1, 2q+ 1, 2q+ 3 and 4q+ 3. The arcs (2q+ 1; 2q+ 2)
and (2q+ 2; 2q+ 3) both have weight interval [0; 0].
The arcs (1; 2q+ 2) and (2q+ 2; 4q+ 3) have weight
intervals [qb+q−K; qb+q−K] and [qb+K; qb+K],
respectively. There is an arc (2q + 1; 2q + 3) having
weight interval [0; 0] and this arc is a speciAed activ-
ity. Nodes 1 and 4q+ 3 are the initial and Anal node.
This completes the deAnition of S ′(A′; V ′). Note that
S ′ is a connected acyclic planar digraph. The construc-
tion of S ′ is done in a time bounded by polynomial in
the size of MPARTITION.

Now we prove that there exists a subset A′ ⊂ A
which sums up exactly to b and |A′| = K if and only
if the activity (2q+1; 2q+3) is possibly critical in S ′.

⇒: Let A′ ⊂ A be a subset that sums up exactly
to b and |A′| = K . We show that there exists in S ′

a realization of times such that the speciAed activity
(2q + 1; 2q + 3) is critical, i.e. we determine a path
p∈P containing (2q+ 1; 2q+ 3), which is critical in
this realization.

Let us observe that each element ai ∈A, i=1; : : : ; q,
corresponds to two triangles (2i − 1; 2i; 2i + 1) and
(2(2q− i + 2) − 1; 2(2q− i + 2); 2(2q− i + 2) + 1)
linked by arc (2i; 2(2q−i+2)) (see Fig. 1). If ai ∈A′,
then we include arcs (2i−1; 2i), (2i; 2i+ 1) (the right
portion of the Arst triangle) and (2(2q − i + 2) − 1;
2(2q − i + 2) + 1) (the left portion of the second
triangle) in the path p. Otherwise (ai ∈A \A′), we
include arcs (2i − 1; 2i + 1) (the left portion of the
Arst triangle) and (2(2q− i + 2) − 1; 2(2q− i + 2)),
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Fig. 1. The network S′.

(2(2q− i+ 2); 2(2q− i+ 2) + 1) (the right portion of
the second triangle) in the path p. To complete p we
add the speciAed arc (2q+1; 2q+3). The construction
of p is unique.

Let us consider realization T∗ of the activity dura-
tion times in S ′ determined in the following way:

tij(T∗) =

{
Ktij if (i; j)∈p;
t ij if (i; j) �∈ p: (1)

We will show that path p is critical in S ′ in the real-
ization of time T∗ and thus arc (2q+ 1; 2q+ 3) (that
belongs to p) is a critical activity.

Note that each element ai, i=1; : : : ; q, belongs either
to A′ or to A\A′. So, the determined pathpmust use
either the right portion of the Arst triangle (ai ∈A) and
the left portion of the second one (ai �∈ A\A′) or the
left portion of the Arst (ai �∈ A) and the right portion
of the second triangle (ai ∈A \A′). The subset A′

sums up exactly to b and |A′| = K . Then, the path p
uses K times the right portions and q−K times the left
ones of the triangles, which precede arc (2q+1; 2q+3).
Hence, the length of the subpath of p leading from 1
to 2q + 1 is equal to qb + q − K in T∗. Similarly,
as far as subset A \A′ is concerned, which sums up
exactly to b and |A\A′|=q−K , the path p must use
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q−K times the right portions and K times the left ones
of the triangles, which succeed arc (2q + 1; 2q + 3).
The length of the subpath of p leading from 2q+ 3 to
4q+3 is equal to qb+K in the realization T∗. Hence,
the length of p is 2qb+ q. The rest of paths in S ′, i.e.
paths that traverse parallel arcs to (2q + 1; 2q + 3),
have lengths at most 2qb + q. One may enumerate
these paths:

(1) paths containing one of arcs (2i; 2(2q − i + 2)),
for i = 1; : : : ; q,

(2) paths containing arc (2q+ 1; 2q+ 2),
(3) paths containing arc (2q+ 2; 2q+ 3), and
(4) the path containing arcs (1; 2q+ 2) and (2q+ 2;

4q+ 3) (in this case the path is exactly of length
2qb+ q).

