Wrocław University of Technology Institute of Mathematics and Computer Science

Higham's scaled method for polar decomposition and numerical matrix-inversion

Andrzej Kiełbasiński, Paweł Zieliński, Krystyna Ziȩtak

Report I18/2007/P-045

Wrocław, July 2007

Higham's scaled method for polar decomposition and numerical matrix-inversion

Andrzej Kiełbasiński ${ }^{1}$, Paweł Zieliński ${ }^{2}$ and Krystyna Ziȩtak ${ }^{2}$
${ }^{1}$ University of Warsaw, Institute of Applied Mathematics and Mechanics, 02-097 Warsaw, Poland
${ }^{2}$ Wroctaw University of Technology,
Institute of Mathematics and Computer Science, Wybrzeże Wyspiańskiego 27, 50-370 Wroctaw, Poland
E-mail: pawel.zielinski@pwr.wroc.pl krystyna.zietak@pwr.wroc.pl

July 3, 2007

We present the theory (and illustrating experiments) of the numerical Higham's scaled method for computing the unitary factor of a nonsingular matrix. We show how the quality of the computed inverses of matrices influences the accuracy of the computed polar factorization. In particular: the inversion via GECP-factorization and reasonable scaling guarantee a good quality of the computed polar factors (with GEPP-factorization the computed unitary factor can be unacceptable). Some problems of scaling and switching criteria are discussed and experimentally investigated.

Keywords: polar decomposition of a matrix, Higham's method, roundingerrors analysis, numerical matrix-inversion

AMS subject classification: 65G50, 65F30

1 Introduction

We deal with the polar decomposition of a complex nonsingular matrix $A \in \mathbb{C}^{n \times n}$:

$$
\begin{equation*}
A=U_{\mathrm{A}} H_{\mathrm{A}}, \quad U_{\mathrm{A}}-\text { unitary }, \quad H_{\mathrm{A}} \in \mathcal{H P} \mathcal{D}, \tag{1.1}
\end{equation*}
$$

where $\mathcal{H P D}$ is the class of Hermitian positive-definite matrices. U_{A} is the unitary factor of A (the orthogonal factor of $A \in \mathbb{R}^{n \times n}$). Matrices $\left\{U_{\mathrm{A}}, H_{\mathrm{A}}\right\}$ are the polar factors of A.

The factorization (1.1) can be computed from SVD, the singular value decomposition of A. The iterative methods are alternative ways to compute (1.1), see for example $[1,3,4,5,7]$.

In Higham's scaled method [4, 7], denoted by HS (referred also as Newton's scaled method), one constructs a sequence $\left\{X_{k}\right\}_{k=0}^{\infty}$ of matrices:

$$
\begin{equation*}
X_{0}=A, \quad X_{k+1}=\frac{1}{2}\left(\gamma_{k} X_{k}+\frac{1}{\gamma_{k}} X_{k}^{-H}\right), \quad \gamma_{k}>0 \tag{1.2}
\end{equation*}
$$

convergent to U_{A}, the common unitary factor of all X_{k}. There are known several theoretical or practical rules of the choice of scaling parameters γ_{k} which increase the speed of convergence, see $[3,4,7]$.

Let $\left\{\tilde{X}_{k}\right\}_{k=0}^{l}$ be the sequence of iterates computed in the numerical HSalgorithm. In all cases when this algorithm converges a good unitarity of the computed unitary factor $\tilde{U} \stackrel{\text { df }}{=} \tilde{X}_{l}$ is achieved:

$$
\begin{equation*}
\left\|\tilde{U}^{H} \tilde{U}-I\right\|_{2} \leqslant \varepsilon_{0} \tag{1.3}
\end{equation*}
$$

(all ε_{s} in this paper are of the size ν, the computing precision). We can now compute the Hermitian factor \tilde{H} of A :

$$
\begin{equation*}
\tilde{B}:=\tilde{U}^{H} * A ; \quad \tilde{H}:=\left(\tilde{B}+\tilde{B}^{H}\right) / 2 . \tag{1.4}
\end{equation*}
$$

The problem is: whether the computed polar factors $\{\tilde{U}, \tilde{H}\}$ of A are acceptable? That means: whether the following relations hold:

$$
\begin{equation*}
\tilde{H} \in \mathcal{H P D}, \quad\|\tilde{U} \tilde{H}-A\|_{2} \leqslant \varepsilon_{1}\|A\|_{2} \quad ? \tag{1.5}
\end{equation*}
$$

In [8] we try to explain how it happens that the computed by numerical HS polar factors are acceptable? We reveal also two main dangers: the poor quality of the computed inverses and using of too small scaling parameters.

Our further research is presented in [9]. We explain there all phenomena we were able to perceive in our experiments. Therefore the experimental results play in [9] rather only the role of illustrations.

This paper is a concise version of [9]. We skip here the proofs, theorem 2.2 , the estimation of the accuracy of experimental results and many detailed remarks. We concentrate on the most important problem of the quality of the matrix-inversion in the numerical HS-algorithm.

The theory is presented in sections 2 and 4 . Section 3 explains how to read experimental results. Sections 5 and 6 present briefly some problems of scaling and switching criteria. For final conclusions see section 7.

We add the appendix presenting the proof of the NC-Property of the inversion by B-method, via GECP-factorization, see [2].

2 The theory of HS, the numerical Higham's method

Here and in all next sections HS means the numerical HS algorithm (to distinguish from (1.2), where the theoretical algorithm is defined).

Let \tilde{X}_{k} be the computed iterate and X_{k} the matrix satisfying the conditions (2.3) below. Neither \tilde{X}_{k} nor X_{k} here is identical with X_{k} in (1.2).

Let us define the following two functions

$$
\begin{gather*}
p: \mathbb{C}^{n \times n} \longrightarrow\left[n^{-1 / 2}, 1\right], \quad p(\boldsymbol{\Psi}) \stackrel{\text { df }}{=}\left\{\begin{array}{cl}
1, & \text { when } \boldsymbol{\Psi}=0 \\
\|\boldsymbol{\Psi}\|_{2}\left(\|\boldsymbol{\Psi}\|_{F}\right)^{-1}, & \text { otherwise }
\end{array}\right. \\
f:(0, \infty) \longrightarrow[1, \infty), \quad f(t) \stackrel{\text { df }}{=} \frac{1}{2}\left(t+t^{-1}\right) \tag{2.1}
\end{gather*}
$$

These reserved functions "produce" a series of derivate symbols $\left(f_{k}, p_{k}, p_{+}, \ldots\right)$ the values of f or p on concrete arguments.

We assume that the computations in HS are performed in the floatingpoint arithmetic with precision ν and that neither underflow nor overflow occurs.

The epsilons $\left(\varepsilon_{0}, \varepsilon_{x}, \ldots\right)$ are modest multiples of ν. Not all of them must be positive. We signal it writing, for example: $\left|\varepsilon_{k}^{\prime}\right| \leqslant \varepsilon$. The only exceptions (see section 4) are "false epsilons" ($\check{\varepsilon}_{x}, \check{\varepsilon}_{k}, \ldots$), the quantities which ought to be the true epsilons (and sometimes are) but - due to breaking of the basic assumption (2.3) - can be much larger than "a modest multiple of ν ". Usually these false epsilons satisfy $|\check{\varepsilon}| \ll 1$.

Let us formulate already now the following general assumptions:

$$
\begin{equation*}
\hat{\varepsilon} \operatorname{cond}_{2}(A)<1, \quad \hat{\varepsilon}<\nu^{2 / 3} \lesssim 10^{-4} \tag{2.2}
\end{equation*}
$$

where $\hat{\varepsilon}$ is specified in (2.6), (2.3).

2.1 Main definitions and relations

Let us consider a nonsingular matrix $A \in \mathbb{C}^{n \times n}$ and the sequence $\left\{\tilde{X}_{k}\right\}_{k=0}^{l}$ of matrices (1.2) computed in HS, $\tilde{X}_{0}:=A$.

Let γ_{k} be the chosen scaling parameter and G_{k} the computed inverse of \tilde{X}_{k}. We assume that exists a nonsingular matrix X_{k} satisfying the relations:

$$
\begin{equation*}
\tilde{X}_{k}=X_{k}-\Delta_{k}, \quad G_{k}=X_{k}^{-1}-\boldsymbol{\Delta}_{k}^{\prime} \tag{2.3}
\end{equation*}
$$

where $\left\|\boldsymbol{\Delta}_{k}\right\|_{F} \leqslant \varepsilon_{x}\left\|X_{k}\right\|_{2},\left\|\boldsymbol{\Delta}_{k}^{\prime}\right\|_{F} \leqslant \varepsilon_{g}\left\|X_{k}^{-1}\right\|_{2}$. This defines (not uniquely) X_{k} for $k<l$. Let us extend it to $k=l: X_{l}=\tilde{X}_{l}$. The sequences $\left\{X_{k}\right\}$ and $\left\{\tilde{X}_{k}\right\}$ are neighbour-sequences and many important properties of X_{k} are
close to these of \tilde{X}_{k}. We describe the HS-process in terms of the sequence $\left\{X_{k}\right\}$ since this sequence imitates well the relation (1.2), see below (2.5), (2.6).

