
Wroc law University of Technology
Institute of Mathematics and Computer Science

Numerical experiments
with Higham’s scaled method

for polar decomposition
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Report I18/2006/P-013

Wroc law, 2006, May 6

1



Numerical experiments with Higham’s scaled
method for polar decomposition
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In the paper we present numerical experiments with Higham’s scaled method
for computing the polar decomposition of a matrix. We present also a further
developed theory explaining the phenomena observed in experiments. Both, the
theory and tests show how the numerical properties of algorithms for inversion of
a matrix influence the accuracy of the computed polar factorization. We show, in
particular, that for standard inversion (via GEPP-factorization) the computed polar
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1 Introduction

In the paper we deal with the polar decomposition of a complex nonsingular
matrix A ∈ Cn×n

A = UH, U − unitary, H ∈ HPD, (1.1)

where HPD is the class of Hermitian positive-definite matrices. If A is real
then U is the orthogonal factor for A.

The factorization (1.1) can be computed from the singular values de-
composition of A. However, the iterative methods are alternative ways
to compute (1.1) (see for example [3, 5, 6, 7, 9]). From among iterative
methods for computing the unitary factor U , the scaled Higham’s method
[6] is distinguished because of its efficiency and good behaviour, even for
ill-conditioned matrices A. This phenomenon, confirmed by extensive nu-
merical experiments, is the subject of our interest in [12].
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In Higham’s scaled method [6], denoted by HS, one constructs a sequence
of matrices

Xk+1 =
1
2

(
γkXk +

1
γk

X−H
k

)
, X0 = A, γk > 0, (1.2)

convergent to U (U is the common unitary factor of all Xk). There are
several rules of the choice of scaling parameters γk which increase the speed
of convergence (see [5, 6, 11]).

If matrix A is badly conditioned then the condition numbers of Xk de-
crease very quickly for k = 0, 1, . . . (see [6, 11]). This advantage is burdened
by a fear that the roundoff errors produced by an algorithm for computing
X−1

k can cause inaccuracy of the computed U . Such a loss of the accuracy
in the computed Xk+1 from (1.2) could appear especially in the few initial
iterations when the condition numbers of Xk are large. In all cases when the
numerical HS algorithm converges a good unitarity of the computed Ũ = Xl:

||ŨHŨ − I||2 6 ε0. (1.3)

is achieved (all εs in this paper are of the size of ν, the computing precision).
The problem is whether Ũ is an acceptable unitary factor for A, that means,
whether the following conditions

||ŨĤ −A||2 6 ε1||A||2, Ĥ
df=

1
2

(ŨHA + AHŨ) ∈ HPD (1.4)

hold.
Theoretical analysis of the numerical HS-process was presented in [12].

Our initial intention was to present in this paper only the numerical exper-
iments illustrating these theoretical results and experiments yielding some
information on problems, which we were unable to solve theoretically. But
soon it turned out that we need a further extension of the theory [12] to ex-
plain the phenomena we observe in our experiments. We present this further
developed theory in sections 2 and 4. In section 3 we present our experi-
mental tool: the HSTEST program. The experimental results (and relevant
discussion) are divided in three groups of problems:

(i) the problem of the quality of matrix inversion in the numerical HS-
process. In section 4 we present the theoretical background (an exten-
sion of the theory to the case of the matrix-inversion of worse quality)
and the results of corresponding experiments.

(ii) the problem of too small scaling parameters. Our analysis in [12] in-
dicates the possibility of considerable losses of the accuracy resulting
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from this source. May be the experiments could answer whether such
a danger really exists? In section 5 we present the corresponding ex-
perimental research.

( iii) the problem of the switching criteria. For the convenience of the the-
oretical research we assume in [12] that the sequence {cond2(Xk)}l

k=0

is strictly decreasing. To put this assumption on a safe ground we
introduced there two switching criteria: (1) the switch from (1,∞)-
scaling to the unscaled process, (2) the switch to the last-step mode. In
section 6 we try to answer the question whether these “new criteria”
have any practical advantage.

Section 7 contains final conclusions from both, the theoretical and the ex-
perimental research.

In the next sections HS means: the numerical HS-process (to distinguish
from (1.2), where the theoretical HS is defined).

To simplify the reference to concrete formulae in [12] we add the ′1′

before the section number. Thus, for example, ... see (13.9) means: ... see
(3.9) in [12]. The reference to formula in appendices (A, B, C, D, E, F) in
[12] are left unaltered. Thus ... see (D.7) means: ... see (D.7) in [12].

2 The theory of HS, the numerical Higham’s method

In subsection 2.1 we recall relevant elements of our numerical analysis in
[12], using essentially the same notation. The only major difference is the
interchange of the role of the symbols: Xk and X̃k. Contrary to [12] here X̃k

means the computed iterate and Xk is the matrix defined by the conditions
(2.5) below. (In general neither X̃k nor Xk here is identical with Xk in (1.2),
though both these matrices would tend to Xk from (1.2) when ν → 0).

Subsection 2.2 contains: theorem 2.1 (a stronger version of theorem 3.1
in [12]) and theorem 2.2, an essential supplement to theorem 2.1. Both
theorems constitute our basic tool for explaining some phenomena observed
in experiments.

We use both, the spectral, || · ||2, and the Frobenius, || · ||F , norms of
matrices. An eventual transfer from one norm to another will be expressed
by the function p : Cn×n → [n−1/2, 1]:

p(Ψ) df=

{
1 when Ψ = 0,

||Ψ||2
||Ψ||F otherwise.

(2.1)

We are using this transfer-function explicitly only in a few points, where it
seems to have some importance.
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The next reserved notation is connected with the function f : (0,∞) →
[1,∞):

f(t) df=
1
2

(t + t−1), (2.2)

playing a special role in the description of the HS-process. These reserved
functions “produce” a series of derivate symbols (fk, pk, p+, ...), the values
of f or p on concrete arguments.

Another reserved notation is connected with the following presentation of
the norm of the sum of matrices: ||B+D|| = ||B||+θ||D||, where θ = θ(B,D)
is the mean-value parameter for matrices B,D (defined uniquely when D 6=
0) satisfying the bounds: max{−1, 1− 2||B||/||D||} 6 θ(B,D) 6 1. We will
introduce such “θ”-parameters (θκ, θ′, θ3, . . .) not always defining explicitly
the corresponding matrices B,D, but always assuming the following bounds
on b + θd (when b > 0, d > 0):

max{b− d, d− b} 6 b + θd 6 b + d. (2.3)

Any “θ” appearing in another context satisfies only the bound: |θ| 6 1.
We assume that the computations are performed in the floating-point

arithmetic with the precision ν and that neither under-flow nor over-flow
occurs.

The epsilons (ε0, εx, . . .) are modest multiples of ν. Not all of them must
be positive. We signal it writing, for example, |ε′k| 6 ε. The only exception
(see section 4) are “false epsilons”: ε̌x, ε̌k, . . ., the quantities which ought to
be the true epsilons (and sometimes are) but (due to breaking in experiments
of the basic assumption (2.5)) can be much larger than could be normally
accepted as a modest multiple of ν. Usually these false epsilons satisfy
|ε̌| � 1.

Let us formulate already now the following general assumptions (natural
for a process with effective numerical matrix inversion):

n 6 100, ε̂ cond2(A) < 1, ε̂ < ν2/3 6 10−4 (2.4)

for ε̂ specified in (2.7), (2.5). Our analysis is hence valid also for the weakest
contemporary arithmetic with ν ≈ 10−6; but in our experiments we use the
standard-double arithmetic with ν = νd ≈ 2.2× 10−16.

2.1 Main definitions and relations

Let us consider a nonsingular matrix A ∈ Cn×n and the sequence {X̃k}l
k=0

of matrices (1.2) computed in HS, X̃0 := A.
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Let γk be the chosen scaling parameter in HS and Gk the computed
inverse of X̃k. We assume that there exists a nonsingular matrix Xk, such
that the following relations hold:

Gk = X−1
k +∆′

k, X̃k = Xk +∆k, ||∆′
k||F 6 εg||X−1

k ||2, ||∆k||F 6 εx||Xk||2.
(2.5)

This defines (not uniquely) Xk for k < l. Let us extend it to k = l, assum-
ing Xl

df= X̃l. {Xk} and {X̃k} are neighbour sequences and all important
properties of X̃k are close to those of Xk. It is convenient to describe the HS
in terms of the sequence {Xk}, since this sequence imitates well the relation
(1.2), see (2.6), (2.7).

The assignment-statements Gk := X̃−1
k , X̃k+1 := (X̃k ∗ γk + GH

k /γk)/2
and (2.5) imply the equality

Xk+1 = Zk+1 + Φk+1, Zk+1
df=

1
2

(
γkXk +

1
γk

X−H
k

)
(2.6)

and the bound, compare (4.17), (4.18),

||Φk+1||F 6 ε̂fk, fk
df= ||Zk+1||2, ε̂ = 2εx + εg + 3

√
nν + 0(ν2). (2.7)

Let us consider the SVD of Xk:

Xk = Pkdiag(σ(k)
1 , . . . , σ(k)

n )QH
k , Pk, Qk − unitary, (2.8)

and define dk, the distance of Xk from the unitarity:

dk
df= max

i
|σ(k)

i − 1| = max{σ(k)
max − 1, 1− σ

(k)
min}, (2.9)

where
σ(k)

max
df= max

i
σ

(k)
i , σ

(k)
min

df= min
i

σ
(k)
i . (2.10)

The efficiency of HS depends on how quickly the “errors” {dk}l
k=1 decrease.

The near-unitarity of the computed Ũ
df= Xl depends on the limiting accu-

racy:
d

df= lim sup dk (2.11)

of the conceptional infinite sequence {dk}∞k=0. The last iterate X̃l = Xl,
constructed in HS, should be the first one reaching the level dl . d.

