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Abstract This paper deals with two Recoverable Robust (RR) modelsdarbi-
natorial optimization problems with uncertain costs. Thewdels were originally
proposed by Bising (2012) for the shortest path problerh witcertain costs. In
this paper, we generalize the RR models to a class of contltiabbptimization
problems with uncertain costs and provide new positive agghtive complexity
results in this area.

1 Introduction

LetE = {ey,...,en} be afinite ground set and lgt C 2F be a set of subsets &
called the set of théeasible solutionsA nonnegative coste is given for each ele-
mente € E. A combinatorial optimization problern# with a linear objective func-
tion consists in finding a feasible solutidhwhose total cosiC(X) = ¥ ecx Ce, IS
minimal, namely:

2 )r(rggC(X). 1)
Formulation (1) encompasses a large variety of the cldssarabinatorial opti-
mization problems. In practice, the precise values of tleeneht costs, e € E,
in (1) may be ill-known. This uncertainty can be modeled bgcifying a set of all
possible realizations of the element costs (states of thljwoalledscenariosWe
denote by.7 the set of all scenarios. Formally, a scenario is a veBter(cS)eck,

Adam Kasperski
Institute of Industrial Engineering and Management, aactUniversity of Technology,
Wybrzeze Wyspiahskiego 27, 50-370, Wroctaw, Poladam kasper ski @w . wr oc. pl

Adam Kurpisz
Faculty of Fundamental Problems of Technology, Wroctawversity of Technology, Wybrzeze
Wyspiahskiego 27, 50-370, Wroctaw, Polaadam kur pi sz@w . wr oc. pl

Pawet Zielihski
Faculty of Fundamental Problems of Technology, Wroctawersity of Technology, Wybrzeze
Wyspiahskiego 27, 50-370, Wroctaw, Polapawel . zi el i nski @wr . wr oc. pl



2 Adam Kasperski, Adam Kurpisz, and Pawet Zieliski

that represents an assignment of costs to the elemeislaft CS(A) = T CS,
whereA C E. A popular approach to combinatorial optimization probdef for
hedging against the uncertainty of the element costs, raddsl scenarios, isr@-
bust approachin which we seek a solution minimizing a worst case perforcea
over all scenarios (see, e.g. [9]):

RoB 2: OPTrop= MinCroy(X) = Min nsgf%}cs(xy (2)

In this paper, we investigate twRecoverable Robu$RR) models for combina-
torial optimization problems with uncertain element castder the scenario uncer-
tainty representation. These models were originally psegddn [4] for the shortest
path problem. Here, we generalize them to the combinatogémization prob-
lem (1).

In the Rent-Recoverable Robustodel, we are given eental factora € (0,1)
and aninflation factor 3 > 0. Let C3(X) = aCS(X) be therent costof solution
X € @ under scenari®andC3(X) = minyeo{(1— a)CS(Y) + (a + B)CS(Y \ X)}
be theimplementation cosif solutionX € @ under scenari®. DefineCreni(X) =
maxs-.» {C3(X) + C3(X)}. In the RENT-RR & problem we wish to find a solu-
tion X € @ minimizing Crend X), Nnamely:

RENT-RR 2 : OPTRem:)rpeigcRem(X):)rpeignsg{cs(chﬁ(x». (3)

In thek-Distance-Recoverable Robusbdel, we are given thist stage element
costs ¢, e € E, and arecovery parameter k IN. For a givenX € @ andk, we
will denote by®¥ the set of feasible solutionésuch thatY \ X| < k. LetC}(X) =
S ecx Cs @ndCred X) = Maxee & minvw; CS(Y) be the first stage and recovery costs,

respectively. Defin€pist (X) = Cl(X) +CredX). Inthek-DIST-RR & problem we
seek a solutioXX € @ minimizing Cpist(X), namely:

k-DIST-RR 2 : opTDist:Qqeichist(X):Qqeig{cl(chRec(X)}. (4)

In this paper we consider two methods of describing the setefarios”. In
the discrete scenario uncertainty representatitime scenario set, denoted %,
is defined by explicitly listing all possible scenarios. St = {S;,...,S} is finite
and contains exactli > 1 scenarios. We distinguish theunded casevhere the
number of scenarids is bounded by a constant and thebounded casevhere the
number of scenarioK is a part of the input. In thenterval uncertainty represen-
tation the element costs are only known to belong to closed intefeglce]. Thus,
the set of scenarios, denoted 1, is the Cartesian product of these intervals, i.e.
A = XecE[Ce, Cel-
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2 Rent-RR combinatorial optimization problems

In this section we discuss theERT-RR & problem. We provide some new com-
plexity and approximation results for various probleg#s We now focus on the
discrete scenario uncertainty representation. Consictitiie case wheg? is the
MINIMUM SPANNING TREE. ThenE is the set of edges of a given undirected graph
G = (V,E) and @ contains all spanning trees & (a spanning tree is a subset of
exactly|V| — 1 edges that form an acyclic subgraphG)f

Proposition 1. There is a polynomial time approximation preserving reducfrom
RoB MINIMUM SPANNING TREEtO RENT-RR MINIMUM SPANNING TREE.

