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Higham’s scaled method for computing the unitary factor of a nonsingular
matrix. We show how the quality of the computed inverses of matrices
influences the accuracy of the computed polar factorization. In particular:
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1 Introduction

We deal with the polar decomposition of a complex nonsingular matrix
A ∈ C

n×n:
A = UAHA, UA − unitary, HA ∈ HPD, (1.1)

where HPD is the class of Hermitian positive-definite matrices. UA is the
unitary factor of A (the orthogonal factor of A ∈ R

n×n). Matrices {UA,HA}
are the polar factors of A.

The factorization (1.1) can be computed from SVD, the singular value

decomposition of A. The iterative methods are alternative ways to compute
(1.1), see for example [1, 3, 4, 5, 7].
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In Higham’s scaled method [4, 7], denoted by HS (referred also as Newton’s

scaled method), one constructs a sequence {Xk}∞k=0 of matrices:

X0 = A, Xk+1 =
1

2

(

γkXk +
1

γk
X−H

k

)

, γk > 0, (1.2)

convergent to UA, the common unitary factor of all Xk. There are known
several theoretical or practical rules of the choice of scaling parameters γk

which increase the speed of convergence, see [3, 4, 7].
Let {X̃k}l

k=0 be the sequence of iterates computed in the numerical HS-

algorithm. In all cases when this algorithm converges a good unitarity of

the computed unitary factor Ũ
df
= X̃l is achieved:

||ŨH Ũ − I||2 6 ε0 (1.3)

(all εs in this paper are of the size ν, the computing precision). We can now
compute the Hermitian factor H̃ of A:

B̃ := ŨH ∗ A; H̃ := (B̃ + B̃H)/2. (1.4)

The problem is: whether the computed polar factors {Ũ , H̃} of A are accept-

able? That means: whether the following relations hold:

H̃ ∈ HPD, ||Ũ H̃ − A||2 6 ε1||A||2 ? (1.5)

In [8] we try to explain how it happens that the computed by numerical
HS polar factors are acceptable? We reveal also two main dangers: the poor

quality of the computed inverses and using of too small scaling parameters.
Our further research is presented in [9]. We explain there all phenomena

we were able to perceive in our experiments. Therefore the experimental

results play in [9] rather only the role of illustrations.
This paper is a concise version of [9]. We skip here the proofs, theorem

2.2, the estimation of the accuracy of experimental results and many detailed
remarks. We concentrate on the most important problem of the quality of
the matrix-inversion in the numerical HS-algorithm.

The theory is presented in sections 2 and 4. Section 3 explains how to
read experimental results. Sections 5 and 6 present briefly some problems of
scaling and switching criteria. For final conclusions see section 7.

We add the appendix presenting the proof of the NC-Property of the
inversion by B-method, via GECP-factorization, see [2].
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2 The theory of HS, the numerical Higham’s method

Here and in all next sections HS means the numerical HS algorithm (to dis-
tinguish from (1.2), where the theoretical algorithm is defined).

Let X̃k be the computed iterate and Xk the matrix satisfying the condi-

tions (2.3) below. Neither X̃k nor Xk here is identical with Xk in (1.2).
Let us define the following two functions

p : C
n×n −→ [n−1/2, 1], p(Ψ)

df
=

{

1, when Ψ = 0,
||Ψ||2(||Ψ||F )−1, otherwise,

f : (0,∞) −→ [1,∞), f(t)
df
=

1

2

(

t + t−1
)

. (2.1)

These reserved functions “produce” a series of derivate symbols (fk, pk, p+, . . .)
the values of f or p on concrete arguments.

We assume that the computations in HS are performed in the floating-
point arithmetic with precision ν and that neither underflow nor overflow
occurs.

The epsilons (ε0, εx, . . .) are modest multiples of ν. Not all of them must
be positive. We signal it writing, for example: |ε′k| 6 ε. The only exceptions
(see section 4) are “false epsilons” (ε̌x, ε̌k, . . .), the quantities which ought
to be the true epsilons (and sometimes are) but – due to breaking of the
basic assumption (2.3) – can be much larger than “a modest multiple of ν”.
Usually these false epsilons satisfy |ε̌| ≪ 1.

Let us formulate already now the following general assumptions:

ε̂ cond2(A) < 1, ε̂ < ν2/3 . 10−4, (2.2)

where ε̂ is specified in (2.6), (2.3).