To describe the behaviour of the sequence {dk}, let us define further
quantities:

ck
df= cond2(Xk) =

σ
(k)
max

σ
(k)
min

, γ
(opt)
k

df= (σ(k)
maxσ

(k)
min)−1/2, (2.12)
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ρk
df=

( γk

γ
(opt)
k

)2
, τk

df= max
{

ρk,
1
ρk

}
. (2.13)

The parameters ρk, τk “measure the distance” of γk from γ
(opt)
k , the optimal

scaling parameter, see [6]. From (2.6) and (2.8) it follows

Zk+1 = Pkdiag(σ̂(k)
1 , . . . , σ̂(k)

n )QH
k , σ̂

(k)
i

df= f(σ(k)
i γk). (2.14)

Hence the bounds (see (2.7), (2.12), (2.13)):

1 6 σ̂
(k)
i 6 fk = f(σ̂(k)), σ̂(k) df=

√
ckτk (2.15)

hold. This implies further bounds (see (2.6), (2.7), (2.9)):

1− ε̂fk 6 σ
(k+1)
min , (1− ε̂)fk 6 σ(k+1)

max 6 (1 + ε̂)fk, (2.16)

(1− ε̂)fk − 1 6 dk+1 6 (1 + ε̂)fk − 1, (2.17)

ε̂fk < 1 =⇒ ck+1 6
fk(1 + ε̂)
1− ε̂fk

. (2.18)

For a given matrix Xk (hence for fixed ck and γ
(opt)
k ) τk depends only on

the choice of γk. When γk is close to γ
(opt)
k then τk and fk decrease, hence

the bounds on dk+1, ck+1 improve (and dk+1, ck+1 tend to decrease). The
best case (τk = 1) is, when γk = γ

(opt)
k , what justifies the used terminology.

The minimal reasonable condition on the choice of {γk} (hence on {τk}) can
be formulated in terms of the sequence {σ̂k}, see (2.15): ε̂f(σ̂0) < 1 and
sequence {σ̂(k)}l

k=0 decreasing and approaching 1. This yields in particular
upper bounds (2.18) on {ck}. But for fast reduction of errors {dk}l

k=1 and
for good near-unitarity of Ũ = Xl some stronger upper bounds on {τk} are
necessary. Computing of γ

(opt)
k is expensive. Practical scaling guarantees,

see (12.26) and (12.27):

τ
(1,∞)
k 6 min{

√
n, ck +(ck−1)2

√
n}(1+ετ ), for (1,∞)−scaling (2.19)

τ
(F )
k 6 min{

√
n− 1, ck}(1 + ετ ), for (F )− scaling. (2.20)

With the assumptions (2.4), (2.5) both techniques guarantee fast reduction
of large dk, ck to the level, say: dk 6 2, ck 6 3. But only (2.20) guaran-
tees further fast, quadratic convergence of {dk} to the acceptable limiting
accuracy level: d = lim sup dk . ε̂, see appendix C in [12].
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For (1,∞)-scaling the situation is not clear. In [6] Higham suggests the
switch to the unscaled iterations (γk ≡ 1) with a switch criterion corre-
sponding roughly to the error level dk . 10−2. We do not know whether
such a level will be always achieved with (1,∞)-scaling. In [12] we consider
hence another, safer switch-criterion, corresponding roughly to the error
level dk 6 2 (dk 6 1 when n 6 50). Unscaled iterations guarantee quadratic
convergence of {dk} to the limiting accuracy level: d . ε̂. Practical scaling
will now mean: either (F )-scaling or (1,∞)-scaling with a switch to unscaled
iterations in a right moment to guarantee monotonic decrease of {σ̂k}l

k=0.
In some experiments presented in sections 4 and 5 we modify the normal

HS-process introducing (in a few initial steps only) either matrices Gk not
satisfying (2.5) or scaling parameters γk retarding the convergence. But
these modifications neither destroy the monotonic decrease of {σ̂k} nor in-
fluence the final convergence.

Assuming that also in (F )-scaling the last step is unscaled (and using
Xl = X̃l) we obtain a better bound on dl than ε̂:

dl . εl
df=

1
2
p′(εx + εg + 2

√
nν), p′

df= p(ϑXl), (2.21)

where the matrix ϑXl is defined in (12.8). Hence (1.3) is valid with ε0 ≈
p′(εx + εg + 2

√
nν). We achieve a good near unitarity of Ũ = X̃l!

Let the abbreviations: AUF, APF mean: approximate unitary factor, ap-
proximate polar factors, respectively. We turn now to the crucial problem
(1.4):

how good is Ũ as an AUF ofA? (2.22)

Our way to answer this question is long. It consists in the following: replac-
ing Ũ with the unitary factor U of Ũ , answering a sequence of questions:

How good is U as an AUF of X? (2.23)

for X = Xk (k = l, l − 1, . . . , 0) and for X = A. and returning to the
question (2.22). For any H ∈ HPD the equality

UH = X + ∆ (2.24)

means that the matrices {U,H} are APF of X with accuracy:

ϑ(H) df=
||∆||F
||X||2

, ∆ df= UH −X. (2.25)
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The accuracy of U as an AUF of X corresponds to matrices H ∈ HPD
minimizing the error ϑ(H):

acc(U,X) df= inf
H∈HPD

||UH −X||F
||X||2

. (2.26)

Hence U is AUF of X with the error acc(U,X), but this must not mean
that in HPD exists such a H that the matrices {U,H} are APF of X with
the error (2.26). Namely, it is known, see [1, pp.214–215] that defining the
following matrices (and a number):

Bux
df= UHX, Hux

df=
1
2

(
Bux + BH

ux

)
, δux

df=
||Bux −BH

ux||F
2||X||2

(2.27)

we obtain the excluding alternative: either Hux ∈ HPD, then acc(U,X) =
ϑ(Hux) = δux and Hux is the unique minimizer of ϑ(H), or Hux /∈ HPD,
then acc(U,X) > δux and ϑ(H) > δux holds for any H ∈ HPD .

Let us consider hence only the case: Hux ∈ HPD. U is AUF of X with
the error δux. U is the better AUF of X the smaller δux is. U is a good
AUF of X if δux is a modest multiple of ν (the highest quality of numerical
computation). The same terminology will be used for matrices {U,Hux} as
APF of X.

Remark 2.1. We chose the Frobenius norm in (2.25), (2.26) since there
exists constructive matrix-approximation theory in this norm, yielding the
minimizer Hux. If we choose, instead of (2.25), the definition:

ϑ2(H) df=
||∆||2
||X||2

, ∆ df= UH −X (2.28)

of the relative error, then the matrices {U,Hux} are APF of X with the error
puxδux, where pux

df= p(Bux − BH
ux), see (2.1), (2.27). But in general Hux is

not a minimizer of ϑ2(H) in HPD.

Let us define for k = 0, . . . , l the following matrices and numbers:

Bk
df= UHXk, Hk

df=
1
2

(Bk + BH
k ), δk

df=
||Xk − UHk||F

||Xk||2
. (2.29)

For good numerical behaviour of the HS-process U should be a good AUF for
all Xk, 0 6 k 6 l(Hk ∈ HPD, δk a modest multiple of ν). The same holds
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for the neighbour-sequence {X̃k}l
k=0. Considering the polar decomposition

of Ũ we find:
Ũ = UHu, Hl = Hu ∈ HPD, δl = 0. (2.30)

This is a good start for BIT, the backward-induction theorem (see the next
section). Assuming Hk+1 ∈ HPD we give there (in terms of: δk+1, ρk, ck, ε̂):
an explicit formula for δk and a condition, sufficient for the positive definite-
ness of Hk. This opens a way to get some a priori idea about the relevant
properties of the sequences {Hk}, {δk}.

We must be prepared that U can be a worser AUF for Xk than for Xk+1:
δk > δk+1, since the rounding errors in computing Gk and X̃k+1 can partly
spoil the information on X̃k transferred to X̃k+1 (hence also to X̃l = Ũ).
Our research in the next sections depends on indicating the “benign rounding
errors”, such that δk is at most slightly larger than δk+1, and on revealing
“dangerous rounding errors”, such that δk � δk+1 can succeed.

Let us close this section with an answer to the question (2.22), given
in terms of the pair {δ0,H0}. We present the following lemma, skipping a
banal proof.

Lemma 2.1. Let us assume that (2.5) is satisfied for k = 0 and let us
consider the computed APF {Ũ , H̃} of A:

Ũ := X̃l, B̃ := ŨH ∗A, H̃ := (B̃ + B̃H)/2. (2.31)

(i) If H0 ∈ HPD and cond2(A) ∗ (δ0 + 2ε′) < 1 holds, ε′ ≈ εx + ν
√

n, then
Ha

df= (UHA + AHU)/2 ∈ HPD and the bound |acc(U,A) − δ0| 6 ε′

holds.

(ii) If H0 ∈ HPD and cond2(A) ∗ (p̂0δ0 + εI) < 1 holds, see (2.32), then
H̃ ∈ HPD and the bound∣∣∣ ||ŨH̃ −A||2

||A||2
− p̂0δ0

∣∣∣ 6 εI ≈ 2εx + εg + νm(
√

n), p̂0
df= p(UH0 −X0),

(2.32)
holds where m(t) is a modest polynomial in t, depending on the way
of computing B̃ in (2.31).

Remarks 2.2. Lemma 2.1 is valid also when δ0 is not a modest multiple of
ν. If G0 is not satisfying (2.5) then the quantities εx, εg in lemma 2.1 should
be replaced with ϕ̂0, see theorem 4.1. Note that H̃ = Ĥ holds, see (1.4), if
arithmetic operations in (2.31) are performed exactly.
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Conclusion 2.1. U (or Ũ) is a good AUF of A iff {U,H0} are good APF of
X0 and the matrix A is sufficiently well conditioned. The same holds for
{Ũ , H̃}, the computed APF of A.

2.2 BIT4, the backward-induction theorem

Let U be the unitary polar factor of Ũ = X̃l = Xl and let us define the
quantities

ξ∗k
df= ||Ψk+1||F , ϑ′k

df= ξ∗kf−1
k , ξ′k

df= ||Ψk+1||2, rk
df=

fk

f(||Yk||2)
(2.33)

where (see (2.6), (2.7), (2.29))

Ψk+1
df= UHk+1 − Zk+1, Yk

df= Xkγk. (2.34)

Theorem 2.1. (BIT4) If the relations

ξ′k < 1, Hk+1 ∈ HPD (2.35)

are satisfied then there exist non-negative numbers: χk, µk, κk, λk either all
equal to zero or fulfilling the inequalities:

µk < χk 6 1, κk < 1, λk < 1, (2.36)

and such that the following two relations:

δk = ϑ′k(χk + θkκkζk)rk, (2.37)

ϑ′k|µk + θ′kλkζk|rkck < 1 implies Hk ∈ HPD, (2.38)

hold where

ck
df= cond2(Xk), ζk

df=
(3
√

2 + 2)ξ′k
2− ξ′k

. (2.39)

Proof. We present here only a main idea of the proof. We are using the
index-free notation as in appendix D in [12]. Let us introduce the matrices:

Y = Xγ = PΣQH , Σ = diag(σi), Σ∗ = diag(σ∗i ), (σ∗i = f(σi)),

Dz, Du, Dh, L = Σ∗DH
u Du = DH

z Du+DhDH
u , see (D.19)–(D.23) and (D.29).