Consequently, the path p is one of the longest paths
in S ′ under T∗ and therefore it is critical in S ′ (it is
possibly critical in S ′, see DeAnition 1). Statement 1
implies possible criticality of activity (2q+1; 2q+3).
⇐=: Assume that the activity (2q + 1; 2q + 3) is

possibly critical in S ′. Then, it is critical in the usual
sense in S ′ under a certain realization of activity times,
say T (see DeAnition 1). Hence, there exists a path
p containing arc (2q+ 1; 2q+ 3), which is critical in
T. Let us change the realization T by a new one T∗,
determined by formula (1). It is clear that for this new
realization the path p is still critical in S ′.

Now we give a property of the path p, which will
be useful further in the proof.

Zigzag property: The path p must use either arcs
(2i−1; 2i), (2i; 2i+1) (the right portion of the trian-
gle, which precedes the speci=ed arc) and arc (2(2q−
i + 2) − 1; 2(2q − i + 2) + 1) (the left portion of
the triangle, which succeeds the speci=ed arc) or arc
(2i−1; 2i+ 1) (the left portion) and arcs (2(2q− i+
2)−1; 2(2q− i+2)), (2(2q− i+2); 2(2q− i+2)+1)
(the right portion), for i = 1; : : : ; q.

To prove Zigzag property, assume to the contrary
that there exist i’s, 16 i6 q, such that path p tra-
verses either arcs (2i−1; 2i+ 1) and (2(2q− i+ 2)−
1; 2(2q − i + 2) + 1) simultaneously, or (2i − 1; 2i),
(2i; 2i + 1), (2(2q − i + 2) − 1; 2(2q − i + 2)) and
(2(2q− i + 2); 2(2q− i + 2) + 1) simultaneously.

Consider the case when i such that path p uses arcs
(2i−1; 2i), (2i; 2i+1), (2(2q−i+2)−1; 2(2q−i+2))
and (2(2q − i + 2); 2(2q − i + 2) + 1), simultane-

ously, does not exist. Then there exists at least one i
such that path p must use arcs (2i − 1; 2i + 1) and
(2(2q− i+ 2)−1; 2(2q− i+ 2) + 1), simultaneously.
We immediately arrive to a contradiction, since there
exists path (1; 2q+2), (2q+2; 4q+3) of length 2qb+q
in the realization T∗, which is longer than p.

Consider the case when there exists at least one i
such that path p uses arcs (2i − 1; 2i), (2i; 2i + 1),
(2(2q− i+ 2)− 1; 2(2q− i+ 2)) and (2(2q− i+ 2);
2(2q− i+ 2) + 1), simultaneously. Let us choose the
largest such i and denote it by i∗. Arc (2i∗; 2(2q −
i∗ + 2)), parallel to the speciAed one, has weight
q
∑q

j=i∗+1 aj+q− i∗ +1. Since i∗ is the largest i such
that path p uses arcs (2i− 1; 2i), (2i; 2i+ 1), (2(2q−
i+2)−1; 2(2q− i+2)) and (2(2q− i+2); 2(2q− i+
2) + 1), simultaneously, the length of the subpath of
p, (2i∗; 2i∗ + 1); : : : ; (2q+ 1; 2q+ 3); : : : ; (2(2q− i∗ +
2)−1; 2(2q− i∗+2)), is at most q

∑q
j=i∗+1 aj+q− i∗

in T∗. This contradicts that p is critical, since there
exists the path containing (2i∗; 2(2q − i∗ + 2)) with
the length greater than the length of p.

Let us return to the main proof. Making use of
Zigzag property we conclude that the path p must tra-
verse q times the right and q times the left portion
of the triangles in S ′. So, for realization T∗ p is of
length 2qb+ q. We show that the subpath of p from
node 1 to 2q+ 1 has length l′ equal to qb+ q−K in
T∗. In order to prove this, assume to the contrary that
l′¡qb+q−K . The subpath of pathp from node 2q+3
to 4q+3 is of length l′′¿qb+K . This implies the ex-
istence of a path with a length greater than l′ + l′′, i.e.
a path containing arcs (1; 2q+ 2); (2q+ 2; 2q+ 3) and
the subpath of p from node 2q+3 to 4q+3. Similarly,
if we assume that l′¿qb+q−K , the subpath of path
p from node 2q+3 to 4q+3 is of length l′′¡qb+K .
This implies the existence of a path longer than l′+l′′.
This path contains the subpath of p from node 1 to
2q+ 1 and arcs (2q+ 1; 2q+ 2); (2q+ 2; 4q+ 3).