The assignment-statements

$$
\begin{equation*}
G_{k}:=\tilde{X}_{k}^{-1}, \quad \tilde{X}_{k+1}:=\left(\tilde{X}_{k} * \gamma_{k}+G^{H} / \gamma_{k}\right) / 2, \tag{2.4}
\end{equation*}
$$

and (2.3) imply the equalities

$$
\begin{equation*}
X_{k+1}=Z_{k+1}+T_{k}, \quad Z_{k+1} \stackrel{\text { df }}{\stackrel{1}{2}}\left(\gamma_{k} X_{k}+\frac{1}{\gamma_{k}} X_{k}^{-H}\right) \tag{2.5}
\end{equation*}
$$

and the bound

$$
\begin{equation*}
\left\|T_{k}\right\|_{F} \leqslant \hat{\varepsilon} f_{k}, \quad f_{k} \stackrel{\mathrm{df}}{=}\left\|Z_{k+1}\right\|_{2}, \quad \hat{\varepsilon}=2 \varepsilon_{x}+\varepsilon_{g}+3 \sqrt{n} \nu+O\left(\nu^{2}\right) . \tag{2.6}
\end{equation*}
$$

Let us consider the SVD of X_{k} :

$$
X_{k}=P_{k} \operatorname{diag}\left(\sigma_{1}^{(k)}, \ldots, \sigma_{n}^{(k)}\right) Q_{k}^{H}, \quad P_{k}, Q_{k} \text { unitary }
$$

and define d_{k}, the distance of X_{k} from the unitarity:

$$
\begin{gather*}
d_{k} \stackrel{\text { df }}{=} \max _{i}\left|\sigma_{i}^{(k)}-1\right|=\max \left\{\sigma_{\max }^{(k)}-1,1-\sigma_{\min }^{(k)}\right\}, \tag{2.7}\\
\sigma_{\max }^{(k)} \stackrel{\text { df }}{=} \max _{i}\left\{\sigma_{i}^{(k)}\right\}, \quad \sigma_{\min }^{(k)} \stackrel{\text { df }}{=} \min _{i}\left\{\sigma_{i}^{(k)}\right\} . \tag{2.8}
\end{gather*}
$$

The efficiency of HS depends on how quickly $\left\{d_{k}\right\}_{k=1}^{l}$ decrease, the nearunitarity of the computed factor $\tilde{U}=\tilde{X}_{l}$ depends on the limiting accuracy $d \stackrel{\text { df }}{=} \lim \sup d_{k}$ of the conceptional infinite sequence $\left\{d_{k}\right\}_{k=0}^{\infty}$. The last iterate \tilde{X}_{l} constructed in HS should be the first one reaching the level $d_{l} \lesssim d$.

Let us define further quantities

$$
\begin{gather*}
c_{k} \stackrel{\mathrm{df}}{=} \operatorname{cond}_{2}\left(X_{k}\right)=\frac{\sigma_{\max }^{(k)}}{\sigma_{\min }^{k)}}, \quad \gamma_{k}^{(\mathrm{opt})} \stackrel{\mathrm{df}}{=}\left(\sigma_{\max }^{(k)} \sigma_{\min }^{(k)}\right)^{-1 / 2}, \\
\rho_{k} \stackrel{\mathrm{df}}{=}\left(\gamma_{k}^{(\mathrm{opt})} \gamma_{k}^{-1}\right)^{-2}, \quad \tau_{k} \stackrel{\mathrm{df}}{=} \max \left\{\rho_{k}, \rho_{k}^{-1}\right\} \tag{2.9}
\end{gather*}
$$

The quantities ρ_{k}, τ_{k} "measure" the distance of γ_{k} from $\gamma_{k}^{(\mathrm{opt})}$, the optimal scaling parameter.

In [9] we show the following relations, see (2.6),

$$
\begin{equation*}
f_{k}=f\left(\sqrt{c_{k} \tau_{k}}\right), \quad d_{k+1}=\left(1-\varepsilon_{k}^{*}\right) f_{k}-1, \quad\left|\varepsilon_{k}^{*}\right| \leqslant \hat{\varepsilon}, \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\varepsilon} f_{k}<1 \quad \text { implies } \quad c_{k+1} \leqslant(1+\hat{\varepsilon}) f_{k}\left(1-\hat{\varepsilon} f_{k}\right)^{-1} \tag{2.11}
\end{equation*}
$$

The assumptions (2.2), practical scaling ($1, \infty$)-scaling [4] or (F)-scaling [7]) and appropriate switching criteria in HS guarantee that the sequence $\left\{f_{k}\right\}_{k=0}^{l-1}$ is strictly decreasing and the bounds $\hat{\varepsilon} f_{k}<1, \tau_{k}<\sqrt{n}$ hold. We find ultimately in [8] that the bound (1.3) is satisfied with

$$
\begin{equation*}
\varepsilon_{0} \approx 2 d_{l} \leqslant \varepsilon^{\prime} \stackrel{\text { df }}{=} \varepsilon_{x}+\varepsilon_{g}+2 \sqrt{n} \nu \tag{2.12}
\end{equation*}
$$

Remarks 2.1.
(i) In the case of the standard double-precision computations and HS with practical scaling in most cases $l \leqslant 10$ holds.
(ii) In some special experiments (see sections 4 and 5) we modify the normal HS-algorithm introducing (in a few initial steps only) either matrices G_{k} not satisfying (2.3) or scaling parameters γ_{k} much smaller than $\gamma_{k}^{(\mathrm{opt})}$. But these modifications neither destroy the monotonic decrease of $\left\{f_{k}\right\}$ nor influence the final convergence of $\left\{\tilde{X}_{k}\right\}$. Hence the bounds (2.12) and (1.3) remain valid.

We need some further notions to discuss the acceptability (1.5) of the computed polar factors $\{\tilde{U}, \tilde{H}\}$.

Let the abbreviations AUF, APF mean: approximate unitary factor, approximate polar factors, respectively.

Let us consider any matrices $X, U \in \mathbb{C}^{n \times n}, X$-nonsingular, U-unitary. If $H_{u x} \stackrel{\text { df }}{=} \frac{1}{2}\left(U^{H} X+X^{H} U\right) \in \mathcal{H} \mathcal{P D}$ then we will say that U is an AUF $\left(\left\{U, H_{u x}\right\}\right.$ are APF) of X with accuracy (relative error):

$$
\operatorname{acc}(U, X) \stackrel{\text { df }}{=} \frac{\left\|U H_{u x}-X\right\|_{F}}{\|X\|_{2}}
$$

Let us fix now U as the unitary factor of $\tilde{U}=\tilde{X}_{l}=X_{l}$. Hence the polar decomposition of \tilde{U} is, see (2.7), (2.12),

$$
\begin{equation*}
\tilde{U}=U H_{u}, \quad H_{u} \in \mathcal{H} \mathcal{P D}, \quad\|\tilde{U}-U\|_{2}=d_{l} \lesssim \frac{1}{2} \varepsilon^{\prime} \tag{2.13}
\end{equation*}
$$

Let now define for $k=0, \ldots, l$ the following matrices and quantities:

$$
\begin{equation*}
H_{k} \stackrel{\text { df }}{=} \frac{1}{2}\left(U^{H} X_{k}+X_{k}^{H} U\right), \quad \delta_{k} \stackrel{\mathrm{df}}{=}\left\|X_{k}-U H_{k}\right\|_{F}\left\|X_{k}\right\|_{2}^{-1} \tag{2.14}
\end{equation*}
$$

Evidently the following implication holds: $H_{k} \in \mathcal{H P D}$ implies $\delta_{k}=\operatorname{acc}\left(U, X_{k}\right)$. In particular, see (2.13), $H_{l}=H_{u} \in \mathcal{H} \mathcal{P} \mathcal{D}, \delta_{l}=\operatorname{acc}\left(U, X_{l}\right)=0$.

The following lemma shows that the properties of the pair $\left\{H_{0}, \delta_{0}\right\}$ are decisive for the acceptability of the computed polar factors $\{\tilde{U}, \tilde{H}\}$.