Let us introduce also the matrix Ξ = [Ξij ]
df= Dz −DH

z .
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From (D.16), (D.17) follows that the relations (2.37), (2.38) are equiv-
alent to: δy = ||S−||F (2σmax)−1 and ||S+||2 < 2σmin implies Hy ∈ HPD,

where σmax
df= max{σi}, σmin

df= min{σi} and S−, S+ are defined in (D.25).
The case: χ = µ = κ = λ = 0 succeeds iff Ξ = 0 holds. Otherwise we
obtain explicit expressions for these parameters applying the mean-values
presentation to the F -norms of the matrices

S± = [ω(±)
ij Ξij ] + Φ±, Φ±

df= [ω(±)
ij Πij ]− [ω(−)

ij F
(±)
ij ],

where Π = [Πij ]
df= DhDH

u −DuDh, F (±) = [F (±)
ij ] df= [ρji(LH)ij ± ρijLij ],

ω
(±)
ij

df=
±σi − σj

σ∗i + σ∗j
, ρji

df=
σj

σi + σj
.

In particular, with ω
df= max{|ω(−)

ij |}, we obtain: χ = χ̃(Ξ)dΞ, where χ̃(Ξ) df=

||[ω(−)
ij Ξij ]||F /(ω||Ξ||F ), dΞ

df= ||Ξ||F /(2||Dz||F ). 2

Remarks 2.3.

(i) The assumption (2.5) implies (2.6), (2.7), hence

ϑ′k = |δk+1(1 + ε′k) + ε′k|, |ε′k| 6 ε̂, (2.40)

holds since, see (2.29), ξ∗k = δk+1||Xk+1||2 + θ′′k ||Φk+1||F . In section 4
we apply BIT4 also in cases, when (2.5) is not satisfied (this happens
only for large ck and modifies in (2.40) only the bound on |ε′k|).

(ii) If (2.5) is satisfied then the following relations:

ϑ′k 6 ϑk, ξ′k = pkξ
∗
k 6 pkξk, pk

df= p(Ψk+1), (2.41)

hold, where ϑk, ξk are defined in (13.9). The quantity rk in (2.33) is
identical with rk in (13.9), hence

rk = max{1, (ck + ρk)(ckρk + 1)−1}. (2.42)

(iii) The bounds (2.36), (2.40) and (2.41) show that BIT4 implies theorem
3.1 in [12] (the old version of BIT).

(iv) The inequalities (2.36) cover all special cases for the parameters χk, µk, κk, λk

(provided not all are equal to zero). But the construction of these
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quantities in the proof shows that in most cases stronger relations can
be expected (provided χk > 0 holds):

µk � χk < 1, κk � 1, λk � 1. (2.43)

Closer information on χk (its dependence on Xk and ρk) will be pre-
sented in theorem 2.2.

Usually the quantities {ξ′k}
l−1
k=0 are initially fast decreasing until they

reach the level ε. In the normal realization of HS (practical scaling, all
matrices Gk satisfying (2.5)) the potentially largest quantity ξ′0 ≈ p0|δ1 +

ε′0|f(
√

c0τ0) is small, is at most of the order (K1 + 1)ε1/2,K1
df= δ1/ε̂.

In our normal experiments typically ξ′0 6 10−7 holds. In experiments
with modified scaling the values ξ′0 are larger, but never exceed 10−3. Only
in experiments with matrices Gk not satisfying (2.5) larger ξ′0, close to 1 or
even larger than 1, appear (but for k > 0 all ξ′k are small, say: ξ′k . 10−4).

Corollary 2.1. In the case when ξ′k � 1 holds, the following simplified
version of BIT4 can be applied:

• If Hk+1 ∈ HPD then there exists real number χk ∈ [0, 1], such that
the following approximate relations hold:

δk ≈ ϑ′kχkrk, (2.44)

δkck . 1 implies Hk ∈ HPD. (2.45)

• If matrices Gk, Gk+1 satisfy (2.5) then we have

δk ≈ |δk+1 + ε′k|χkrk, |ε′k| 6 ε̂. (2.46)

Remarks 2.4.

(i) The implication (2.45) has an informative character. Due to (2.43)
Hk ∈ HPD is quite probable even when δkck � 1 holds (for example,
say: δkck ≈ 10). On the other hand we have not succeeded to prove
rigorously that δkck < 1 implies Hk ∈ HPD (though we suppose this
might be true in HS).

(ii) When c0 is large the relation ck � c0 for k > 0 is typical for all
“normal” realizations of HS. Hence for k > 0 the implication (2.45)
yields usually Hk ∈ HPD provided δk is a modest multiple of ε̂, see
(2.4). This means the continuation of the backward induction while δk

are modest multiples of ε̂. (When c0 is “small”, say: c0 < 30, then all
δk are modest multiples of ε̂, all Hk ∈ HPD, see further discussion).
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The conclusion 2.1 makes it clear that we can be satisfied with the com-
puted solutions {Ũ , H̃} only if H0 ∈ HPD and δ0 is a modest multiple of
ν (a very modest multiple of ε̂). To be on the safe side it is reasonable to
expect the same for all {Hk, δk}, k > 0.

In the initial steps: k = l−1, l−2, . . . , s of the backward-induction, when
ck are only slightly larger than 1, the additive character of the recursion
(2.46) prevails and the bounds δk . δk+1 + ε̂ . (l − k)ε̂ (s 6 k < l) hold
(see (2.30) and note that - due to: rk = 1 or rk only slightly larger than 1 -
χkrk . 1 holds).

For k < s {ck} are already distinctly larger than 1, rk can be even close
to ρ−1

k (when ρk < 1), hence the multiplicative character of (2.46) can
prevail in some steps of the backward induction, acting destructively when
χkrk > 1 or soothingly when χkrk < 1 holds.

The multiplier χk acts always “soothingly”. Theorem 2.2 shows that for
fixed Xk χk tends essentially to decrease with ρk, if ρk is sufficiently small.

Theorem 2.2. Let us assume: ξ′k � 1,Hk+1 ∈ HPD and ηk
df= ||Φk+1||F f−1

k �
1, see (2.6). If χk > 0 then there exist the numbers d̂k ∈ (0, 1], depending
only on matrices U,Xk+1, Zk+1, and wk ∈ (c−1

k , ck), depending only on ma-
trices U,Xk (hence independent of ρk), such that χk can be presented in the
form:

χk = d̂kχ̂k + 0(ξ′k), (2.47)

where:
δk+1 > ηk implies d̂k &

√
1− (ηkδ

−1
k+1)2, (2.48)

χ̂k ∈
[(c−1

k + ρk)wk

1 + wkρk
, min{1, (c−1

k + ρk)wk}
]
. (2.49)

Proof. We present here only a main idea of the proof using the same index-
free notation as in appendix D [12] and in the proof of theorem 2.1.

The relation (2.47) follows with (see the proof of theorem 2.1) d̂k =
dΞ = ||Ξ||F /(2||Dz||F ), χ̂k

df= ||[ω(−)
ij Wij ]||F /(ω||W ||F ), where (see (D.27))

W = Ξ − Ω = Σ∗Du + DuΣ∗ = [(σ∗i + σ∗j )Dij ], Du = [Dij ],Ω
df= DuDh +

DH
z Du, ||Ω||F = O((ξ∗)2). Let us note that, see (2.8), (2.12), (2.13), σi =

γkσ
(k)
i =

√
ρkσ̂i, σ̂i = γ

(opt)
k σ

(k)
i and χ̂k can be presented in the form

χ̂k =
(ρk + c−1

k )||Tk||F
||ρkTk + Nk||F

, Tk
df= [(σ̂i + σ̂j)Dij ], Nk

df= [(σ̂−1
i + σ̂−1

j )Dij ].

14



The quantities {σ̂i}, the matrices Du, Tk, Nk depend only on Xk, U (are not
depending on γk, or ρk). We find further that χ̂k decreases with ρk (at
least for sufficiently small ρk) and satisfies the bounds (2.49) with wk

df=
||Tk||F /||Nk||F .

The relation (2.48) is a consequence of the orthogonality of the matrix Ξ
to the matrix Dz +DH

z in the space Cn×n of matrices with the inner product
(D,B) df= tr(DHB) (see that Dz = (I + Du)Ψ + PH(X − Z)Q = Ψ + R
and Ψ = −ΨH , ||Ψ||F = δx||X||2(≈ δk+1fk) and ||R||F = ||X − Z||F +
Θ||DuΨ||F ). 2

Remarks 2.5.

(i) The construction of the quantities χ̂k, wk, in the proof, indicates that:

• χ̂k is an increasing function of ρk (decreases with ρk).

• wk � 1 happens probably when the majority of {σ(k)
i } is smaller

distinctly than αk
df=

√
σ

(k)
maxσ

(k)
min, see (2.8), (2.10).

• wk � 1 happens probably when the majority of {σ(k)
i } is larger

distinctly than αk.

(ii) When δk+1 . ηk then both factors, d̂k and χ̂k, can contribute signif-
icantly to the eventual smallness of χk. When δk+1 � ηk then d̂k is
close to 1 and the eventual smallness of χk can result only when χ̂k is
small.

(iii) When ck is large, ρk � 1 and δk+1 � ηk then the ability of χk to
reduce significantly the multiplier rk, rk � 1, depends only on wk:

wk

1 + wkρk
. χkrk ≈ χ̂krk . min{rk, wk}.

All this means that with the danger, that in the backward induction
large rk would appear, exists an uncertain antidote for it: a chance (not
guarantee!) that χkrk � rk holds. Unfortunately, this antidote not always
acts sufficiently effectively when frequently large rk appear.

In practical scaling ρk ∈ [n−1/2, n1/2] holds, see (2.19), (2.20), (2.13).
From observation, the frequency of the cases ρk close to n1/2 or close to n−1/2

is small. When c0 is large then initially {ck} decrease very quickly, hence
large rk (close to

√
n) could appear only in a few last steps of the backward
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induction, say: for k = 4, 3, 2, 1, 0. Regarding the soothing influence of the
multipliers χk, the following conclusion seems to be justified:

Conclusion 2.2. In HS with practical scaling and good matrix-inversion
(2.5) there are fair chances that all {δk} will be modest multiples of ε̂.
Hence Hk ∈ HPD for k > 0. Also H0 ∈ HPD if c0ε̂ � 1 holds. Otherwise,
the positive definiteness of H0 is probable but not sure.