2.1 Main definitions and relations

Let us consider a nonsingular matrix A ∈ C
n×n and the sequence {X̃k}l

k=0

of matrices (1.2) computed in HS, X̃0 := A.
Let γk be the chosen scaling parameter and Gk the computed inverse of

X̃k. We assume that exists a nonsingular matrix Xk satisfying the relations:

X̃k = Xk − ∆k, Gk = X−1
k − ∆′

k, (2.3)

where ||∆k||F 6 εx||Xk||2, ||∆′

k||F 6 εg||X−1
k ||2. This defines (not uniquely)

Xk for k < l. Let us extend it to k = l: Xl = X̃l. The sequences {Xk}
and {X̃k} are neighbour-sequences and many important properties of Xk are
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close to these of X̃k. We describe the HS-process in terms of the sequence
{Xk} since this sequence imitates well the relation (1.2), see below (2.5),
(2.6).

The assignment-statements

Gk := X̃−1
k , X̃k+1 :=

(

X̃k ∗ γk + GH/γk

)

/2, (2.4)

and (2.3) imply the equalities

Xk+1 = Zk+1 + Tk, Zk+1
df
=

1

2

(

γkXk +
1

γk
X−H

k

)

(2.5)

and the bound

||Tk||F 6 ε̂fk, fk
df
= ||Zk+1||2, ε̂ = 2εx + εg + 3

√
nν + O(ν2). (2.6)

Let us consider the SVD of Xk:

Xk = Pkdiag(σ
(k)
1 , . . . , σ(k)

n )QH
k , Pk, Qk unitary

and define dk, the distance of Xk from the unitarity:

dk
df
= max

i
|σ(k)

i − 1| = max
{

σ(k)
max − 1, 1 − σ

(k)
min

}

, (2.7)

σ(k)
max

df
= max

i
{σ(k)

i }, σ
(k)
min

df
= min

i
{σ(k)

i }. (2.8)

The efficiency of HS depends on how quickly {dk}l
k=1 decrease, the near-

unitarity of the computed factor Ũ = X̃l depends on the limiting accuracy

d
df
= lim sup dk of the conceptional infinite sequence {dk}∞k=0. The last iterate

X̃l constructed in HS should be the first one reaching the level dl . d.
Let us define further quantities

ck
df
= cond2(Xk) =

σ
(k)
max

σ
(k)
min

, γ
(opt)
k

df
=

(

σ(k)
maxσ

(k)
min

)

−1/2
,

ρk
df
=

(

γ
(opt)
k γ−1

k

)

−2
, τk

df
= max{ρk, ρ

−1
k }. (2.9)

The quantities ρk, τk “measure” the distance of γk from γ
(opt)
k , the optimal

scaling parameter.
In [9] we show the following relations, see (2.6),

fk = f(
√

ckτk), dk+1 = (1 − ε∗k)fk − 1, |ε∗k| 6 ε̂, (2.10)
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ε̂fk < 1 implies ck+1 6 (1 + ε̂)fk(1 − ε̂fk)−1. (2.11)

The assumptions (2.2), practical scaling (1,∞)-scaling [4] or (F )-scaling
[7]) and appropriate switching criteria in HS guarantee that the sequence
{fk}l−1

k=0 is strictly decreasing and the bounds ε̂fk < 1, τk <
√

n hold. We
find ultimately in [8] that the bound (1.3) is satisfied with

ε0 ≈ 2dl 6 ε′
df
= εx + εg + 2

√
nν. (2.12)

Remarks 2.1.

(i) In the case of the standard double-precision computations and HS with
practical scaling in most cases l 6 10 holds.

(ii) In some special experiments (see sections 4 and 5) we modify the normal

HS-algorithm introducing (in a few initial steps only) either matrices
Gk not satisfying (2.3) or scaling parameters γk much smaller than

γ
(opt)
k . But these modifications neither destroy the monotonic decrease

of {fk} nor influence the final convergence of {X̃k}. Hence the bounds
(2.12) and (1.3) remain valid.

We need some further notions to discuss the acceptability (1.5) of the
computed polar factors {Ũ , H̃}.