Lemma 2.1. Let introduce the quantities $p_{0} \stackrel{\text { df }}{=} p\left(X_{0}-U H_{0}\right), \varepsilon_{\mathrm{I}} \stackrel{\mathrm{df}}{=} 2.5 \varepsilon_{x}+$ $\varepsilon_{g}+\nu m(\sqrt{n})$, where $m(t)$ is a modest polynomial in t (depending on the way of computing \tilde{B} in (1.4)). If $\left(p_{0} \delta_{0}+\varepsilon_{\mathrm{I}}\right) \operatorname{cond}_{2}(A)<1$ holds and $H_{0} \in \mathcal{H} \mathcal{P} \mathcal{D}$ then the following relations hold:

$$
\tilde{H} \in \mathcal{H P D}, \quad\left|\frac{\|A-\tilde{U} \tilde{H}\|_{2}}{\|A\|_{2}}-p_{0} \delta_{0}\right| \lesssim \varepsilon_{\mathrm{I}}
$$

Remark 2.2. Lemma 2.1 is valid only when G_{0} satisfies (2.3).
Conclusion 2.1. The computed polar factors $\{\tilde{U}, \tilde{H}\}$ are acceptable iff $H_{0} \in \mathcal{H P D}$, δ_{0} is of the order ν and A is sufficiently well-conditioned, since the following bounds hold: $\left|p_{0} \delta_{0}-\varepsilon_{\mathrm{I}}\right| \leqslant\|A-\tilde{U} \tilde{H}\|_{2}\|A\|_{2}^{-1} \leqslant p_{0} \delta_{0}+\varepsilon_{\mathrm{I}}$.

In the next subsection we present an explicit expression of δ_{k} in terms of: $\delta_{k+1}, \rho_{k}, c_{k}, \hat{\varepsilon}$, see (2.17)-(2.20). This opens a chance for "theoretical transfer" from $\delta_{l}=0$ to the important quantity δ_{0}.

We must be prepared that $\operatorname{acc}\left(U, \tilde{X}_{k}\right) \gtrsim \operatorname{acc}\left(U, \tilde{X}_{k+1}\right)$ holds since the rounding errors in the computation of G_{k} and \tilde{X}_{k+1}, see (2.4), can partly spoil the information on \tilde{X}_{k} transferred to \tilde{X}_{k+1} (hence also to $\tilde{U}=\tilde{X}_{l}$). The same concerns the neighbour-sequence $\left\{X_{k}\right\}_{k=0}^{l}$: the relation $\delta_{k} \gtrsim \delta_{k+1}$ can be expected!

We should recognize benign rounding errors in (2.4) - such that δ_{k} is at most only slightly larger than δ_{k+1} - and dangerous rounding errors - such that $\delta_{k} \gg \delta_{k+1}$ can occur.

2.2 BIT, the backward-induction theorem

Let us introduce the matrix, see $(2.5), \mathbf{\Psi}_{k} \stackrel{\text { df }}{=} U H_{k+1}-Z_{k+1}$ and the quantities, see (2.6), (2.1), (2.8),

$$
\begin{equation*}
\xi_{k} \stackrel{\mathrm{df}}{=}\left\|\boldsymbol{\Psi}_{k}\right\|_{2}, \quad \vartheta_{k} \stackrel{\mathrm{df}}{=}\left\|\boldsymbol{\Psi}_{k}\right\|_{F} f_{k}^{-1}, \quad r_{k} \stackrel{\mathrm{df}}{=} \frac{f_{k}}{f\left(\sigma_{\max }^{(k)} \gamma_{k}\right)} \tag{2.15}
\end{equation*}
$$

Theorem 2.1 (BIT). If the relations

$$
\begin{equation*}
\xi_{k}<1, \quad H_{k+1} \in \mathcal{H} \mathcal{P D} \tag{2.16}
\end{equation*}
$$

are satisfied then $\delta_{k}=\vartheta_{k}\left|\chi_{k}+\kappa_{k} \zeta_{k}\right| r_{k}, \zeta_{k} \stackrel{\text { df }}{=}(3 \sqrt{2}+2)\left(2-\xi_{k}\right)^{-1} \xi_{k}$,

$$
c_{k} \vartheta_{k}\left|\mu_{k}+\lambda_{k} \zeta_{k}\right| r_{k}<1 \quad \text { implies } \quad H_{k} \in \mathcal{H P D},
$$

where $\chi_{k}, \mu_{k}, \kappa_{k}, \lambda_{k}$ are real numbers, either all equal zero or satisfying inequalities:

$$
\begin{equation*}
0 \leqslant \mu_{k}<\chi_{k} \leqslant 1, \quad\left|\kappa_{k}\right|<1, \quad\left|\lambda_{k}\right|<1 . \tag{2.17}
\end{equation*}
$$

Remark 2.3. Theorem 2.1 is valid also in cases when the matrices G_{k}, G_{k+1} are not satisfying (2.3).

Corollary 2.1. The quantity r_{k}, see (2.15), satisfies the relations

$$
\begin{equation*}
r_{k}=\max \left\{1,\left(c_{k}+\rho_{k}\right)\left(c_{k} \rho_{k}+1\right)^{-1}\right\}<\max \left\{1, \rho_{k}^{-1}\right\} . \tag{2.18}
\end{equation*}
$$

If the matrices G_{k}, G_{k+1} satisfy (2.3) then

$$
\begin{equation*}
\xi_{k}=p_{k}^{\prime}\left|\delta_{k+1}\left(1+\varepsilon_{k}^{\prime}\right)+\varepsilon_{k}^{\prime}\right| f_{k}, \quad p_{k}^{\prime} \stackrel{\text { df }}{=} p\left(\boldsymbol{\Psi}_{k}\right), \quad\left|\varepsilon_{k}^{\prime}\right| \leqslant \hat{\varepsilon}, \tag{2.19}
\end{equation*}
$$

and - provided (2.16) holds -

$$
\begin{equation*}
\delta_{k}=\left|\delta_{k+1}\left(1+\varepsilon_{k}^{\prime}\right)+\varepsilon_{k}^{\prime}\right|\left|\chi_{k}+\kappa_{k} \zeta_{k}\right| r_{k}, \quad\left|\varepsilon_{k}^{\prime}\right| \leqslant \hat{\varepsilon} . \tag{2.20}
\end{equation*}
$$

This allows us to simplify the backward-induction rule: if $\xi_{k} \ll 1$ and $H_{k+1} \in$ $\mathcal{H P D}$ holds then

$$
\begin{gather*}
\delta_{k} \approx\left|\delta_{k+1}+\varepsilon_{k}^{\prime}\right| \chi_{k} r_{k}, \quad\left|\varepsilon_{k}^{\prime}\right| \leqslant \hat{\varepsilon}, \quad \chi_{k} \in[0,1], \tag{2.21}\\
c_{k}\left(\delta_{k+1}+\hat{\varepsilon}\right)\left(1+7 \xi_{k}\right) r_{k}<1 \quad \text { implies } \quad H_{k} \in \mathcal{H P D} .
\end{gather*}
$$

Remarks 2.4.
(i) In double-precision computations the approximate equality (2.21) describes adequately the behaviour of the sequence $\left\{\delta_{k}\right\}$, since in this case all $\left\{\xi_{k}\right\}$ are very small (the only exception can be ξ_{0} when G_{0} is not satisfying (2.3), see section 4).
(ii) With optimal or practical scaling the relations $\chi_{k} r_{k} \lesssim 1$ can be expected, see section 5 . But in the general case the rounding errors in the computations of \tilde{X}_{k+1} in (2.4) can be dangerous when $\rho_{k} \ll 1$ and $c_{k} \gg 1$ holds: this implies $r_{k} \gg 1$ (Theorem 2.2 in [9] shows that χ_{k} tends to decrease with ρ_{k}, but we can not expect that always $\chi_{k} r_{k} \lesssim 1$ holds, see section 5).
(iii) Optimal or practical scaling and inverses G_{k}, G_{k+1} satisfying (2.3) guarantee $\delta_{k} \lesssim \delta_{k+1}+\hat{\varepsilon}$. Hence in this case the rounding errors in both operations of (2.4) are benign.
(iv) If any of the matrices G_{k}, G_{k+1} is not satisfying (2.3) then the bound $\hat{\varepsilon}$ on $\left|\varepsilon_{k}^{\prime}\right|$ in corollary 2.1 must be replaced with a much larger quantity: the rounding errors in the computation of such inverse are dangerous. We deal with such cases in section 4.

3 Introduction to examples of numerical tests

In sections 4 and 5 we present examples of numerical tests illustrating relevant fragments of the theory. All our tests were performed for matrices $A \in \mathbb{R}^{n \times n}, 6 \leqslant n \leqslant 35$, in the IEEE standard double-precision, $\nu=\nu_{d} \approx 2.2 \times 10^{-16}$ (with cummulation of "inner products" on standard extended-precision variables, $\nu=\nu_{e} \approx 10^{-19}$).