Till now all our experiments confirm this optimistic hypothesis. This
does not eliminate the theoretical danger that for some, not detected yet,
matrix A (probably cond (A) and n large) the multiplicative blow-up in
the last few steps of the backward-induction would succeed yielding δ0 of
the order ε̂nq with q distinctly larger than 1

2 . There are some arguments
contradicting this pessimistic warning, see section 5.

Corollary 2.2. The pair {X ′
k, γ

′
k},

X ′
k

df= X−H
k = PkΣ−1

k QH
k , γ′k

df= γ−1
k , (2.50)

see (2.8), plays in (2.7) “symmetrically” the same role as the pair {Xk, γk}.
Hence theorems 2.1, 2.2 and corollary 2.1 can be used to express explicitly
also the accuracy δ′k of U as an AUF of the matrix X ′

k
df= X−H

k . This means
that theorems 2.1 and 2.2 can be tested on both matrices, X̃k and GH

k .
These experiments show good consistency with the theory. In the following
we will report only the behaviour of the computed sequence {δk}.

3 Tools for numerical experiments

Our experiments were performed only on real matrices, A ∈ Rn×n, n 6 35.
Some modifications of scaling allowed us to simulate the behaviour of the
HS-process for larger dimensions, say 35 < n 6 100.

3.1 Numerical arithmetic, the epsilons

Our experiments were performed in MATLAB, which has a unit roundoff
ν = νd ≈ 2.2 × 10−16. We apply systematically the cumulation of “inner-
products” on variables of the extended-type, ν = νe ≈ 10−19, what reduces
distinctly the cumulation of errors “on the level 10−16” and allows to com-
pute some relative residuals with the errors not exceeding 10−18. The com-
putations with higher accuracy were done by means of MATLAB SYMBOLIC
MATH Toolbox.
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In the evaluation of the HSTEST-results a main role play the epsilons:
εx, εg, ε̂, εl, see (2.5), (2.7), (2.21), and the bound εs:

||X − PΣQH ||2
||X||2

6 εs, X ∈ Rn×n, (3.1)

where P, Σ, Q are the factors obtained in the numerical SVD of X. All these
epsilons correspond to 0(n3)-operations processes. The observations of the
computed values of the quantities {δk, δ

′
k, e

(L)
k , e

(R)
k }, see (2.29), corollary 2.2

and (3.6), seem to indicate the relation: eps ≈
√

n10−16, for an average
bound on the errors in such processes as GEPP or GECP matrix-inversion.
Only εs is probably distinctly larger: εs = eps ∗ z (we chose z = 2). This
influences the bounds εx, εg (consequently also ε̂) only in the subsection 4.5:
εx ≈ εg . z ∗ eps.

3.2 The HSTEST-program

For given matrix A ∈ Rn×n and the chosen number eps HSTEST performs the
double-sweep process, computing in both sweeps the same iterates {X̃k}l

k=0

(X̃0 := A) (that means: using the same computed inverses Gk, the same scal-
ing parameters γk and the same stopping criterion defining the last computed
iterate: X̃l = Ũ). In both sweeps essential quantities are computed and
(eventually) printed, presenting only three leading decimals in each printed
result.

In the first sweep {σ(k)
max, σ

(k)
min, γk}, k = 0, . . . , l − 1, are computed (and

stored to be used also in the second sweep). After finishing the first sweep
the quantity ∆l

df= ||X̃T
l X̃l − I||F is computed and printed. (If some other

tested stopping criterion indicates X̃l′ , l
′ 6 l, as the final iterate then also

∆l′ is computed and printed).
The matrix Ũ = X̃l, computed in the first sweep, will be used in the

second sweep for computing the quantities δk, δ
′
k (see corollary 2.2).

In the second sweep in each step (k = 0, . . . , l − 1) the quantities: ck −
1, σ

(k)
max − 1, ρk, e

(L)
k , e

(R)
k , δk, δ

′
k are computed and, according to the chosen

option, eventually printed, see (3.6).

Remarks 3.1.

(i) If the matrix H̃, see (2.31), will not pass the Cholesky positivity-test,
then this test is repeated for the matrix HI = H̃ + (δ̃0σ

(0)
maxn−1/2)I.

The result of the first or of both tests is signalled.
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(ii) For computing of σ
(k)
max, σ

(k)
min the SVD of X̃k is performed, yielding the

computed values: σ̃
(k)
max, σ̃

(k)
min. If σ̃

(k)
min < 1000eps ∗ σ̃

(k)
max holds then also

the SVD of the matrix Gk is performed, yielding the corrected value of
σ̃

(k)
min: σ̃

(k)
min := ||Gk||−1

2 .

HSTEST leaves several options to the user, in particular:

– choosing the GEPP or GECP in computing the inverses {Gk}, guaranteeing
LRS, RRS or NC-Property of Gk, see section 4.1.

– choosing the inversion guaranteeing only the Conj-Property of Gk, see
section 4.1.

– choosing the stopping criteria ( the used and tested ones).

– choosing: (1,∞)-scaling, (F )-scaling or optimal scaling (with or without
some special modifications).

– choosing the switching-criterion for the transfer from (1,∞)-scaling to
unscaled iterations (for remaining iterations: k = r + 1, . . . , l − 1).

Remark 3.2. The printed results allow to obtain further information on
the tested process. For example, see the following relations (see (2.40)):∣∣∣δk+1 − |ε′k|

∣∣∣σ(k+1)
max . ξ∗k . (δk+1 + |ε′k|)σ(k+1)

max . (3.2)

3.3 The accuracy of the HSTEST results and their presentation

Let now b̃ (b̃ > 0) mean: the computed value of the quantity b, rounded to
three leading figures. This notation is not always univocal since sometimes
b̃ can be considered also as the computed value of some other quantity b̂.
Regarding the rounding to three leading figures we can present the full error
bounds in the form: |b − b̃| 6 5 × 10−3b̃ + υ(b), |b̂ − b̃| 6 5 × 10−3b̃ + υ(b̂),
where υ(b), υ(b̂) mean, say, the basic error-bounds. If in the majority of
cases |b− b̃| . 10−2b̃ holds then we will present b̃ as b, signaling the eventual
exceptions by marking b with the star (b∗) if 10−2.̃|b− b̃| . b̃ holds or with
the exclamation mark (b!) if there is no bound on |b − b̃|. In most cases b∗
means that b has at least one good leading figure.

The basic global bound on the error of the computed value ∆̃l of ∆l
df=

||ŨHŨ − I||F is: υ(∆l) ≈ q(n) × 10−19, q(n) 6 n2. We assume that in all
our experiments υ(∆l) . 10−18 holds since for larger n practically always
q(n) = n2 yields an unrealistic over-bound. Similar relation will be assumed
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in the following whenever the computation of b̃ involves the matrix ∗ matrix
multiplication.

Let us assume that qk
df= εsĉk � 0.5 holds, where ĉk

df= cond2(X̃k) and εs

is defined in (3.1).
Let us consider the computed values x̃k, g̃k of xk

df= ||X̃k||2 and gk
df=

||Gk||2. The basic error bounds are, see remark 3.1 (ii),

υ(xk) ≈ εsx̃k υ(gk) ≈ q̂kg̃k, q̂k =
{

εs, if qk > 5× 10−3,
qk, otherwise.

(3.3)

But x̃k, g̃k can be considered also as the computed values of x̂k
df= ||Xk||2, ĝk

df=
||X−1

k ||2, see (2.5), with basic errors bounds

υ(x̂k) ≈ (εs + εx)x̃k, υ(ĝk) ≈ (q̂k + εg)g̃k. (3.4)

The quantity c̃k := x̃k ∗ g̃k can be considered as the computed value of both:
ck = cond(Xk) and ĉk

df= cond2(X̃k) with basic error bounds

υ(ck) ≈ (εs + εx + q̂k + εg)c̃k, υ(ĉk) ≈ (εs + q̂k)c̃k. (3.5)

Similar bounds (as for ck) can be presented for the computed values ρ̃k, r̃k

of ρk, rk, see (2.13), (2.42).
For the computed values ẽ

(L)
k , ẽ

(R)
k of the relative residuals

e
(L)
k

df=
||I −GkX̃k||F

xkgk
, e

(R)
k

df=
||I − X̃kGk||F

xkgk
, (3.6)

the basic error-bounds are:

υ(e(L)
k ) ≈ (εs + q̂k)ẽ(L)

k + 10−18, υ(e(R)
k ) ≈ (εs + q̂k)ẽ(R)

k + 10−18. (3.7)

The quantity δ̃k := ||B̃k − B̃H
k ||F /(2 ∗ x̃k), B̃k := ŨH ∗ X̃k, can be con-

sidered as the computed value of both: δk (see (2.29)) and δ̂k
df= ||B̂k −

B̂H
k ||F /(2xk), B̂k

df= UHX̃k. The basic error bounds are here, see (2.21):

υ(δk) ≈ εl

√
n + εs + εx + 10−18, υ(δ̂k) ≈ εl

√
n + εs + 10−18. (3.8)

See that δ̂k = acc(U, X̃k) if Ĥk
df= 1

2(B̂k + B̂H
k ) ∈ HPD.

Remarks 3.3.
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(i) If the matrix Gk is not satisfying (2.5) then the quantities εx, εg in (3.4),
(3.5), (3.7), (3.8) should be replaced with ϕ̂k, see section 4.3.

(ii) The expressions (3.4), (3.5), (3.7), (3.8) yield in most cases serious
over-bounds on actual error. This would imply categoric declining
decision in situations when there are still good chances that the com-
puted result b̃ is sufficiently close to b or b̂. Therefore presenting b̃
as b or choosing the exception-mark (∗ or !) we will accept an opti-
mistic rule: the maximum instead of the sum. For example, υ(ck) ≈
max{εs, εx, q̂k, εg}c̃k, υ(ĉk) ≈ max{εs, q̂k}c̃k (εx, εg eventually replaced
with ϕ̂k).

(iii) The Cholesky positivity test of the computed Hermitian factor H̃ of A
can be trusted at least when the bound (eps + δ̃0)cond2(A) < 1 holds.

Conclusions 3.1.

(i) The quantities c̃k, ρ̃k, r̃k can be presented as ck, ρk, rk when

q∗k
df= max{εs, ϕ̂k}c̃k 6 5× 10−3

holds (ϕ̂k = eps/3 when Gk and Gk+1 satisfy (2.5), see section 4.3).
The exceptions will be marked with ∗ or !, according to the cases:
5× 10−3 < q∗k . 0.5 or 0.5 < q∗k.