Proof. Let (G = (V,E), b = {S1,...,&}) be an instance of & MINIMUM
SPANNING TREE. We build a grapls’ = (V/,E’) by adding an additional nodéto

V and additional parallel edge$, .. ., & of the form{V/, v} for each node € V. We
form the scenario se¥p, = {S,, ..., S} as follows. Ife € E, then the cost o under
S is the same as undé&. The cost of additional edg®, ve V, j e [K], unders,
equals 0 ifj = k andM otherwise, wher®/ = |E| maXece maxsc #, cs. Finally, we
add thedistinguished edgealenoted byf, that connects’ with any node o¥. The
edgef has zero costs under all scenari®s 5’5. Now it is easy to check that every
solutionX’, to the RENT-RR MINIMUM SPANNING TREE in graphG’ and with
scenario seﬂs, whose cost is:Rem(X') < aM (at least one such solution always
exists) is of the fornX’ = X U{f}, whereX is a spanning tree i (X is a solution
to RoB MINIMUM SPANNING TREE). Furthermoré:,s(x') —0forallSe.#,. So,
CrentX ) =a Maxge 1, CI(XU{f}) = a maxse 7, C3(X) = aCrop(X). Therefore,

it is evident that the reduction becomes approximationgykéisg one. O

We now examine the case when is MINIMUM S-T CuT. We are given a graph
G = (V,E) with distinguished two nodesandt and® consists of alk-t-cuts inG,
that is the subset of the edges whose removal disconsaati.

Proposition 2. There is a polynomial time approximation preserving reducfrom
RoB MINIMUM S-T CUT to RENT-RR MINIMUM S-T CUT.

Proof. Let (G = (V,E),%b ={S,...,},S t) be an instance of & MINIMUM

S-T CuT. We form graphG’ = (V/,E’) by adding toV additional nodes?, ... V¥
and edgee' = {t,v},& = {V},V?},..., & = {V*~1 \¥}. Furthermores = sand
t' = ¥, We form the scenario setp, = {S,,...,S} in the following way. Ife€ E,
then the cost oa‘eunderSK is the same as und8y. The cost of additional edg®, j ¢
[K], underS, equals 0 ifj = kandM otherwise, wher& = |E| maxece Maxse o, CS.
The rest of the proof runs similarly as the one of Propositiont

Assume now that” is MINIMUM SELECTING ITEMS, whereE is a set ol items
and® = {X C E: |X| = p}, wherepis a given integer between 1 and

Proposition 3. There is a polynomial time approximation preserving reducfrom
RoOB MINIMUM SELECTING ITEMSto RENT-RR MINIMUM SELECTING ITEMS.
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Proof. Given aninstancée, b = {Sy,..., S}, p) of ROB MINIMUM SELECTING
ITEMS, we formE’ by adding toE addmonal |temse1, ep for eachj € [K]. We
form the scenario se¥y, = {S,, ..., S} in the following way. Ife € E, then the cost
of eunderS, is the same as und&. The cost of additional iterqj, iepl,jelK],

underﬁ< equals 0 iff = kandM otherwise, wher# = |E| maXxece maxse.#, cs. The
reasoning is then similar to that in the proof of Proposition O

Assume now that” is MINIMUM ASSIGNMENT, SO we are given a bipartite graph
G = (V,E) and® consists of all perfect matchings @

Proposition 4. There is a polynomial time approximation preserving reducfrom
RENT-RR SHORTESTPATH with a discrete scenario set ffENT-RR MINIMUM
ASSIGNMENTWith a discrete scenario set.

Proof. In [1] it has been proposed an approximation preserving atolu from
ROB SHORTESTPATH with .%p to RoB MINIMUM ASSIGNMENTWith .%p. A re-
duction from RENT-RR SHORTESTPATH to RENT-RR MINIMUM ASSIGNMENT
is almost the same.O

From some complexity results for the robust versions of tieblems under con-
sideration with a discrete scenario set [2, 3, 6-9] and Rsitipas 1-4, we obtain
the following two theorems:

Theorem 1. For the bounded cas®ENT-RR MINIMUM SPANNING TREE, RENT-
RR MINIMUM ASSIGNMENT and RENT-RR MINIMUM SELECTING ITEMS are
weakly NP-hardRENT-RR MINIMUM s-T CuUT is strongly NP-hard even for two
scenarios.

Theorem 2. For the unbounded cas®ENT-RR MINIMUM sS-T CuT and RENT-
RR MINIMUM ASSIGNMENTare not approximable withitog! ¢ K for any e > 0,
unless NPC DTIME(npO'V"’g”), RENT-RR MINIMUM SPANNING TREEIS not ap-
proximable within Qlog!~¢n) for any £ > 0, where n is the input size, unless NP
C DTIME(nPoY!o9M) and RENT-RR MINIMUM SELECTING ITEMS is not approx-
imable within constant factoy > 1, unless P=NP.