In most cases we present the computed results with at least two correct leading decimals. The results marked with a star (*) have probably only one correct leading decimal. In results with exclamation mark (!) even the first decimal is doubtful.

For each example we present the matrix A, the information on matrixinversion and scaling in HS. We present also the quantity $\tilde{\Delta}_{l} \stackrel{\text { df }}{=} \| \tilde{U}^{T} \tilde{U}-$ $I \|_{F}, \tilde{U}=\tilde{X}_{l}$, and the result of the Cholesky-positivity test of \tilde{H}, see (1.4). Then we present for several iterations, $k=0,1, \ldots$ some of the computed quantities: $c_{k}, \rho_{k}, r_{k}, e_{k}^{(\mathrm{L})}, e_{k}^{(\mathrm{R})}, \hat{\delta}_{k}$ (eventually also some other auxiliary quantities), where

$$
\begin{gather*}
e_{k}^{(\mathrm{L})} \stackrel{\mathrm{df}}{=}\left\|I-G_{k} \tilde{X}_{k}\right\|_{F} w_{k}^{-1}, e_{k}^{(\mathrm{R})} \stackrel{\mathrm{df}}{=}\left\|I-\tilde{X}_{k} G_{k}\right\|_{F} w_{k}^{-1}, w_{k} \stackrel{\mathrm{df}}{=}\left\|\tilde{X}_{k}\right\|_{2}\left\|G_{k}\right\|_{2}, \\
\hat{\delta}_{k} \stackrel{\mathrm{df}}{=}\left\|\tilde{X}_{k}-U \hat{H}_{k}\right\|_{F}\left\|\tilde{X}_{k}\right\|_{2}^{-1}, \quad \hat{H}_{k} \stackrel{\text { df }}{=} \frac{1}{2}\left(U^{T} \tilde{X}_{k}+\tilde{X}_{k}^{T} U\right) . \tag{3.1}
\end{gather*}
$$

Remarks 3.1.
(i) Let $\tilde{p}_{0} \stackrel{\text { df }}{=} p\left(\tilde{X}_{0}-U \hat{H}_{0}\right)$. Then $\tilde{p}_{0} \hat{\delta}_{0}$ is a close approximation of $\| A-$ $\tilde{U} \tilde{H}\left\|_{2}\right\| A \|_{2}^{-1}$.
(ii) $\hat{\delta}_{k}$ is a close approximation of δ_{k}, see (2.14), provided G_{k} is satisfying (2.3).

Example 3.1. In table 3.1 we present the computed results of the HSTESTprogram (see section 3 in [9]) for the 10×10 matrix $A_{1}=\operatorname{tril(}(\operatorname{rand}(10))^{8} \operatorname{rand}(U)$, see $[2], \Delta_{9}=5.14 \times 10^{-18}$, applying (F)-scaling and the GEPP-matrixinversion. Matrix \tilde{H} passed the positivity test.

Table 3.1

k	$c_{k}-1$	ρ_{k}	$e_{k}^{(\mathrm{L})}$	$e_{k}^{(\mathrm{R})}$	$\hat{\delta}_{k}$
0	$8.74 e+14 *$	$0.930 *$	$3.10 e-17$	$8.72 e-09$	$5.12 e-09$
1	$1.66 e+06$	0.708	$3.28 e-17$	$1.96 e-15$	$1.19 e-15$
2	$7.56 e+02$	1.00	$5.90 e-17$	$7.52 e-16$	$4.09 e-16$
3	$1.19 e+01$	0.732	$1.07 e-16$	$1.44 e-16$	$2.68 e-16$
4	$1.17 e+00$	1.07	$2.97 e-16$	$2.95 e-16$	$2.80 e-16$
5	$8.38 e-02$	1.03	$5.08 e-16$	$5.16 e-16$	$3.43 e-16$
6	$1.51 e-03$	1.00	$5.74 e-16$	$5.74 e-16$	$3.40 e-16$
7	$7.01 e-07$	1.00	$5.35 e-16$	$5.35 e-16$	$2.64 e-16$
8	$2.46 e-13$	1.00	$4.84 e-16$	$4.84 e-16$	$1.80 e-16$

Remarks 3.2.
(i) The value of $e_{0}^{(\mathrm{R})}$ shows that matrix G_{0} is not satisfying (2.3).
(ii) The quantity $\|A-\tilde{U} \tilde{H}\|_{2}\|A\|_{2}^{-1}$, see (1.4) and remark 3.1 (i), cannot be smaller than $\hat{\delta}_{0} n^{-1 / 2} \approx 1.62 \times 10^{-9}$. Hence the computed polar factors $\{\tilde{U}, \tilde{H}\}$ are not acceptable. It is the result of breaking the assumption (2.3) for $k=0$, see section 4 .
(iii) The results presented in table 3.1 for $k>3$ are typical for all our experiments. In next examples we will present only the relevant part of experimental results.

4 The quality problem of the matrix-inversion in the HS-process

Some contemporary standard procedures compute the inverses from the Gaussian triangular factorization with partial pivoting (GEPP) of the inverted matrix, see [2]. Using these procedures in the HS-process yields frequently (but not always!) acceptable results (see example 3.1). The inversion via triangular factorization with complete pivoting (GECP) yields practically always acceptable results in HS with practical or optimal scaling.

We should recognize the properties of the computed inverse G_{k} of \tilde{X}_{k} not impending the good numerical behaviour of the HS-process and those properties which can seriously spoil the quality of the computed unitary factor \tilde{U} of A.

4.1 Properties of computed inverses

Let G be the computed inverse of the nonsingular matrix X. We introduce auxiliary quantities $x \stackrel{\mathrm{df}}{=}\|X\|_{2}, g \stackrel{\mathrm{df}}{=}\|G\|_{2}, c \stackrel{\mathrm{df}}{=} \operatorname{cond}_{2}(X)=x\left\|X^{-1}\right\|_{2}$ and consider the following four eventual properties of G :

$$
\begin{gather*}
\left\|G-X^{-1}\right\|_{F} \leqslant \varepsilon g c, \tag{4.1}\\
 \tag{4.2}\\
\|G X-I\|_{F} \leqslant \varepsilon g x, \tag{4.3}\\
 \tag{4.4}\\
\|X G-I\|_{F} \leqslant \varepsilon g x, \\
\exists \Delta^{\prime}, \Delta: \quad G+\Delta^{\prime}=(X+\Delta)^{-1}, \quad\left\|\Delta^{\prime}\right\|_{F} \leqslant \varepsilon_{g} g, \quad\|\Delta\|_{F} \leqslant \varepsilon_{x} x .
\end{gather*}
$$

The same relations define the properties of inversion procedures as follows: Let \mathbb{M} be a subset of nonsingular $n \times n$ matrices X. We say that an inversion algorithm Inv is numerically stable (NS) in \mathbb{M} if for each $X \in \mathbb{M}$ the computed inverse G satisfies (4.1). In the same way:

- (4.2) defines the left-residual stability (LRS) of Inv in \mathbb{M},
- (4.3) defines the right-residual stability (RRS) of Inv in \mathbb{M},
- (4.4) defines the numerical correctness (NC) of Inv in \mathbb{M}.

We shall use the same notation: NS, LRS, RRS, NC for the properties (4.1)(4.4) of the matrix G (no matter what is the "official property" in \mathbb{M} of the algorithm which computed G).

We define also two combined properties of G :

$$
\begin{equation*}
\mathrm{Alt} \stackrel{\mathrm{df}}{=} \mathrm{LRS} \text { or } \mathrm{RRS}, \quad \mathrm{Conj} \stackrel{\mathrm{df}}{=} \mathrm{LRS} \text { and } \mathrm{RRS} . \tag{4.5}
\end{equation*}
$$

Assuming $\varepsilon_{x}+\varepsilon_{g}+\varepsilon_{x} \varepsilon_{g} \leqslant \varepsilon$ and $\varepsilon x g<1$ we find the following implications:

$$
\begin{equation*}
\mathrm{NC} \Longrightarrow \mathrm{Conj} \Longrightarrow \mathrm{Alt} \Longrightarrow \mathrm{NS} \tag{4.6}
\end{equation*}
$$

and the bounds

$$
\begin{equation*}
\|G X-I\|_{F} \leqslant c\|X G-I\|_{F}, \quad\|X G-I\|_{F} \leqslant c\|G X-I\|_{F} . \tag{4.7}
\end{equation*}
$$

Let us note further that for small c, say $c \leqslant 10$, NS implies NC (for example: with $\left.\varepsilon_{x}=0, \varepsilon_{g} \leq 10 \varepsilon\right)$. Hence all listed properties of G can differ distinctly only when $c=\operatorname{cond}_{2}(X)$ is large.