(ii) The quantities ẽ
(L)
k , ẽ

(R)
k larger than 10−16 can be presented as e

(L)
k , e

(R)
k .

Otherwise they will be marked with ∗ (due to the skipped term 10−18).

(iii) The same (as in (ii)) holds for the quantities δ̃k, δk, provided ϕ̂k 6 0, 01
holds. Eventually δk will be marked with ∗ or !, according to the cases
0.01 6 ϕ̂k 6 0.1 or 0.1 < ϕ̂k.

Example 3.1. In table 1 we present the results of the HSTEST-program for
the 10 × 10 matrix A1 = tril(rand(10))8rand(U), see [4], applying (F )-
scaling and GEPP matrix-inversion. The first sweep yields the computed AUF
Ũ = X̃9 of A1, ∆̃9 = 5.14 × 10−16. The computed factor H̃, see (2.31), of
A1 passed the positivity test.
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Table 1

k ck − 1 ρk e
(L)
k e

(R)
k δk

0 8.74e + 14∗ 0.930∗ 3.10e− 17∗ 8.72e− 09 5.12e− 09∗
1 1.66e + 06 0.708 3.28e− 17∗ 1.96e− 15 1.19e− 15
2 7.56e + 02 1.00 5.90e− 17∗ 7.52e− 16 4.09e− 16
3 1.19e + 01 0.732 1.07e− 16 1.44e− 16 2.68e− 16
4 1.17e + 00 1.07 2.97e− 16 2.95e− 16 2.80e− 16
5 8.38e− 02 1.03 5.08e− 16 5.16e− 16 3.43e− 16
6 1.51e− 03 1.00 5.74e− 16 5.74e− 16 3.40e− 16
7 7.01e− 07 1.00 5.35e− 16 5.35e− 16 2.64e− 16
8 2.46e− 13 1.00 4.84e− 16 4.84e− 16 1.80e− 16

Remarks 3.4.

(i) The quantities marked with ∗ have probably still at least one correct
leading figure. In the case of c0, ρ0 it is implied by additional infor-
mation on cond2(A1) gained in other experiments (judging only from
this experiment c0 should be marked with !).

(ii) e
(R)
o ≈ 8.72×10−9 indicates that G0 has only the LRS-Property (see the
next section for the definition)). This is the reason why Ũ is a poor AUF
of A: if H̃ is really positive-definite then acc(U,A) ≈ δ0 ≈ 5.12×10−9.
The computed polar factors {Ũ , H̃} are not acceptable. See subsection
4.5 for further discussion.

(iii) The computed values for k > 3 are typical for all our experiments and
fully consistent with the presented theory. In the following we will
present only the relevant part of the experimental results, skipping
the trivial part of them.

4 The quality problem of the matrix-inversion in
the numerical Higham’s algorithm (HS)

Contemporary standard matrix-inversion procedures use the Gaussian tri-
angular factorization with partial pivoting (GEPP) of the inverted matrix,
see [4]. Using these procedures in the HS-process yields frequently (but not
always) acceptable results.

We will show experimentally that for some special matrices A the quality
of the GEPP-inversion is not sufficient to guarantee the acceptability (1.4) of
the unitary polar factor Ũ computed in the HS-process.
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Some other (more expensive) algorithms compute always inverses with
sufficient quality not impending the good behaviour of the HS-process (for
example the inversion: via triangular factorization with complete pivoting
(GECP) or via Householder qr-factorization with column pivoting (QRCP)).
We should recognize the properties of the computed inverses {Gk} not im-
pending the good behaviour of the HS-process and those properties which
can spoil the accuracy in this process.

4.1 Properties of computed inverses

Let G be the computed inverse of the nonsingular matrix X. We introduce
auxiliary quantities

x
df= ||X||2, g

df= ||G||2, c
df= cond2(X) (= x||X−1||2) (4.1)

and consider the following four eventual properties of G:

||G−X−1||F 6 εgc, (4.2)

||GX − I||F 6 εgx, (4.3)

||XG− I||F 6 εgx, (4.4)

∃∆′, ∆ : G + ∆′ = (X + ∆)−1, ||∆′||F 6 εgg, ||∆||F 6 εxx. (4.5)

The same relations define the properties of inversion procedures as fol-
lows: Let M be a subset of nonsingular n × n matrices X. We say that an
inversion algorithm Inv is numerically stable (NS) in M if for each X ∈ M
the computed inverse G satisfies (4.2). In the same way:

– (4.3) defines the left-residual stability (LRS) of Inv in M,

– (4.4) defines the right-residual stability (RRS) of Inv in M,

– (4.5) defines the numerical correctness (NC) of Inv in M.

We shall use the same notation: NS, LRS, RRS, NC for the properties (4.2)–
(4.5) of the matrix G, no matter what is the official property of the algorithm
which computed G (for some matrices X ∈ M the computed inverse G can
have also some stronger property than the property guaranteed by Inv for
the whole subset M).

We define also two combined properties of G:

Alt
df= LRS or RRS, Conj

df= LRS and RRS. (4.6)
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Assuming εx + εg + εxεg 6 ε and εxg < 1 we find the following implications:

NC =⇒ Conj =⇒ Alt =⇒ NS (4.7)

and the bounds

||GX − I||F 6 c||XG− I||F , ||XG− I||F 6 c||GX − I||F . (4.8)

Let us note further that for small c, say c 6 10, NS implies NC with ∆ = 0
and εg = 10ε (provided 10ε can be accepted as a quantity of the order ν).
Hence the listed properties of G: NS, LRS, RRS, NC, Alt, Conj can differ
distinctly only when c = cond2(X) is sufficiently large.

Further definitions: We will say that G has only the property LRS (or:
G has the LRS-Property-Only) if G has the LRS-Property but has not the
RRS-Property. In this case, due to (4.6) and (4.7), G has the Alt-Property
(hence also NS) but has neither property Conj nor NC. In the same way, using
the term: to have only (or: Property-Only), we define other eventual highest
properties of G in the hierarchical system defined by (4.6), (4.7).

Let us note at last that the NC-Property is really the highest general
quality (which can be achieved) of an inverse G computed in a constant
finite precision. According to the formulation of W. Kahan, in this NC-case:
G is a slightly wrong inverse of a slightly wrong matrix X. We show in
our experiments that only the NC-Property of matrices {Gk} guarantees
good behaviour of the HS-process. The considered hierarchical system of
properties does not include of course all possible properties of computed
inverses. For example we do not consider here the elementwise properties,
see [4]. The only exception is the following example 4.1, where elementwise
bounds allow to visualise the relations between considered norm-properties.

Example 4.1. Let us consider the matrices: X = diag(c,
√

c, 1), G = X−1+
Γ, Γ = (γij) with c > 1 and εc � 1 and their norms (compare (4.1)):

x
df= ||X||2 = c = cond2(X), g df= ||G||2 = 1 + θγ, where γ

df= ||Γ||2 =
β−1||Γ||F , 1 6 β 6

√
3. We want to give realistic (closely achievable) upper

bounds on |γij | for i, j = 1, 2, 3: |Γ| 6 Z = [zij ] for G with considered
properties (4.2)–(4.6). Due to (4.7) the weakest property (4.2) is always
fulfilled, hence the bound ||Γ||F 6 εcg = εc(1 + θβ−1||Γ||F ) holds, what
implies

γ 6 ||Γ||F 6 ε′c, ε′
df=

ε

1− εc
,

1
1 + εc

< g 6
1

1− εc
.
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For the properties NC, LRS, RRS, Conj of G we obtain hence the following
upper bounds Z on |Γ|:

ZNS = ε′

 c c c
c c c
c c c

 , ZLRS = ε′

 1
√

c c
1
√

c c
1
√

c c

 ,

ZRRS = ε′

 1 1 1√
c
√

c
√

c
c c c

 , ZConj = ε′

 1 1 1
1
√

c
√

c
1
√

c c

 .

For the NC-Property of G with εx + εg + εxεg 6 ε the bound is

ZNC =
εx

1− εxc

 c−1 c−1/2 1
c−1/2 1

√
c

1
√

c c

 +
εg

1− εc

 1 1 1
1 1 1
1 1 1

 .

Hence

ZNC < ε′

 1 1 1
1 1

√
c

1
√

c c

 .

Let us note that each individual bound |γij | 6 zij is realistic. The elemen-
twise bounds |Γ| 6 Z are qualitatively equivalent to corresponding norm-
properties. For example, |Γ| 6 ZLRS implies ||GX − I||F < 3ε′(1 + εc)gx,
compare with (4.3). For all other considered properties similar implications
hold.

4.2 Wilkinson’s conjecture

There are several versions of computing the inverse G from the GEPP-triangular
factorization of matrix X, see [4], which are either left-residual or right-
residual stable in a broad subset M of n × n matrices. Hence such GEPP-
inversion algorithms guarantee the Alt-Property of computed inverses, see
(4.6). For well-conditioned matrices X, say c 6 10, it means practically
Conj-Property of G, see (4.8). But also for badly-conditioned matrices
X we can check directly that quite frequently both computed residuals
||GX − I||F and ||XG − I||F are small, are bounded by εxg, see [14], [4].
This means that G has the Conj-Property, in spite of (4.8) with large c.

J.H. Wilkinson explained this phenomenon in [14], pp. 110–111, showing
that the matrix G (computed via GEPP-factorization) has the NC-Property,
provided the triangular systems - involved in the computation of G from
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GEPP - are solved to high accuracy. This happens frequently though not
always, see also [13]. Let us formulate this as follows:

Wilkinson’s conjecture. If an inverse G, computed via GEPP-factorization
of X, has the Conj-Property then, probably, G has also the (stronger)
NC-Property.

We do not know whether the GEPP-inversion can produce the computed
inverse G with Conj-Property-Only.

The experiments given in subsection 4.5 show that the smallness of
both relative residuals {e(L)

k , e
(R)
k }, see (3.6), (the Conj-Property) is not

sufficient to guarantee good behaviour of HS. In all our experiments with
GEPP-inversion, subsection 4.4, the good behaviour of HS (smallness of {δk})
succeeds iff both residuals {e(L)

k , e
(R)
k } are small. This is our experimental

contribution in justifying the Wilkinson’s conjecture.

4.3 HS with inverses not always satisfying (2.5)

In (2.5) we postulate in fact the NC-Property (4.5) of the computed inverses
Gk of X̃k in the whole HS-process, k = 0, . . . , l−1, see below remark 4.1. This
implies the essential relations (2.6), (2.7) in our description of HS in section
2. But in some experiments in this section we obtain (in several steps only,
when ck is large) the computed inverses Gk having only the Alt-Property
or only the Conj-Property. To interpret the results of such experiments it
is convenient to incorporate such deviations (from the normality of (2.5))
into our general description of the HS-process.