We now show some positive results, which are generalizatbthe results given
in [4], for the shortest path problem. We consider first tlesR” and RENT RR &2
problems with the same discrete scenarioggt

Theorem 3. Suppose that there exists an approximation algorithniRos &2 with
a performance ratio oy. Let Xzop€ @ be a solution constructed by this algorithm.
Then GRent(Xrob) < Min{y+ 1+ B,y/a} - OPTren

Proof. The following bounds can be concluded directly from (2) aBd (

OPTRrent > arr;msrg%c (X) = aOPTrop, OPTrent> mag\r(rygc YY), (5)
Crent(X) = max{aCS( +mlg{(1—a)CS( )+ (a+B)CS(Y\X)}}

< S@;x{acs( )+ (1—a)C(X)} = Cron(X) for all X € ®. (6)
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Creni(Xob) = Max{aC(Xgon) + Min{ (1 — @)C(Y) + (@ + B)CY \ Xon) }} <
<D
. ®)
ya OPTrob+ maxmin{(1—a)C(Y) + (o +B)CY)} < (y+ 1+ B) OPTrent
S S YeD

(6) (5)
Crent(Xrob) < Crob(Xrob) < YOPTrob < (¥/Q) OPTrent: O
We now consider the interval uncertainty representation.

Theorem 4. An optimal solution td(RENT-RR %2 with scenario set#] can be ob-
tained by computing an optimal solution of its determigistunterpart?? with the
COStsCe, e€ E.

Proof. Let X € @ be an optimal solution for? with the cost<,, e € E. Then for
everyX € @ it holds:Cren(X) = MaXsc.# {0 Tecx Co+Minyco{(1—a) Tecy Co+
(@ + B) Yeev\x o} > a SecxCet (1 — a)MiNyco Yecy Te > MiMvep Y ecy Ce =
Y ecx Ce. A trivial verification shows tha€ren(X) = 5 ocxCe. O

3 k-Dist-RR Spanning tree problem

In this section, we prove hardness and inapproximabilgylts fork-Dist-RR MiN-
IMUM SPANNING TREEWith scenario setp.

Theorem 5. The k-Dist-RRMINIMUM SPANNING TREE problem with scenario
set.p is weakly NP-hard in series-parallel graphs, even for twersrios and
any constant k.

Proof. Consider an instance of 2ARTITION [5] in which we are given a se& =
{a1,...,an} and an integer sizg(a) for eacha € A such thaty ;cps(a) = 2b. We
ask if there is a subsé c A such thaty ., s(@) = YacAn s(a). We construct an
instance ok-Dist-RR MINIMUM SPANNING TREE as follows: graptG = (V,E) is

a series composition af + k, 4-edge subgraph§, ...,Gn,Gy,...,G,, whereG
corresponds to elemeat € A andk is a constant. The costs of each eégeE are
given by a triple(cé,ci’l,cgz), wherec} is the first stage cost ard* andcg are the
costs under scenari@ andS,, respectively. The reduction is depicted in Fig. 1,
M > 2b.

(0,0,5(a1))g (0,0,5(a2))g@ (0,0,5(an))g ~ (0,M, M) g (0, M, M) g

(0, s(ay), 0) (0, s(az), 0) (0, s(an), 0) (M, 0,0) (M, 0,0)

Fig. 1 Areduction from 2-RRTITION tok-Dist-RR MINIMUM SPANNING TREE. All the dummy
edges (the dashed edges) have c@t3, 0).

It is not difficult to show that a 2-partition exists if and gnif there exists an
optimal spanning tre¥ in G such thaCp;st(X) = b (see Fig. 1). O
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Theorem 6. For the unbounded case, the k-Dist-RRNIMUM SPANNING TREE
with scenario set?p is strongly NP-hard and not at all approximable unless P=NP.

Proof. We show a gap-introducing reduction from a decision versiod INIMUM
DEGREESPANNING TREE[5]. We are givena grap8 = (V,E) andd € IN, d < |V|.

We ask if there is a spanning tree @isuch that its maximum node degree is not
greater than. For eacte={i, |} € E, we add tcE arecovery edgeg’ = {i, j}', that
connects nodeisand j. The resulting graph‘;' =(V, E') is a multigraph such that
|E'| = 2|E|. All the edges irE have zero first stage costs and all the recovery edges
have the first stage costs equal¢. The scenario se¥p = {S,...,Sy|}. The cost

of edge{u,v} € E under scenari§; equals 1 ifu= j orv= j and 0 otherwise; the
cost of recovery edgéu,v}" under scenari®; equals 0 ifu= j orv= j and|V/|
otherwise. Finally, we sé&t = d. Suppose that the maximum node degree of some
spanning treeX of G is at mostd. Clearly, X is also a spanning tree & and
does not use any recovery edge. Under each sceBado/p, we can decrease the
cost of X to zero be replacing at mokt= d edges incident to nodg with their
recovery counterparts. ThuSpist(X) = 0. On the other hand, €pist(X) = 0, then

the spanning treX of G’ cannot use any recovery edge (because its first stage cost
is positive) and at most edges incident to each noglewhich can be replaced by at
mostk = d recovery edges. Thu§is a spanning tree @ with the maximum node
degreeat mogd. 0O
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