Further definitions: We will say that G has LRS-Only-Property if G has the LRS-Property but has not the RRS-Property. In this case G has the Alt-Property (hence also NS-Property) but has neither the Conj-Property nor the NC-Property. In the same way, using the term: to have the Only-Property, we define other eventual highest-properties of G in the hierarchical system defined by (4.5), (4.6).

Let us note at last that the NC-Property is the highest general quality (expressed in norms of matrices) of an inverse G computed in a constant finite precision. According to the formulation of W. Kahan, see [6], in this NC-case: G is a slightly wrong inverse of a slightly wrong matrix X.

4.2 The W-conjecture

There are several versions of computing the inverse G from GEPP-triangular factorization of X, see [2], which are either left-residual - or right-residualstable in a broad subset \mathbb{M} of $n \times n$ matrices. Hence such GEPP-inversion algorithms guarantee the Alt-Property of computed inverses. For wellconditioned matrices X it means practically the Conj-Property of G. But also for badly conditioned matrices X we can check directly that frequently both residuals $\|G X-I\|_{F},\|X G-I\|_{F}$ are small (are bounded by $\varepsilon x g$), see [2], [10]. That means that G has the Conj-Property in spite of (4.7) with large c.
J.H. Wilkinson explained this phenomenon, in [10, pp. 110-111], showing that the matrix G (computed via GEPP-factorization by A-method, see [2]) has the NC-Property provided the triangular systems - involved in the computation of G from GEPP - are solved to high accuracy. This happens frequently but not always. It seems probable that this is the only reason why happens the Conj-Property of inverses computed via GEPP-factorization. Let us express it as follows:

W-conjecture. If an inverse G computed via GEPP-factorization of X has the Conj-Property then, probably, G has also the (stronger) NC-Property.

The experiments of subsection 4.5 and all our experiments with GEPPinversion seem to justify the W-conjecture.

4.3 HS with inverses not always satisfying (2.3)

In (2.3) we postulate in fact the NC-property (4.4) of all computed inverses G_{k} of $\tilde{X}_{k}, k=0, \ldots, l-1$. Hence, see remark 2.4 (iii), the NC-property of all $\left\{G_{k}\right\}$ is sufficient for good behaviour of the HS-process with practical scaling.

The problem is whether the inverses G_{k} not satisfying (2.3) can spoil (and how much?) the quality of the computed unitary factor \tilde{U} ?

We will consider only the case of G_{k} with Alt-Property (this includes the Conj-Property and NC-Property as special subcases). Let us incorporate these eventual deviations (from the normality of (2.3)) into our general description of HS.

Let assume hence the relations

$$
\begin{equation*}
X_{k}=\tilde{X}_{k}+\boldsymbol{\Delta}_{k}, \quad X_{k}^{-1}=G_{k}+\boldsymbol{\Delta}_{k}^{\prime} \tag{4.8}
\end{equation*}
$$

and let us introduce the quantities (in general: false epsilons): $\check{\varepsilon}_{x}^{(k)} \stackrel{\text { df }}{=}$ $\left\|\boldsymbol{\Delta}_{k}\right\|_{F}\left\|X_{k}\right\|_{2}^{-1}, \check{\varepsilon}_{g}^{(k)} \stackrel{\mathrm{df}}{=}\left\|\boldsymbol{\Delta}_{k}^{\prime}\right\|_{F}\left\|X_{k}^{-1}\right\|_{2}^{-1}$.

Let us assume further the relations: $\hat{c}_{k} \gg 1, \varepsilon \hat{c}_{k} \ll 1, \hat{c}_{k} \xlongequal{\text { df }} \operatorname{cond}_{2}\left(\tilde{X}_{k}\right)$. We present below a simplified version of theorem 4.1 in [9], using an approximate equality $a \approx b$ (a, b nonnegative) meaning any of the following three possibilities:

$$
|a-b| \leqslant O(\varepsilon),|a-b| \leqslant O\left(\varepsilon \hat{c}_{k}\right) \max \{a, b\},|a-b| \leqslant O\left(\hat{c}_{k}^{-1}\right) \max \{a, b\} .
$$

Theorem 4.1. The only minimizer $\boldsymbol{\Delta}_{k}$ of the linear functional

$$
\varphi_{k}(\boldsymbol{\Delta}) \stackrel{\text { df }}{=} \max _{\Delta \in \mathbb{C}^{n} \times n}\left\{\frac{\|\boldsymbol{\Delta}\|_{F}}{\left\|\tilde{X}_{k}\right\|_{2}}, \frac{\left\|\tilde{X}_{k}^{-1}-G_{k}-\tilde{X}_{k}^{-1} \boldsymbol{\Delta} \tilde{X}_{k}^{-1}\right\|_{F}}{\left\|G_{k}\right\|_{2}}\right\}
$$

defines in (4.8) the nonsingular matrix X_{k} and the matrix $\boldsymbol{\Delta}_{k}^{\prime}$ such that the following relations hold:

$$
c_{k} \stackrel{\text { df }}{=} \operatorname{cond}_{2}\left(X_{k}\right) \approx \hat{c}_{k}, \quad \check{\varepsilon}_{x}^{(k)} \approx \check{\varepsilon}_{g}^{(k)} \approx \hat{\varphi}_{k} \stackrel{\text { df }}{=} \varphi_{k}\left(\boldsymbol{\Delta}_{\mathbf{k}}\right) .
$$

Introducing the quantities, see (3.1):

$$
\varepsilon_{k}^{(\mathrm{A})} \stackrel{\mathrm{df}}{=} \min \left\{e_{k}^{(\mathrm{L})}, e_{k}^{(\mathrm{R})}\right\}, \quad \check{\varepsilon}_{k}^{(\mathrm{A})} \stackrel{\mathrm{df}}{=} \max \left\{e_{k}^{(\mathrm{L})}, e_{k}^{(\mathrm{R})}\right\}, \quad e_{k}^{(c)}=\sqrt{e_{k}^{(\mathrm{L})} e_{k}^{(\mathrm{R})}},
$$

we specify $\hat{\varphi}_{k}$ according to the assumed property of G_{k} :
(i) If G_{k} has the Alt-Only-Property then $\hat{\varphi}_{k}=\hat{\varphi}_{k}^{(\text {Alt })}$ where

$$
\begin{equation*}
\frac{1}{2} \check{\varepsilon}_{k}^{(\mathrm{A})} \lesssim \hat{\varphi}_{k}^{(\mathrm{Alt})} \lesssim \frac{1}{\sqrt{2}} e_{k}^{(c)} c_{k}^{1 / 2} \lesssim \frac{1}{\sqrt{2}} \varepsilon_{k}^{(\mathrm{A})} c_{k} \tag{4.9}
\end{equation*}
$$

(ii) If G_{k} has the Conj-Only-Property then $\hat{\varphi}_{k}=\hat{\varphi}_{k}^{(\text {Conj })}$ where

$$
\begin{equation*}
\frac{1}{2} \varepsilon_{k}^{(\mathrm{A})} \lesssim \hat{\varphi}_{k}^{(\mathrm{Conj})} \lesssim \frac{1}{\sqrt{2}} \varepsilon_{k}^{(c)} c_{k}^{1 / 2}, \quad \varepsilon_{k}^{(c)} \stackrel{\mathrm{df}}{=} e_{k}^{(c)} \tag{4.10}
\end{equation*}
$$

(iii) If G_{k} has the NC-Property then $\hat{\varphi}_{k}=\hat{\varphi}_{k}^{(\mathrm{NC})}$ where $\hat{\varphi}_{k}^{(\mathrm{NC})} \lesssim \max \left\{\varepsilon_{x}, \varepsilon_{g}\right\}$.