The first step is to uniformize the description of the computed inverses.
We are doing this par force, assuming (4.9) with false epsilon ε̌k:

Xk = X̃k + ∆k, X−1
k = Gk + ∆′

k, ε̌k
df= max

{ ||∆k||F
||Xk||2

,
||∆′

k||F
||X−1

k ||2

}
. (4.9)

If Gk has NC-Property then ε̌k is a true epsilon, otherwise ε̌k is distinctly
larger than could be normally accepted as a modest multiple of ν. We want
to keep ε̌k as small as possible. We will see that in the considered cases
exist such matrices ∆k,∆′

k that (4.9) holds with ε̌k smaller than 1. Let us
now learn how this quantity can exceed the admissible level ε of the true
epsilons.

Remark 4.1. (4.9) implies the NC-Property of Gk if ε̌k/(1− ε̌k) 6 ε holds.
The NC-Property of Gk implies (4.9) with ε̌k . ε/(1 − ε). Hence (2.5) is
practically equivalent to the NC-Property of Gk.
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Let us assume that ck is large and εck � 1 holds. We present be-
low a simplified version of theorem 4.1, using approximate equalities a ≈ b
(a, b non-negative), meaning some of the following possibilities: |a − b| 6
O(ε), |a− b| 6 O(εck) max{a, b}, |a− b| 6 O(c−1

k ) max{a, b}.
Let Gk be the computed inverse of X̃k and e

(L)
k , e

(R)
k , see (3.6), the relative

residuals, and let us define the quantities

ε
(A)
k

df= min{e(L)
k , e

(R)
k }, ε̌

(A)
k

df= max{e(L)
k , e

(R)
k }, ck

df= cond2(Xk). (4.10)

Theorem 4.1. (simplified version). Let Gk be the computed inverse of
X̃k and let (4.10) hold. If Gk has at least the Alt-Property (hence ε

(A)
k is

a true epsilon) then we can choose such matrices ∆k,∆′
k in (4.9) that the

following approximate equalities are fulfilled:

ε̌k ≈ ε̌(k)
x ≈ ε̌(k)

g ≈ ϕ̂k, where ε̌(k)
x

df=
||∆k||F
||Xk||2

, ε̌(k)
g

df=
||∆′

k||F
||X−1

k ||2
(4.11)

and the quantity ϕ̂k is specified according to the assumed property of Gk:

(i) if Gk has the Alt-Property then

ϕ̂k = ϕ̂
(Alt)
k ≈ 1

2
ε
(A)
k β

(Alt)
k ck, β

(Alt)
k ∈ [c−1

k , 1], (4.12)

1
2
ε̌
(A)
k . ϕ̂

(Alt)
k .

√
1
2
ε
(A)
k ε̌

(A)
k ck, (4.13)

(ii) if Gk has the Conj-Property then with β
(Conj)
k ∈ [c−1/2

k , 1]

ϕ̂k = ϕ̂
(Conj)
k ≈ 1

2
ε
(Conj)
k β

(Conj)
k c

1/2
k , ε

(A)
k 6 ε

(Conj)
k 6

√
(e(L)

k )2 + (e(R)
k )2,

(4.14)

(iii) if Gk has the NC-Property then

ϕ̂k = ϕ̂
(NC)
k 6 max{εx, εg}+ ν

√
n ≈ 1

3
ε̂. (4.15)

Proof. We present here only a main idea of the proof. Let use the fol-
lowing index-free notation (not identical with such notation in section 2):
X

df= X̃k, G
df= Gk, c

df= cond2(X), εA
df= ε

(A)
k , ε̌A

df= ε̌
(A)
k . Not lessening the
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generality of considerations, let us assume: x
df= ||X||2 = c, what implies

(with P,Q unitary and p0
df= p(X−1 − G)): X = PΣQ, Σ = diag(σi), 1 6

σi 6 c, g
df= ||G||2 = (1 + θ0p0εA)−1. The quantity ε̌

df= ε̌k, see (4.9), can be
presented hence in the form:

ε̌ = ϕ̂(Φ) df= max
{ ||Φ||F
||Σ + Φ||2

,
||Ψ||F

||Ĝ + Ψ||2

}
, Ψ = (Σ + Φ)−1 − Ĝ,

where Φ df= PH∆Q, Ĝ
df= QHGP, Ψ df= QH∆′P, and, under the assumption

ζ2 = ζ2(Φ) df= min{||Σ−1Φ||2, ||ΦΣ−1||2} < 1, we have Ĝ+Ψ = (Σ+Φ)−1 =
Σ−1−Σ−1ΦΣ−1 +Z(Φ), ||Z(Φ)||2 6 ζ2

2/(1−ζ2). Minimizing the linear part
ϕ∗(Φ) of ϕ̂(Φ):

ϕ∗(Φ) df= max
{ ||Φ||F

c
,
||Γ− Σ−1ΦΣ−1||F

g

}
, Γ df= Σ−1 − Ĝ,

we obtain the minimizer Φ∗ such that the equalities

ϕ∗
df= min

Φ
ϕ∗(Φ) =

||Φ∗||F
c

=
||Γ− Σ−1Φ∗Σ−1||F

g

hold. Specifying Γ for the cases: (i) and (ii) we find that in both cases, for
Φ∗ = Φ∗

Alt and Φ∗ = Φ∗
Conj, ||Σ−1Φ∗||F . εAc holds. Hence ||Z(Φ∗)||F 6

O(εc)2 and (with ∆ = PΦ∗QH ,∆′ = (X + ∆)−1 −G) we have cond2(X +
∆) = cond2(G + ∆′) ≈ c. This means that ck

df= cond2(Xk) ≈ c
df=

cond2(X̃k). Ultimately the quantities ϕ̂
(Alt)
k

df= ϕ̂(Φ∗
Alt), ϕ̂

(Conj)
k

df= ϕ̂(Φ∗
Conj)

satisfy the relations (4.11)–(4.14). (Only the proof of (4.13) needs some
more argumentation). The case (iii) needs no proof. 2

Remarks 4.2.

(i) (4.13) is valid also when Gk has the Conj-Property. Let us notice that
both (4.13) and (4.14) imply the same bound: ϕ̂

(Conj)
k . ε(ck/2)1/2.

(ii) When Gk has only the Alt-Property then the upper bound on ϕ̂
(Alt)
k

in (4.13) is pointless as an a priori bound. But can be useful (and
often is) as an a posteriori bound, if effectively computed quantity
ε̌
(A)
k is much smaller than ε

(A)
k ck. A very generous way (in the proof)

of obtaining this bound indicates that in the case of ε̌
(A)
k distinctly

larger than ε we can expect the relation

ϕ̂
(Alt)
k = ε̌

(A)
k z, z > 0.5 (4.16)

with a modest number z: z 6 1?, z 6 3?, . . ..
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(iii) With large ck the quantities β
(Alt)
k , β

(Conj)
k in most cases will be much

smaller than 1. Let “β close to 1” mean: β ∈ [0.05, 1]. Then the
construction of β

(Alt)
k , β

(Conj)
k in the proof suggests that:

– β
(Alt)
k close to 1 is probable (but not warranted) when a significant
part of pairs {σ̃(k)

i , σ̃
(k)
j } of the singular values of X̃k is close to

{σ̃(k)
min, σ̃

(k)
max}.

– β
(Conj)
k close to 1 is probable (but not warranted) when a significant

part of {σ̃(k)
i } is close to α̃k

df= (σ̃(k)
minσ̃

(k)
max)1/2.

(iv) Comparing in example 4.1 the bound-matrices ZLRS, ZRRS, ZConj with
ZNC we obtain essentially the same information as in (iii). See that
ε′ ≈ εx + εg in this example corresponds to ε̌

(k)
x + ε̌

(k)
g ≈ 2ϕ̂k.

From (2.6), (4.9), (4.11) we obtain upper bounds on |Φk+1| and ||Φk+1||F :

|Φk+1| 6
1
2

[
(|∆k|+ ν|X̃k|)γk +

(|∆′
k|+ ν|Gk|)T

γk

]
+

(
|∆k+1|+ ν|X̃k+1|

)
,

(4.17)

||Φk+1||F .
1
2

[
(ε̌(k)

x + ν
√

n)xkγk +
(ε̌(k)

g + ν
√

n)υk

γk

]
+ (ε̌(k+1)

x + ν
√

n)xk+1,

(4.18)
where xk

df= ||Xk||2, υk
df= ||X−1

k ||2. Due to xk+1 ≈ fk > 1
2 max{xkγk, υk/γk}

the relation ||Φk+1||F . fkε̌
∗
k, ε̌

∗
k

df= 2ϕ̂k + ϕ̂k+1 holds. (We are skipping here
the ν

√
n-terms when ε̌

(k)
x , ε̌

(k)
g are not true epsilons).

Conclusion 4.1. If the computed inverses {Gk} in the HS-process have:
the Alt-, the Conj- or the NC-Property then the main relation describing
the process can be presented as follows:

Xk+1 = Zk+1 + Φk+1, ||Φk+1||F . ε̌∗kfk, ε̌∗k = 2ϕ̂k + ϕ̂k+1 (4.19)

(Zk+1, fk defined in (2.6), (2.7), quantities {ϕ̂k} defined in theorem 4.1).

Theorems 2.1 and 2.2 remain valid, but if the matrix Gk or Gk+1 is
not satisfying (2.5) then ε̂ should be replaced with ε̌∗k in (2.40), (2.46). In
particular, assuming Hk+1 ∈ HPD and ξ′k � 1, we have

δk ≈ |δk+1 + ε′k|χkrk, |ε′k| 6 ε̌∗k = 2ϕ̂k + ϕ̂k+1. (4.20)
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This means that Gk or Gk+1 not satisfying (2.5) can spoil seriousely the
quality of U as an AUF of Xk: δk � δk+1. The experiments in the subsections
4.4 and 4.5 show that this can really happen.

4.4 Experiments with inverses having only the Alt-Property

In the experiments of this section we apply in the HS-process the optimal or
practical scaling and we use the matrix-inversion via GEPP-triangular decom-
position of the inverted matrix. It is essentially the B-method, see [4] and
[8], completed eventually with some transpositions of matrices, to yield ei-
ther the version guaranteeing the LRS-Property or (with transpositions) the
version guaranteeing the RRS-Property of the computed inverses. For some
special matrices these computed inverses have only the Alt-Property and
only in such cases we can observe that this quality of inversion is not suffi-
ciently good for the HS-process. In all other cases (what happens frequently)
these computed inverses have the Conj-Property, hence probably also the
NC-Property (according to the Wilkinson’s-conjecture, see subsection 4.2).