Let the abbreviations AUF, APF mean: approximate unitary factor, ap-

proximate polar factors, respectively.
Let us consider any matrices X,U ∈ C

n×n, X-nonsingular , U -unitary. If

Hux
df
= 1

2(UHX +XHU) ∈ HPD then we will say that U is an AUF ({U,Hux}
are APF) of X with accuracy (relative error):

acc(U,X)
df
=

||UHux − X||F
||X||2

.

Let us fix now U as the unitary factor of Ũ = X̃l = Xl. Hence the polar

decomposition of Ũ is, see (2.7), (2.12),

Ũ = UHu, Hu ∈ HPD, ||Ũ − U ||2 = dl .
1

2
ε′. (2.13)

Let now define for k = 0, . . . , l the following matrices and quantities:

Hk
df
=

1

2

(

UHXk + XH
k U

)

, δk
df
= ||Xk − UHk||F ||Xk||−1

2 . (2.14)

Evidently the following implication holds: Hk ∈ HPD implies δk = acc(U,Xk).
In particular, see (2.13), Hl = Hu ∈ HPD, δl = acc(U,Xl) = 0.
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The following lemma shows that the properties of the pair {H0, δ0} are
decisive for the acceptability of the computed polar factors {Ũ , H̃}.

Lemma 2.1. Let introduce the quantities p0
df
= p(X0 −UH0), εI

df
= 2.5εx +

εg +νm(
√

n), where m(t) is a modest polynomial in t (depending on the way
of computing B̃ in (1.4)). If (p0δ0 + εI)cond2(A) < 1 holds and H0 ∈ HPD
then the following relations hold:

H̃ ∈ HPD,

∣

∣

∣

∣

∣

||A − ŨH̃||2
||A||2

− p0δ0

∣

∣

∣

∣

∣

. εI.

Remark 2.2. Lemma 2.1 is valid only when G0 satisfies (2.3).

Conclusion 2.1. The computed polar factors {Ũ , H̃} are acceptable iff
H0 ∈ HPD, δ0 is of the order ν and A is sufficiently well-conditioned, since
the following bounds hold: |p0δ0 − εI| 6 ||A − ŨH̃||2||A||−1

2 6 p0δ0 + εI.

In the next subsection we present an explicit expression of δk in terms
of: δk+1, ρk, ck, ε̂, see (2.17)-(2.20). This opens a chance for “theoretical
transfer” from δl = 0 to the important quantity δ0.

We must be prepared that acc(U, X̃k) & acc(U, X̃k+1) holds since the
rounding errors in the computation of Gk and X̃k+1, see (2.4), can partly

spoil the information on X̃k transferred to X̃k+1 (hence also to Ũ = X̃l).
The same concerns the neighbour-sequence {Xk}l

k=0: the relation δk & δk+1

can be expected!
We should recognize benign rounding errors in (2.4) – such that δk is at

most only slightly larger than δk+1 – and dangerous rounding errors – such
that δk ≫ δk+1 can occur.

2.2 BIT, the backward-induction theorem

Let us introduce the matrix, see (2.5),Ψk
df
= UHk+1 −Zk+1 and the quanti-

ties, see (2.6), (2.1), (2.8),

ξk
df
= ||Ψk||2, ϑk

df
= ||Ψk||F f−1

k , rk
df
=

fk

f(σ
(k)
maxγk)

. (2.15)

Theorem 2.1 (BIT). If the relations

ξk < 1, Hk+1 ∈ HPD (2.16)
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are satisfied then δk = ϑk|χk + κkζk|rk, ζk
df
= (3

√
2 + 2)(2 − ξk)−1ξk,

ckϑk|µk + λkζk|rk < 1 implies Hk ∈ HPD,

where χk, µk, κk, λk are real numbers, either all equal zero or satisfying in-
equalities:

0 6 µk < χk 6 1, |κk| < 1, |λk| < 1. (2.17)

Remark 2.3. Theorem 2.1 is valid also in cases when the matrices Gk, Gk+1

are not satisfying (2.3).