If matrices G_{k}, G_{k+1} can have the Alt - or Conj - or NC-Property then the bound $\hat{\varepsilon}$ in the relevant relations of section 2 must be replaced with $\check{\varepsilon}_{k}^{*}: \check{\varepsilon}_{k}^{*} \stackrel{\text { df }}{=} 2 \hat{\varphi}_{k}+\hat{\varphi}_{k+1}+3 \sqrt{n} \nu$. But for important recursive formulas $(2.20),(2.21)$ we should rather choose the presentation exposing the potentially dominating terms. For example, when $\xi_{k} \ll 1, H_{k+1} \in \mathcal{H} \mathcal{P D}$ and G_{k} has the Alt-Only-Property or the Conj-Only-Property, let us choose the presentation:

$$
\delta_{k} \approx| | \varphi_{k}^{*}+\theta_{k}^{\prime} \hat{\varphi}_{k+1}\left|+\theta_{k}^{\prime \prime}\right| \delta_{k+1}+O(\nu)| | \chi_{k} r_{k}, \quad \theta_{k}^{\prime}, \theta_{k}^{\prime \prime} \in[-1,1]
$$

where $\varphi_{k}^{*} \stackrel{\text { df }}{=}\left\|\Delta_{k} \gamma_{k}+\Delta_{k}^{\prime H} \gamma_{k}^{-1}\right\|_{F}\left(2 f_{k}\right)^{-1}$. Closer examination of the matrices $\Delta_{k}, \Delta_{k}^{\prime}$ shows that the following bounds (respectively) hold:

$$
\begin{equation*}
\hat{\varphi}_{k}^{(\mathrm{Alt})} \lesssim \varphi_{k}^{*} \lesssim \sqrt{2} \hat{\varphi}_{k}^{(\mathrm{Alt})} \quad \text { or } \quad \varphi_{k}^{*} \lesssim 2 \hat{\varphi}_{k}^{(\mathrm{Conj})} \tag{4.11}
\end{equation*}
$$

Hence in the case of distinctly Alt-Only-Property of G_{k} (when $\check{\varepsilon}_{k}^{(\mathrm{A})} \gg$ $\left.\max \left\{\hat{\varphi}_{k+1}, \delta_{k+1}\right\}\right)$ the relation

$$
\begin{equation*}
\delta_{k} \gtrsim \frac{1}{2} \check{\varepsilon}^{(\mathrm{A})}=\frac{1}{2} \max \left\{e_{k}^{(\mathrm{L})}, e_{k}^{(\mathrm{R})}\right\} \tag{4.12}
\end{equation*}
$$

is inevitable, see (4.9).
Conclusion 4.1. The rounding errors in the computation of G_{k} with Alt-Only- or Conj-Only-Property are dangerous.

4.4 Experiments with inverses G_{k} having the Alt-Only-Property

We apply here in HS the practical-scaling and the computation of the inverses G_{k} via GEPP-factorization of \tilde{X}_{k} (versions LRS - or RRS-stable).

In example 3.1 we presented already such experiment with the 10×10 matrix $\left.A_{1}=\operatorname{tril}(\operatorname{rand}(10))^{8} \operatorname{rand}(U)\right)$, see [2].

Example 4.1. The matrices \tilde{H} passed the positivity test only in examples (i), (ii) below. Matrices A_{3}, A_{4} are defined in [2].
(i) The results for $A_{2}=A_{1}^{T}, \tilde{\Delta}_{9}=6.2 \times 10^{-16}$ are presented in table 4.1.

Table 4.1

k	c_{k}	$e_{k}^{(\mathrm{L})}$	$e_{k}^{(\mathrm{R})}$	$\hat{\delta}_{k}$
0	$8.75 e+14 *$	$8.79 e-09$	$3.25 e-17 *$	$5.45 e-09$
1	$1.86 e+06$	$5.57 e-15$	$6.12 e-17 *$	$2.69 e-15$
2	$2.96 e+02$	$6.39 e-16$	$3.46 e-16$	$3.46 e-16$

(ii) Table 4.2 includes the results for $n=15, A_{3}=\operatorname{rand}(Q) \operatorname{qr}(\operatorname{vand}(15))$, $\tilde{\Delta}_{10}=9.17 \times 10^{-16}$.

Table 4.2

k	c_{k}	$e_{k}^{(\mathrm{L})}$	$e_{k}^{(\mathrm{R})}$	$\hat{\delta}_{k}$
0	$1.58 e+13$	$3.68 e-17 *$	$3.91 e-14$	$2.13 e-14$
1	$1.11 e+06$	$8.92 e-17 *$	$1.65 e-14$	$8.23 e-15$
2	$4.82 e+02$	$1.38 e-16$	$1.21 e-15$	$7.12 e-16$
3	$1.15 e+01$	$2.22 e-16$	$3.01 e-16$	$5.47 e-16$

(iii) In table 4.3 we give the results for $n=25, A_{4}=\operatorname{rand}(Q) \operatorname{qr}(\operatorname{vand}(25))$, $\tilde{\Delta}_{10}=2.46 \times 10^{-15}$.

Table 4.3

k	c_{k}	$e_{k}^{(\mathrm{L})}$	$e_{k}^{(\mathrm{R})}$	$\hat{\delta}_{k}$
0	$1.87 e+18!$	$2.93 e-17 *$	$1.39 e-10$	$8.55 e-11$
1	$4.25 e+08$	$8.65 e-17 *$	$1.67 e-12$	$7.67 e-13$
2	$1.10 e+04$	$1.15 e-16$	$6.69 e-15$	$3.75 e-15$
3	$5.26 e+01$	$3.47 e-16$	$6.38 e-16$	$1.09 e-15$

Remarks 4.1.

(i) For example (i) see remarks 3.1 (i), (ii).
(ii) In examples (ii), (iii) G_{0} and G_{1} have the LRS-Only-Property.
(iii) Notice that the relation (4.12) is clearly demonstrated for $k=0$ in all tests of example 3.1 and example 4.1.

4.5 Experiments with inverses G_{k} having the Conj-Only-Property

We apply here in HS the optimal-scaling and the procedure $\operatorname{INVCONJ}(X)$ yielding (via SVD of X) the computed inverse G of X with Conj-Property (if possible: with Conj-Only-Property), see subsection 4.5 in [9]. We present below the experiments with matrices $A_{s}=P_{s} \operatorname{diag}\left(\sigma_{j}^{(s)}\right) Q_{s}^{T} \in \mathbb{R}^{n \times n}$ for $s=$ $5,6,7\left(P_{s}, Q_{s}\right.$ orthogonal, random). In all these experiments the relative residuals $e_{k}^{(\mathrm{L})}, e_{k}^{(\mathrm{R})}$ are not exceeding 2.7×10^{-15}. Hence we present only the quantities $c_{k}, c_{k}^{1 / 2}, \hat{\delta}_{k}, m_{k}$, where m_{k} is the number of singular values $\left\{\hat{\sigma}_{i}^{(k)}\right\}$ of X_{k} close to $\hat{\alpha}_{k} \stackrel{\text { df }}{=}\left(\hat{\sigma}_{\max }^{(k)} \hat{\sigma}_{\text {min }}^{(k)}\right)^{1 / 2}$ (with $A_{s} \in \mathbb{R}^{n \times n}$ the rounding errors in G_{k} with Conj-Only-Property are dangerous only when $m_{k} \geqslant 2$ holds, see subsection 4.5 in [9]).

Examples 4.2. In experiments below all matrices \tilde{H} passed the positivity test.
(i) In table 4.4 we present the results for $n=6, \tilde{\Delta}_{6}=5.76 \times 10^{-16}$ and

$$
\left\{\sigma_{i}^{(5)}\right\}=\left\{10^{7}, \sqrt{2 \times 10^{7}}, 1,1, \sqrt{5 \times 10^{-8}}, 10^{-7}\right\}
$$

Table 4.4

k	c_{k}	$\sqrt{c_{k}}$	$\hat{\delta}_{k}$	m_{k}
0	$1.00 e+14$	$1.00 e+07$	$5.49 e-10$	2
1	$5.06 e+06$	$2.25 e+03$	$1.01 e-13$	2
2	$1.06 e+03$	$3.26 e+01$	$8.74 e-16$	-

(ii) In table 4.5 we present the results for $n=20, \tilde{\Delta}_{6}=1.99 \times 10^{-15}$ and

$$
\left\{\sigma_{i}^{(6)}\right\}=\left\{10^{14}, 10^{7}, \ldots, 10^{7}, 1\right\}
$$

Table 4.5

k	c_{k}	$\sqrt{c_{k}}$	$\hat{\delta}_{k}$	m_{k}
0	$9.99 e+13$	$1.00 e+07$	$7.04 e-09$	18
1	$5.17 e+06$	$2.27 e+03$	$1.72 e-15$	-

(iii) In table 4.6 we present the results for $n=20, \tilde{\Delta}_{8}=1.87 \times 10^{-15}$ and

$$
\sigma_{i}^{(7)}=\left(10^{14 / 19}\right)^{i-1} \quad(i=1, \ldots, 20)
$$

Table 4.6

k	c_{k}	$\sqrt{c_{k}}$	$\hat{\delta}_{k}$	m_{k}
0	$1.00 e+14$	$1.00 e+07$	$4.39 e-10$	2
1	$3.61 e+06$	$1.90 e+03$	$1.31 e-13$	2
2	$7.27 e+02$	$8.50 e+01$	$6.62 e-15$	1
3	$1.35 e+01$	$3.07 e+00$	$2.10 e-15$	-

Remark 4.2. The experimental results presented above are evidently consistent with the bounds (4.11), (4.10).