In these experiments we never have met the case of the computed inverse
Gk having the Conj-Property, correlated with an evident deterioration of
the quantity δk = acc(U,Xk) : δk � δk+1 (this could indicate that Gk

has only the Conj-Property). In this way our experiments contribute to
justifying the Wilkinson’s conjecture.

As the test matrices we choose here the matrices from [4]:

A1 = QLT , Q orthogonal, random, L = tril(rand(10))8, A2 = AT
1 ,

A
(n)
3 = QLT

3 , Q orthogonal, random, L3 = qr(vand(n))T , n > 15.

That are special matrices yielding G0 with only the Alt-Property (when
inverted via appropriate GEPP-factorization). In some cases also G1 has only
the Alt-Property.

In all presented below experiments (with GEPP-triangularizations) the
computed Ũ = X̃l cannot be accepted as a sufficiently good AUF of the
matrix Ap (p = 1, 2, 3).

Conclusion 4.3. Alt-Property Only is not a sufficiently good quality of
the matrix-inversion in the HS-process.

Examples 4.3. We apply here GEPP-inversion; in (ii) the version guarantee-
ing the RR-Property of the computed inverses, in (i), (iii), (iv) the version
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guaranteeing the LR-Property. In (i), (ii), (iii) the matrices H̃ passed the
positivity test. In (iv) only the matrix HI passed the positivity test, see
remark 3.1(i).

(i) see example 3.1.

(ii) The experiment “symmetric” to (i) with the matrix A2, ∆̃9 = 6.2 ×
10−16, is presented in table 5.

Table 5

k ck e
(L)
k e

(R)
k δk

0 8.75e + 14∗ 8.79e− 09 3.25e− 17∗ 5.45e− 09∗
1 1.86e + 06 5.57e− 15 6.12e− 17∗ 2.69e− 15
2 2.96e + 02 6.39e− 16 3.46e− 16 3.46e− 16

(iii) Experiment with the matrix A
(15)
3 , ∆̃10 = 9.17× 10−16, is presented in

table 6.

Table 6

k ck e
(L)
k e

(R)
k δk

0 1.58e + 13 3.68e− 17∗ 3.91e− 14 2.13e− 14
1 1.11e + 06 8.92e− 17∗ 1.65e− 14 8.23e− 15
2 4.82e + 02 1.38e− 16 1.21e− 15 7.12e− 16
3 1.15e + 01 2.22e− 16 3.01e− 16 5.47e− 16

(iv) Experiment with the matrix A
(25)
3 , ∆̃10 = 2.46e − 15, is presented in

table 7.

Table 7

k ck e
(L)
k e

(R)
k δk

0 1.87e + 18! 2.93e− 17∗ 1.39e− 10 8.55e− 11!
1 4.25e + 08 8.65e− 17∗ 1.67e− 12 7.67e− 13
2 1.10e + 04 1.15e− 16 6.69e− 15 3.75e− 15
3 5.26e + 01 3.47e− 16 6.38e− 16 1.09e− 15

Remarks 4.3. In (iv) we have no bound on |c̃0 − c0|, hence also no bound
on ϕ̂0 and on |δ̃0−δo|, see (4.13), (3.8). In (i), (ii) ϕ̂0 can be larger than 0.01
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but it is probably less than 0.1, hence δ0 is marked with ∗ (in these cases
from (3.2) follows that the relation ξ′0 < 1 is doubtful). But in (i), (ii), (iv)
we have the bounds on |δ̃0− δ̂0|, see (3.8). In particular, if 1

2(UT A2+AT
2 U) ∈

HPD, then the bound |acc(U,A2)− 5.45× 10−9| . 2.73× 10−11 holds. All
experimental results illustrate well the theory presented in subsection 4.3.
See in particular the relations (4.13), (4.16) (also in the case (iv)!).

4.5 Experiments with inverses having only the Conj-Property

We use here the special procedure INVCONJ(X). This procedure computes
at first the SVD of the real matrix X:

X =: P ∗ Σ ∗QT , Σ = diag(σi), P, Q orthogonal,

and constructs then the computed inverse G of X:

G := Q ∗ (Σ−1 + Ψ) ∗ P T , Ψ = eps ∗ σmax

σmin

[ rdij

max{σi, σj}

]
,

where {rdij} are random numbers, |rdij | 6 1.
G has evidently the Conj-Property (both norms: ||GX − I||F , ||XG −

I||F are bounded with (n eps + εx)xg). But G has only the Conj-Property

if c = σmax/σmin is large and some σi are close to α
df=
√

σmaxσmin. (Only in
this case the Conj-Property differs distinctly from the NC-Property).

We will use here the optimal scaling: γk := α̂−1
k , α̂k

df=
√

σ̂
(k)
maxσ̂

(k)
min, where

{σ̂(k)
i }n

i=1 are singular values of X̃k. We need in our experiment some iterates

X̃k with large ĉk
df= cond2(X̃k) and with several, say: mk, singular values

close to α̂k. Choosing appropriate {σ̂i} in the following construction:

A = X̃0 := P ∗ diag(σ̂i) ∗QT , P, Q orthogonal, random, (4.21)

we obtain: ĉ0 large, m0 > 2 and eventually also ĉ1 large, m1 > 2. Example
F.2 in [12] explains why in real computations we must have m0 > 2 (eventu-
ally also m1 > 2). With m0 = 1 the perturbation G0− X̃−1

0 there could not
produce the next iterate X̃1 with orthogonal factor Û1 distinctly different
from Û0 (the orthogonal factor of X̃0). Hence δ0 could not be much larger
than δ1 = acc(U,X1). This correlates with theorem 2.3 in [10].

In all presented below experiments the computed result Ũ = X̃l cannot
be accepted as a sufficiently good AUF of A.
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Conclusion 4.2. Conj-Property Only is not a sufficiently good quality of
the matrix-inversion in the HS-process.

Examples 4.2. In experiments presented in tables 2–4 all matrices H̃

passed the positivity test, all e
(L)
k , e

(R)
k were less than 2.7× 10−15. We have

generated matrices A as in (4.21).

(i) n = 6, σ̂1 = σ̂−1
6 := 107, σ̂2 = σ̂−1

5 := 1000
√

20, σ̂3 = σ̂4 := 1, ∆̃6 =
5.76× 10−16

Table 2

k ck
√

ck δk mk

0 1.00e + 14 1.00e + 07 5.49e− 10 2
1 5.06e + 06 2.25e + 03 1.01e− 13 2
2 1.06e + 03 3.26e + 01 8.74e− 16 −
3 1.01e + 00 1.01e + 00 5.91e− 16 −

(ii) n = 20, {σ̂k} = {1014, 107, . . . , 107, 1}, ∆̃6 = 1.99× 10−15

Table 3

k ck
√

ck δk mk

0 9.99e + 13 1.00e + 07 7.04e− 09 18
1 5.17e + 06 2.27e + 03 1.72e− 15 −
2 1.07e + 00 1.04e + 00 1.74e− 15 −

(iii) n = 20, {σ̂i}20
i=1 = {qi−1}20i=1, q = 1014/19, ∆̃8 = 1.87 ∗ 10−15

Table 4

k ck
√

ck δ̃k mk

0 1.00e + 14 1.00e + 07 4.39e− 10 2
1 3.61e + 06 1.90e + 03 1.31e− 13 2
2 7.27e + 02 8.50e + 01 6.62e− 15 1
3 1.35e + 01 3.67e + 00 2.10e− 15 −
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5 The problem of too small scaling parameters

The good behaviour of the HS-process is equivalent to the smallness of all
entries of the sequence {δk}l−1

k=0, δk = acc(U,Xk) provided Hk ∈ HPD. If
all δk are at most of the order ε then the computed unitary factor Ũ = X̃l

is a good AUF of all matrices {Xk}, {X̃k} (provided H0 ∈ HPD) and - in the
consequence - also of A, see lemma 2.1.

Assuming: ξ′k � 1,Hk+1 ∈ HPD and the good matrix-inversion (2.5),
we can use the simplified form of the backward-induction:

δk ≈ |δk+1 + ε′k|zk, |ε′k| 6 ε̂, zk
df= χkrk, χk 6 1

where rk = max{1, (ck + ρk)/(ckρk + 1)}, ρk = (γk/γ
(opt)
k )2. If γk < γ

(opt)
k

then ρk < 1 and rk > 1. It can happen that also zk = χkrk > 1 holds
(though χk essentially decreases with ρk, see remark 2.5) and can result the
multiplicative increase (deterioration) of δk: δk ≈ |δk+1 +ε′k|zk > dk+1. This
can continue if also zk−1 = χk−1rk−1 > 1 holds.

That is the problem of too small scaling parameters: the danger of a
serious multiplicative deterioration of accuracy in the HS-process if we use
the scaling parameters {γk} smaller than the optimal ones. The multipliers
χk < 1 can act here soothingly, but there is no guaranty that it implies always
zk = χkrk . 1 or yields at the end δ0 = acc(U,X0) ≈ acc(U,A) sufficiently
small. Our experiments seem to indicate that the HS-process with practical
scaling (n−1/2 6 ρk 6 n1/2) is immune to this danger of such deterioration
of accuracy. (We simulated also the computations on 100 × 100 matrices,
blowing-up the actual ρk to the interval [0.1, 10].) This phenomenon of the
immunity of the practical scaling can be explained probably as follows.

Let us consider the approximate equality

X̃k+1 ≈ Bk + Fk, Bk
df=

1
2
X̃kγk, Fk

df=
1

2γk
GH

k . (5.1)

If γk = γ(opt)(X̃k, Gk) df=
√
||Gk||2/||X̃k||2, (γk ≈ γ

(opt)
k , ρk ≈ 1) then ||Bk||2 =

||Fk||2 holds. Optimal scaling equilibrates the matrices Bk, Fk in (5.1) (in
the sense of the 2-norm). If γk < γ

(opt)
k then ρk < 1 and ||Bk||2 ≈ ||Fk||2ρk

holds; ||Bk||2 is by a factor ρk smaller than ||Fk||2.
In the assignment statement: X̃k+1 := Bk + Fk the next iterate X̃k+1

“obtains” practically full numerical information on GH
k and only the “upper

parts” of the entries [γkX̃k](i,j) of Bk rounded on the level νd|X̃k+1|(i,j).
Therefore the matrix Ũ computed in the HS-process from X̃k+1 can be in a
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similar degree a good AUF for GH
k , as it is for X̃k+1, but can be a distinctly

worse AUF for X̃k (by a factor up to ρ−1
k ?). This explains the presence of the

multipliers rk, 1 < rk . ρ−1
k , in the basic backward -induction recursion:

δk ≈ |δk+1 + ε′k|χkrk. The factor rk > 1 is here a warning, χk 6 1 can
“soothe” it, if the information on X̃k delivered to X̃k+1 (hence to Ũ) was
not so much disturbed as it could be supposed regarding only the formal
quantity ρk = (γk/γ

(opt)
k )2.