Corollary 2.1. The quantity rk, see (2.15), satisfies the relations

rk = max
{

1, (ck + ρk)(ckρk + 1)−1} < max{1, ρ−1
k

}

. (2.18)

If the matrices Gk, Gk+1 satisfy (2.3) then

ξk = p′k
∣

∣δk+1(1 + ε′k) + ε′k
∣

∣ fk, p′k
df
= p(Ψk), |ε′k| 6 ε̂, (2.19)

and – provided (2.16) holds –

δk =
∣

∣δk+1(1 + ε′k) + ε′k
∣

∣ |χk + κkζk| rk, |ε′k| 6 ε̂. (2.20)

This allows us to simplify the backward-induction rule: if ξk ≪ 1 and Hk+1 ∈
HPD holds then

δk ≈
∣

∣δk+1 + ε′k
∣

∣χkrk, |ε′k| 6 ε̂, χk ∈ [0, 1], (2.21)

ck(δk+1 + ε̂)(1 + 7ξk)rk < 1 implies Hk ∈ HPD.

Remarks 2.4.

(i) In double-precision computations the approximate equality (2.21) de-

scribes adequately the behaviour of the sequence {δk}, since in this
case all {ξk} are very small (the only exception can be ξ0 when G0 is
not satisfying (2.3), see section 4).

(ii) With optimal or practical scaling the relations χkrk . 1 can be ex-
pected, see section 5. But in the general case the rounding errors in
the computations of X̃k+1 in (2.4) can be dangerous when ρk ≪ 1 and
ck ≫ 1 holds: this implies rk ≫ 1 (Theorem 2.2 in [9] shows that χk

tends to decrease with ρk, but we can not expect that always χkrk . 1
holds, see section 5).
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(iii) Optimal or practical scaling and inverses Gk, Gk+1 satisfying (2.3) guar-

antee δk . δk+1 + ε̂. Hence in this case the rounding errors in both

operations of (2.4) are benign.

(iv) If any of the matrices Gk, Gk+1 is not satisfying (2.3) then the bound ε̂
on |ε′k| in corollary 2.1 must be replaced with a much larger quantity:
the rounding errors in the computation of such inverse are dangerous.
We deal with such cases in section 4.

3 Introduction to examples of numerical tests

In sections 4 and 5 we present examples of numerical tests illustrating
relevant fragments of the theory. All our tests were performed for ma-
trices A ∈ R

n×n, 6 6 n 6 35, in the IEEE standard double-precision,
ν = νd ≈ 2.2 × 10−16 (with cummulation of “inner products” on standard
extended-precision variables, ν = νe ≈ 10−19).

In most cases we present the computed results with at least two correct

leading decimals. The results marked with a star (∗) have probably only

one correct leading decimal. In results with exclamation mark (!) even the
first decimal is doubtful.

For each example we present the matrix A, the information on matrix-

inversion and scaling in HS. We present also the quantity ∆̃l
df
= ||ŨT Ũ −

I||F , Ũ = X̃l, and the result of the Cholesky-positivity test of H̃, see (1.4).
Then we present for several iterations, k = 0, 1, . . . some of the computed

quantities: ck, ρk, rk, e
(L)
k , e

(R)
k , δ̂k (eventually also some other auxiliary quan-

tities), where

e
(L)
k

df
= ||I − GkX̃k||F w−1

k , e
(R)
k

df
= ||I − X̃kGk||F w−1

k , wk
df
= ||X̃k||2||Gk||2,

(3.1)

δ̂k
df
= ||X̃k − UĤk||F ||X̃k||−1

2 , Ĥk
df
=

1

2

(

UT X̃k + X̃T
k U

)

.

Remarks 3.1.

(i) Let p̃0
df
= p(X̃0 − UĤ0). Then p̃0δ̂0 is a close approximation of ||A −

ŨH̃||2||A||−1
2 .

(ii) δ̂k is a close approximation of δk, see (2.14), provided Gk is satisfying
(2.3).
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Example 3.1. In table 3.1 we present the computed results of the HSTEST-
program (see section 3 in [9]) for the 10×10 matrix A1 = tril(rand(10))8rand(U),
see [2], ∆9 = 5.14 × 10−18, applying (F )-scaling and the GEPP-matrix-

inversion. Matrix H̃ passed the positivity test.