The proof that the subpath of path p from node
2q+ 3 to 4q+ 3 is of length qb+K in T∗ is similar.

Let us determine a subset A′. If the subpath of p
from node for 1 to 2q + 1 uses arc (2i − 1; 2i) (the
right portion of the triangle) then ai belongs to A′,
i = 1; : : : ; q. Otherwise (it uses (2i − 1; 2i + 1)) ai
belongs A \ A′. Zigzag property guarantees that ai
does not belong to A′ and A \ A′ simultaneously.
Since the subpath is of length qb+ q− K in T∗ and
qai ¿q− K , for i= 1; : : : ; q, it must use q− K times
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Fig. 2. The transformation in the proof of Theorem 2.

the left portions and K times the right portion of the
triangles. This means that K elements belong to A′

(|A′|=K). Moreover, A′ sums up exactly to b. Note
that q−K arcs from the subpath have weight intervals
[1; 1] (the left portion of the triangles) and they sum
up to q−K . The rest of the arcs from K right portions
of the triangles, corresponding to the elements that
belong to A′, have a sum of weights equal to qb.
Hence,

∑
{ai|ai∈A′ ;16i6q} ai = b. This completes the

proof.

The following theorem shows that planarity and
bounded node degree (the degree of a node is the sum
of the number of its incoming and outgoing arcs) are
not suOcient to keep PAPC from being NP-complete.

Theorem 2. The problem PAPC is NP-complete even
if S is restricted to a planar graph with node degree
three.

Proof. The proof is analogous to that of Theorem 1.
It is evident that PAPC for a planar network with node
degree three belongs to NP. We need to show that
an instance of MPARTITION is polynomially trans-
formable to an instance of PAPC for a planar network
with node degree three. The transformation is divided
into two parts. In the Arst one we associate to each
instance of MPARTITION a directed; acyclic; planar
network S ′(A′; V ′). The construction of S ′ is the same
as in the proof of Theorem 1. In the second part we
transform network S ′; which has maximum node de-
gree four; into a planar network S ′′(A′′; V ′′) with node
degree three. To obtain S ′′; it is enough to split each
node k ∈V ′ with degree four in S ′ (see Fig. 1) by in-
serting an arc (k; k ′) having weight interval [0; 0] (see
Fig. 2). It is easily seen that S ′′ is still a connected
acyclic planar digraph and each node has degree three.
The construction of S ′′ is done in a time bounded by
polynomial in the size of MPARTITION.

It remains to show that there exists a subset A′ ⊂
A that sums up exactly to b and |A′| = K if and

only if the activity (2q+1′; 2q+3) is possibly critical
in S ′′. The proof of this equivalence proceeds in the
same manner as for the network S ′ constructed in the
proof of Theorem 1. Thus, PAPC is NP-complete for
a planar network with node degree three.

From Theorem 2 and Statement 2 we immediately
obtain the computational complexity of PAF.

Corollary 1. The problem PAF is NP-hard even if S
is a planar graph with node degree three.

4. Conclusion

We have shown that the problems of evaluating the
possible criticality of an activity and of computing
bounds on the 2oat of an activity in networks with
duration time intervals remain NP-hard (NP-complete
for the possible criticality) even when networks are
planar and have a bounded node degree. Thus, these
problems are unlikely to have eOcient algorithms.

It is worth pointing out that all results presented here
may be of substantial use in problems of activity criti-
cality in networks with activity duration times given in
the form of fuzzy intervals, when they are stated in the
framework of possibility theory (see [1,3]). Namely,
the problems of computing the possibility degree that
an activity is critical, and of determining the fuzzy
2oat of an activity, also turn out to be NP-hard in the
case of planar networks. This follows from the fact
that every fuzzy interval number can be decomposed
into a family of intervals according to its level-cuts.
Hence, all the interval problems analyzed in the paper
are particular cases of the corresponding fuzzy ones.
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