Let us notice now that the (F )-scaling:

γk = γ(F)(X̃k, Gk) =

√
||Gk||F
||X̃k||F

equilibrates the (F)-norms: ||Bk||F = ||Fk||F and the (1,∞)-scaling: γk =

γ(1,∞)(X̃k, Gk) =
√
� Gk � / � X̃k � equilibrates the pseudo-norms: �

Bk �=� Fk �, where � B �df=
√
||B||1||B||∞. Hence both rules of

practical scaling also equilibrate the matrices Bk, Fk in (5.1). There is no
reason to believe that one of these three rules of equilibrating is always and
distinctly better than the other two.

Working in our analysis with the 2-norm we must be prepared to ob-
tain the eventual warning: rk > 1, but if the equilibration of Bk, Fk was
sufficiently good (that means: the matrix X̃k+1, hence also Ũ , obtained
sufficient information on X̃k), then the factor χk should act “soothingly”,
yielding zk = χkrk . 1. That seems to explain the phenomenon of the good
behaviour of the HS-process with practical scaling.

There remains rather academic problem: whether using too small scaling
parameters can really “produce” a serious multiplicative deterioration of the
accuracy? Some experiments presented below give a positive answer to this
question.

Example 5.1. We are using here GECP-inversion and essentially practical or
optimal scaling. Only in several initial steps of HS-process we apply special-
scaling, choosing γk distinctly smaller than γ(opt)(X̃k, Gk). This retards the
decreasing of the sequence {ck} in those steps and spoils the quality of Ũ as
an AUF of X̃k (hence also of X̃0 and A). In (i) A = A1, see subsection 4.5, in
(ii) A = A5 random and ill-conditioned 10× 10 matrix, in (iii) A6, specially
constructed 10 × 10 matrix. All matrices H̃ passed the positivity-test. In
tables 8–10 we present additionally the quantities {χ̃k}, χ̃k := δk/[rk∗(δk+1+
10−16)], probably a lower bound on χk.

(i)
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Table 8

k ck ρk rk δk χ̂k

0 8.75e + 14 8.27e− 04 1.21e + 03 5.82e− 13 0.078
1 4.35e + 08 1.19e− 03 8.99e + 02 6.09e− 15 0.036
2 2.65e + 05 1.11e− 03 8.40e + 02 1.90e− 14 0.026
3 6.00e + 03 9.44e− 04 9.01e + 02 7.96e− 15 0.041
4 1.24e + 03 1.12e + 00 1.00e + 00 1.16e− 16 0.431
5 1.51e + 01 9.26e− 01 1.07e + 00 1.69e− 16 0.720

(ii)

Table 9

k ck ρk rk δk χ̂k

0 9.61e + 14∗ 8.21e− 05∗ 1.21e + 04∗ 3.96e− 13 0.0013
1 1.12e + 09 1.12e + 00 1 2.46e− 14 0.422
2 1.17e + 04 1.27e− 04 5.13e + 03 5.85e− 14 0.013
3 5.17e + 03 1.08e + 00 1 6.71e− 16 0.647
4 3.15e + 01 3.25e− 02 1.55e + 01 8.36e− 16 0.154
5 1.64e + 01 1.37e + 00 1 1.51e− 16 0.302

(iii)

Table 10

k ck ρk rk δk χ̂k

0 1.00e + 11 0.01 100 7.30e− 14 0.145
1 1.58e + 06 0.01 100 4.95e− 15 0.261
2 6.29e + 03 1.43 1 8.94e− 17∗ 0.281
3 4.63e + 01 1.07 1 2.18e− 16 0.522

Remarks 5.1. Experimental results above demonstrate the tendency of
the quantities {χk} to decrease with {ρk} and the “soothing” role of χk in
the eventual blowing-up of {δk} in the backward induction. Example (iii)
demonstrates the multiplicative blowing-up of {δk} in the last two steps of
the backward induction. Special choice of the singular values of the matrix
A6 yields χ0, χ1 not very small.

Conclusion 5.1. Using in the HS-process the scaling parameters γk dis-
tinctly smaller than the optimal ones retards the convergence and spoils the
quality of the computed AUF Ũ of A.
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6 The switching criteria in HS

In [12] we presented two switching criteria: criterion for accepting the last
constructed iterate X̃l as the computed unitary factor Ũ := X̃l and crite-
rion for switching from (1,∞)-scaling to unscaled iterations. Their aim was
to guarantee the monotonic decrease of the sequences {ck}l

k=0, {σ
(k)
max}l

k=1

and to yield the last iterate achieving the limiting accuracy ∆̃l := ||X̃H
l ∗

X̃l − I||F 6 ε. In our experiments (aimed essentially to study the prob-
lems of sections 4 or 5) we tested additionally these criteria, comparing
their performance with the performance of the corresponding criteria for
(1,∞)-scaling or (F )-scaling, see [6], [11]. More than sixty HS-test-processes
supplied appropriate experimental data (none special experiments for test-
ing our criteria were performed).

Our criteria depend on the sequence {βk}l
k=1, where the quantity βk :=

||X̃k−GH
k ||F (1 6 k 6 l) is computed in the kth iteration in the same loop in

which the next iterate X̃k+1 is constructed (compare lemma 2.1 in [11]). In
appendix B [12] we show that: ek

df= σ
(k)
max − 1 > ε implies βk ≈ 2pkek, pk

df=
p(X̃k −GH

k ).

The stopping criterion. We accept X̃k+1 as the last computed iterate,
l = lN

df= k + 1, provided the following both conditions hold: the kth it-
eration is unscaled or optimally or (F )-scaled and βk 6

√
2νn1/2. In all

our experiments X̃l with l = lN was achieving acceptable limiting accuracy:
∆̃l 6 ε.

Let lH and lF be the indices of the last iterates indicated, respectively, for
unscaled [6] and (F )-scaled [11] iterations (k > 0, xk+1 > xk implies lF

df= k,
where xp := ||X̃p||F for p = k, k + 1). In all our experiments we noticed the
relations: lN 6 lH 6 lN + 2, lF 6 lN 6 lF + 1. The relation lH = lN + 1 was
noticed frequently, the relation lH = lN + 2 was noticed twice. The relation
lN = lF + 1 was noticed once. The HS-process with stopping criterion [6] is
performing frequently (at least) one redundant iteration.

The criterion for switching to unscaled iterations. We propose to switch to
unscaled iterations for k > r = rN provided the following both conditions
hold: the iterations for k 6 rN are (1,∞)-scaled and βk 6 1.5 or βk > βk−1.

Let rH be the index of the last (1,∞)-scaled iteration according to the
criterion in [6]. The relations observed in our experiments are: rN < rH 6
rN + 4. Frequently rH = rN + 3 or rH = rN + 2. The case rH = rN + 4
was noticed once. Our proposal of an earlier switch to unscaled iterations
is a result of cautiousness. Assuming the bound (2.19) on τk we can not
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guarantee the monotonic decrease of the sequences {ck}, {σ
(k)
max} in the HS-

process with (1,∞)-scaling. But in all observed cases (of HS with (1,∞)-
scaling) the quantities τk with rN < k 6 rH were distinctly smaller than
the bound (2.19) , hence the mentioned sequences were nicely decreasing
(faster than for unscaled iterations). The criterion in [6] performed better
than ours. This competition between our cautious criterion and (probably)
the risky criterion in [6] remains hence unsolved. We have no experimental
proof that this criterion is too risky.

Conclusion 6.1. Our stopping criterion is performing better than the cri-
terion in [6] and equally well as the criterion for (F )-scaling. Our switching
criterion to unscaled iterations is performing correctly (guarantees mono-
tonic convergence), but is probably unnecessarily too cautious. Replacing
the condition βk 6 1.5 with, say, βk 6 0.5 could sometimes reduce the
number of needed iterations by one.

7 Final conclusions

We now summarize conclusions.

(i) Matrix-inversion in the HS-process should yield the computed inverse
G of the matrix X (the inverse of the current iterate) satisfying the
condition (4.5) (the NC-Property). This property is warranted by
the inversion via GECP-triangularization of X. Using the standard
inversion via GEPP, see [4], can fail, yielding for some special matrices
A a poor unitary factor Ũ . This will never occur for well-conditioned
matrices A, say: cond2(A) 6 102.

(ii) Using in the HS-process a good matrix-inversion, see (i), and either
the (F )-scaling [11] or the (1,∞)-scaling [6] (with appropriate switch
to unscaled iterations) practically guarantees good quality of the com-
puted unitary factor Ũ of A. If εcond2(A) < 1 holds then Ũ has similar
quality as the factor computed via SVD of A.

(iii) An appropriate stopping criterion, see section 6, in most cases guar-
antees that Ũ = X̃l is the first iterate reaching the limiting accuracy.
With the stopping-criterion in [6] frequently one redundant step is
performed.

(iv) The formal cost (the number of arithmetic operations) of the HS-process
in the standard double precision is at most of the same order as for
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SVD (is smaller for well-conditioned matrices or matrices with large
gaps in the spectrum of the singular values).

(v) Using in the HS-process scaling parameters {γk} distinctly larger or
smaller than the optimal-ones, see (2.12), can spoil the convergence.
Using {γk} distinctly smaller is spoiling also the quality of Ũ as an
approximate unitary factor of A. Practical scaling, see (ii), is not
involving such impendency.
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[12] A. Kie lbasiński, K. Ziȩtak, Numerical behaviour of Higham’s scaled
method for polar decomposition, Numerical Algorithms 32 (2003), 105–
140.

38



[13] G.W. Stewart, The triangular matrices of Gaussian elimination and
related decomposition, IMA J. Numer. Anal. 17 (1997) 7–16.

[14] J.H. Wilkinson, Rounding Errors in Algebraic Process (Her Majesty’s
Stationery Office, London, 1963).
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