5 The problems of scaling

Assuming: $\xi_{k} \ll 1, H_{k+1} \in \mathcal{H} \mathcal{P} \mathcal{D}$ and G_{k}, G_{k+1} satisfying (2.3), we can use the simplified form of recursion, see (2.21),

$$
\delta_{k} \approx\left|\delta_{k+1}+\varepsilon_{k}^{\prime}\right| z_{k}, \quad z_{k} \stackrel{\text { df }}{=} \chi_{k} r_{k}, \quad\left|\varepsilon_{k}^{\prime}\right| \leqslant \hat{\varepsilon}
$$

where: $\chi_{k} \leqslant 1, r_{k}=\max \left\{1,\left(c_{k}+\rho_{k}\right)\left(c_{k} \rho_{k}+1\right)^{-1}\right\}$, $\rho_{k}=\left(\gamma_{k} / \gamma_{k}^{(\mathrm{opt})}\right)^{2}$. If $\gamma_{k} \ll \gamma_{k}^{(\mathrm{opt})}$ and $c_{k} \gg 1$ then $r_{k} \gg 1$ holds. Though χ_{k} tends to decrease with ρ_{k}, see theorem 2.2 in [9], it can happen that also $z_{k} \gg 1$ holds, what implies $\delta_{k} \gg \delta_{k+1}$. That is the problem of too small scaling parameters.

This can happen in one step, but also in several consecutive steps, when $z_{k}>1, z_{k-1}>1, \ldots$ holds.

In HS with practical scaling $r_{k}<\sqrt{n}$ holds, hence the danger is not very serious. What's more: all known experiments seem to indicate that HS with practical-scaling is immune to the danger of too small scaling parameters: the relation $z_{k} \stackrel{\text { df }}{=} \chi_{k} r_{k} \lesssim 1$ is always observed. Section 5 in [9] proposes an explanation for this phenomenon.

But for drastically small scaling parameters the danger of $z_{k} \gg 1$ really exists!

Example 5.1. For a random 10×10 matrix A_{8} we apply the HS-process with GECP matrix-inversion and - essentially $-(F)$-scaling, introducing "artificially" very small γ_{k} for $k=0,2,4$. The results are presented in table 5.1. We additionally compute the quantities $\hat{\chi}_{k} \stackrel{\text { df }}{=} \hat{\delta}_{k} r_{k}^{-1}\left(\hat{\delta}_{k+1}+10^{-16}\right)^{-1}$ (probably lower bounds on χ_{k}). Matrix \tilde{H} passed the positivity test.

Table 5.1

k	c_{k}	ρ_{k}	r_{k}	$\hat{\delta}_{k}$	$\hat{\chi}_{k}$
0	$9.61 e+14 *$	$8.21 e-05 *$	$1.21 e+04 *$	$3.96 e-13$	0.0013
1	$1.12 e+09$	$1.12 e+00$	1	$2.46 e-14$	0.422
2	$1.17 e+04$	$1.27 e-04$	$5.13 e+03$	$5.85 e-14$	0.013
3	$5.17 e+03$	$1.08 e+00$	1	$6.71 e-16$	0.647
4	$3.15 e+01$	$3.25 e-02$	$1.55 e+01$	$8.36 e-16$	0.154
5	$1.64 e+01$	$1.37 e+00$	1	$1.51 e-16$	0.302

Remarks 5.1.

(i) Table 5.1 demonstrates the tendency of χ_{k} to decrease with ρ_{k}.
(ii) Very small ρ_{k} (hence large $\left.\tau_{k},(2.9)\right)$ retard the decreasing of $\left\{c_{k}\right\}$, see relations (2.10), (2.11).
(iii) Section 5 in [9] presents more examples of this type.

Another problem is the influence of scaling on the effectiveness of the HS-process. Both considered above ways of practical scaling have two advantages:

- for large n, say $n \geqslant 10$, the cost of computing of $\left\{\gamma_{k}\right\}$ is negligible (with respect to the cost of the matrix-inversion),
- there is a chance of accelerating the convergence when there are large gaps in the spectrum of singular values of A.

The following way of quasi-optimal scaling:

- choose positive quantities a_{0}, b_{0} such that $a_{0}<\sigma_{j}(A)<b_{0}$ holds,
- compute: $\mu_{0}:=b_{0} / a_{0}, \gamma_{0}^{(\mathrm{q})}:=\left(a_{0} \sqrt{\mu_{0}}\right)^{-1}$, and for $k>0$

$$
\mu_{k}:=\left(\mu_{k-1}^{1 / 2}+\mu_{k-1}^{-1 / 2}\right) / 2, \quad \gamma_{k}^{(\mathrm{q})}:=\mu_{k}^{-1 / 2}
$$

guarantees the first advantage for all n; however, it does not have the second advantage.

6 The switching criteria in HS

In our experiments, aimed to study the problems of sections 4 and 5 , we tested additionally the criteria (proposed in [4], [7], [8]) for accepting the last computed iterate as the computed unitary factor U. We tested also the criteria (proposed in [4], [8]) for switching from ($1, \infty$)-scaling to unscaled iterations. Section 6 in [9] presents the details of these tests. One of the conclusions is presented in section 7 (iii).

7 Final conclusions

(i) Matrix-inversion in the HS-process should yield the computed inverse G of the matrix X (the inverse of the current iterate) satisfying the condition (2.3) (the NC-property). This property is warranted by the inversion via GECP-triangularization of X. Using in HS the standard inversion via GEPP, see [2], can fail, yielding for some special matrices A a poor unitary factor U. This will never occur for well-conditioned matrices A, say: $\operatorname{cond}_{2}(A) \leqslant 10^{2}$.
(ii) Using in the HS-process a good matrix-inversion, see (i), and either (F) scaling [7] or $(1, \infty)$-scaling [4] (with appropriate switch to unscaled iterations) practically guarantees good quality of the computed unitary factor \tilde{U} of A (the same quality, as yields the unitary factor computed via SVD of A).
(iii) An appropriate stopping criterion in most cases guarantees that $\tilde{U}=$ \tilde{X}_{l} is the first iterate reaching the limiting accuracy. With the stopping criterion in [4] frequently one redundant step is performed.
(iv) The formal cost (the number of arithmetic operations) of the HS-process in the standard-double precision is at most of the same order as for SVD (is smaller for well-conditioned matrices or matrices with large gap in the spectrum of the singular values).
(v) Using in the HS-process scaling parameters $\left\{\gamma_{k}\right\}$ distinctly larger or smaller than the optimal ones, see relations (2.9) and (2.10), can spoil the convergence. Using $\left\{\gamma_{k}\right\}$ distinctly smaller is spoiling also the quality of \tilde{U} as an approximate unitary factor of A. Practical scaling, see (iii), is not involving such impendency.

References

[1] \AA. Björck, C. Bowie, An iterative algorithm for computing the best estimate of an orthogonal matrix, SIAM J. Numer. Anal. 8 (1971) 358364.
[2] J.J. Du Croz, N.J. Higham, Stability of methods for matrix inversion, IMA J. Numer. Anal. 12 (1992) 1-19.
[3] W. Gander, Algorithms for the polar decomposition, SIAM J. Sci. Stat. Comput. 11 (1990) 1102-1115.
[4] N.J. Higham, Computing the polar decomposition - with applications, SIAM J. Sci. Stat. Comput. 7 (1986) 1160-1174.
[5] N.J. Higham, Functions of a Matrix: Theory and Computation, Book in preparation.
[6] W. Kahan, A survey of error analysis, Proc. IFIP Congr. 71, vol. I, 220-226.
[7] Ch. Kenney, A.J. Laub, On scaling Newton's method for polar decomposition and the matrix sign function, SIAM J. Matrix Anal. Appl. 13 (1992) 688-706.
[8] A. Kiełbasiński, K. Ziȩtak, Numerical behaviour of Higham's scaled method for polar decomposition, Numerical Algorithms 32 (2003), 105140.
[9] A. Kiełbasiński, P. Zieliński, K. Ziȩtak, Numerical experiments with Higham's scaled method for polar decomposition, Report I18/2006/P-013, Wrocław Univ. of Technology, Inst. Math. Comput. Science, Wrocław, May 2006 (http://www.im.pwr.wroc.pl/~zietak/reports/).
[10] J.H. Wilkinson, Rounding Errors in Algebraic Processes (Her Majesty's Stationery Office, London, 1963).
[11] P. Zieliński, K. Ziȩtak, The polar decomposition - properties, applications and algorithms, Applied Mathematics, Annals of Polish Math. Soc. 38 (1995) 23-49.

A1 Numerical correctness of inverting matrices via GECP

Theorem A1.1. Let assume that the GECP-process for $n \times n$ matrix X yields the permutation matrices $P_{\mathrm{L}}, P_{\mathrm{R}}$, and lower and upper triangular matrices $L=\operatorname{tril}(L)=\left[l_{i j}\right], R=\operatorname{triu}(R)=\left[r_{i j}\right]$, respectively, such that the following relations hold:

$$
P_{\mathrm{L}}(X+\boldsymbol{\Delta}) P_{\mathrm{R}}^{T}=L \cdot R,\|\boldsymbol{\Delta}\| \leqslant \varepsilon_{x}\|X\|, \quad r_{i i} \neq 0, l_{i i}=1 \text { for every } i . \text { (A1.1) }
$$

Let G be the inverse of X, computed by the B-method via GECP of X (that means: from the factors $\left.P_{\mathrm{L}}, P_{\mathrm{R}}, L, R\right)$. Then the matrix G satisfies the relations:

$$
\begin{equation*}
G+\boldsymbol{\Delta}^{\prime}=(X+\boldsymbol{\Delta})^{-1}, \quad\left\|\boldsymbol{\Delta}^{\prime}\right\| \leqslant \varepsilon_{g}\|G\|, \tag{A1.2}
\end{equation*}
$$

where $\varepsilon_{x}, \varepsilon_{g}$ are modest multiples of ν (the computing precision).
Proof. We will use here the ∞-norm of matrices: $\|\cdot\|=\|\cdot\|_{\infty}$. Not lessening the generality of considerations let assume $P_{\mathrm{L}}=I=P_{\mathrm{R}}$. Let introduce the matrices

$$
\begin{equation*}
D \stackrel{\mathrm{df}}{=} \operatorname{diag}\left(r_{i i}\right), \quad U \stackrel{\mathrm{df}}{=} D^{-1} R=\left[u_{i j}\right] . \tag{A1.3}
\end{equation*}
$$

The GECP process guarantees the relations for every i, j :

$$
l_{i i}=u_{i i}=1, \quad\left|l_{i j}\right| \leqslant 1, \quad\left|u_{i j}\right| \leqslant 1,
$$

what implies the bounds:

$$
\begin{equation*}
\|L\| \leqslant n, \quad\|U\| \leqslant n, \quad\left\|L^{-1}\right\| \leqslant 2^{n-1}, \quad\left\|U^{-1}\right\| \leqslant 2^{n-1} \tag{A1.4}
\end{equation*}
$$

Let present the B-method as following two assignment-statements:

$$
\begin{equation*}
V:=R^{-1}, \quad G:=V * L^{-1} . \tag{A1.5}
\end{equation*}
$$

Let $\mathbf{v}_{i}^{T}, \mathbf{g}_{i}^{T}$ be the i-th rows of V and G, respectively. Row-wise implementation of (A1.5) amounts to solving the following triangular equations:

$$
\mathbf{v}_{i}^{T} R \stackrel{!}{=} \mathbf{e}_{i}^{T}, \quad \mathbf{g}_{i}^{T} L \stackrel{!}{=} \mathbf{v}_{i}^{T} \quad(i=1, \ldots, n),
$$

where \mathbf{e}_{i}^{T} is the i-th row of the identity matrix. The computed solutions $\mathbf{v}_{i}, \mathbf{g}_{i}$ of these equations satisfy the equalities

$$
\begin{equation*}
\mathbf{v}_{i}^{T}\left(R+\delta R_{i}\right)=\mathbf{e}_{i}^{T}, \quad \mathbf{g}_{i}^{T}\left(L+\delta L_{i}\right)=\mathbf{v}_{i}^{T}, \tag{A1.6}
\end{equation*}
$$

where the perturbation matrices $\delta R_{i}, \delta L_{i}$ (equivalent to rounding-errors in the solving algorithms) are bounded:

$$
\begin{equation*}
\left|\delta R_{i}\right| \leq \nu c|R|, \quad\left|\delta L_{i}\right| \leq \nu c|L| . \tag{A1.7}
\end{equation*}
$$

($c \approx 1$, if "inner products" are cumulated on higher-precision variable, otherwise $c=n$.)

Let rewrite the equalities (A1.6) in the form

$$
\begin{equation*}
\mathbf{v}_{i}^{T} R=\mathbf{e}_{i}^{T}\left(I+\boldsymbol{\Phi}_{i}\right)^{-1}, \quad \mathbf{g}_{i}^{T}\left(I+\mathbf{\Psi}_{i}\right)=\mathbf{v}_{i}^{T} L^{-1} \tag{A1.8}
\end{equation*}
$$

where, with $\delta U_{i} \stackrel{\text { df }}{=} D^{-1} \delta R_{i}$, see (A1.3),

$$
\begin{equation*}
\boldsymbol{\Phi}_{i} \stackrel{\mathrm{df}}{=} R^{-1} \delta R_{i}=U^{-1} \delta U_{i}, \quad \boldsymbol{\Psi}_{i} \stackrel{\mathrm{df}}{=} \delta L_{i} L^{-1} \tag{A1.9}
\end{equation*}
$$

(We assume $\left\|\mathbf{\Phi}_{i}\right\|<\frac{1}{2}$, since $\left\|\boldsymbol{\Phi}_{i}\right\| \leq \nu c n 2^{n-1}$, see (A1.4), is for large n practically always a severe overbound.)

All row-equalities (A1.8) can be presented in the matrix form:

$$
\begin{equation*}
V R=I-\hat{\mathbf{\Phi}}, \quad G+\Delta_{1}^{\prime}=V L^{-1} \tag{A1.10}
\end{equation*}
$$

where [using the equality $(I+\boldsymbol{\Phi})^{-1}=I-\boldsymbol{\Phi}(I+\boldsymbol{\Phi})^{-1}$] the i-th row of $\hat{\boldsymbol{\Phi}}$ is equal to $\mathbf{e}_{i}^{T} \boldsymbol{\Phi}_{i}\left(I+\mathbf{\Phi}_{i}\right)^{-1}$, and the i-th row of $\boldsymbol{\Delta}_{1}^{\prime}$ is equal to $\mathbf{g}_{i}^{T} \boldsymbol{\Psi}_{i}$. From (A1.4), (A1.7), (A1.9) follow the bounds

$$
\begin{equation*}
\|\hat{\mathbf{\Phi}}\| \leqslant \varepsilon_{1}\left(1-\varepsilon_{1}\right)^{-1}, \quad\left\|\boldsymbol{\Delta}_{1}\right\| \leqslant \varepsilon_{1}\|G\|, \quad \varepsilon_{1} \stackrel{\mathrm{df}}{=} \nu c n 2^{n-1} . \tag{A1.11}
\end{equation*}
$$

From (A1.1), (A1.10), (A1.11) we obtain ultimately

$$
\begin{equation*}
G+\boldsymbol{\Delta}^{\prime}=(X+\boldsymbol{\Delta})^{-1}, \quad\left\|\boldsymbol{\Delta}^{\prime}\right\|<\nu c n 2^{n}\|G\| \tag{A1.12}
\end{equation*}
$$

where $\boldsymbol{\Delta}^{\prime} \stackrel{\text { df }}{=} \boldsymbol{\Delta}_{1}^{\prime}+\hat{\boldsymbol{\Phi}}(I-\hat{\boldsymbol{\Phi}})^{-1}\left(G+\boldsymbol{\Delta}_{1}^{\prime}\right)$, what completes the proof.

Remarks A.1.

(i) Relations (A1.1) are satisfied for any sufficiently well-conditioned matrix X. But simple modification of GECP guarantees (A1.1) (with ε_{x} being a modest multiple of ν) for any matrix $X \neq 0$. This allows us to apply the HS-process also for such matrices.
(ii) Let's note that $\left\|\boldsymbol{\Delta}^{\prime}\right\| \approx \max _{i}\left\|\mathbf{g}_{i}^{T} \delta L_{i} L^{-1}+\mathbf{e}_{i}^{T} U^{-1} \delta U_{i} G\right\|$ and that the bounds (A1.4) on $\left\|L^{-1}\right\|$ and $\left\|U^{-1}\right\|$ are for larger n practically never approached. Hence in most cases (A1.12) is a severe overbound on $\left\|\boldsymbol{\Delta}^{\prime}\right\|$. We can expect that ε_{g} in (A1.2) is practically always a modest multiple of ν.
(iii) In [10, pp. 110-111] Wilkinson proves the NC-property (A1.2) of the matrix G, computed via GEPP by the A-method, see [2], under assumptions that all involved triangular systems are solved to high accuracy. Since in the case of GECP this condition is always satisfied hence theorem A. 1 is valid also for the A-method.