Table 3.1

k ck − 1 ρk e
(L)
k e

(R)
k δ̂k

0 8.74e + 14∗ 0.930∗ 3.10e − 17 8.72e − 09 5.12e − 09
1 1.66e + 06 0.708 3.28e − 17 1.96e − 15 1.19e − 15
2 7.56e + 02 1.00 5.90e − 17 7.52e − 16 4.09e − 16
3 1.19e + 01 0.732 1.07e − 16 1.44e − 16 2.68e − 16
4 1.17e + 00 1.07 2.97e − 16 2.95e − 16 2.80e − 16
5 8.38e − 02 1.03 5.08e − 16 5.16e − 16 3.43e − 16
6 1.51e − 03 1.00 5.74e − 16 5.74e − 16 3.40e − 16
7 7.01e − 07 1.00 5.35e − 16 5.35e − 16 2.64e − 16
8 2.46e − 13 1.00 4.84e − 16 4.84e − 16 1.80e − 16

Remarks 3.2.

(i) The value of e
(R)
0 shows that matrix G0 is not satisfying (2.3).

(ii) The quantity ||A−Ũ H̃||2||A||−1
2 , see (1.4) and remark 3.1 (i), cannot be

smaller than δ̂0n
−1/2 ≈ 1.62×10−9 . Hence the computed polar factors

{Ũ , H̃} are not acceptable. It is the result of breaking the assumption
(2.3) for k = 0, see section 4.

(iii) The results presented in table 3.1 for k > 3 are typical for all our
experiments. In next examples we will present only the relevant part
of experimental results.

4 The quality problem of the matrix-inversion in
the HS-process

Some contemporary standard procedures compute the inverses from the
Gaussian triangular factorization with partial pivoting (GEPP) of the inverted

matrix, see [2]. Using these procedures in the HS-process yields frequently (but
not always!) acceptable results (see example 3.1). The inversion via trian-

gular factorization with complete pivoting (GECP) yields practically always

acceptable results in HS with practical or optimal scaling.
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We should recognize the properties of the computed inverse Gk of X̃k

not impending the good numerical behaviour of the HS-process and those

properties which can seriously spoil the quality of the computed unitary factor

Ũ of A.

4.1 Properties of computed inverses

Let G be the computed inverse of the nonsingular matrix X. We introduce

auxiliary quantities x
df
= ||X||2, g

df
= ||G||2, c

df
= cond2(X) = x||X−1||2 and

consider the following four eventual properties of G:

||G − X−1||F 6 εgc, (4.1)

||GX − I||F 6 εgx, (4.2)

||XG − I||F 6 εgx, (4.3)

∃∆′, ∆ : G + ∆′ = (X + ∆)−1, ||∆′||F 6 εgg, ||∆||F 6 εxx. (4.4)

The same relations define the properties of inversion procedures as fol-
lows: Let M be a subset of nonsingular n × n matrices X. We say that an
inversion algorithm Inv is numerically stable (NS) in M if for each X ∈ M

the computed inverse G satisfies (4.1). In the same way:

– (4.2) defines the left-residual stability (LRS) of Inv in M,

– (4.3) defines the right-residual stability (RRS) of Inv in M,

– (4.4) defines the numerical correctness (NC) of Inv in M.

We shall use the same notation: NS, LRS, RRS, NC for the properties (4.1)–
(4.4) of the matrix G (no matter what is the “official property” in M of the
algorithm which computed G).

We define also two combined properties of G:

Alt
df
= LRS or RRS, Conj

df
= LRS and RRS. (4.5)

Assuming εx + εg + εxεg 6 ε and εxg < 1 we find the following implications:

NC =⇒ Conj =⇒ Alt =⇒ NS (4.6)

and the bounds

||GX − I||F 6 c||XG − I||F , ||XG − I||F 6 c||GX − I||F . (4.7)

11



Let us note further that for small c, say c 6 10, NS implies NC (for example:
with εx = 0, εg ≤ 10ε). Hence all listed properties of G can differ distinctly
only when c = cond2(X) is large.

Further definitions: We will say that G has LRS-Only-Property if G has
the LRS-Property but has not the RRS-Property. In this case G has the
Alt-Property (hence also NS-Property) but has neither the Conj-Property
nor the NC-Property. In the same way, using the term: to have the
Only-Property, we define other eventual highest-properties of G in the hi-
erarchical system defined by (4.5), (4.6).

Let us note at last that the NC-Property is the highest general quality

(expressed in norms of matrices) of an inverse G computed in a constant

finite precision. According to the formulation of W. Kahan, see [6], in this
NC-case: G is a slightly wrong inverse of a slightly wrong matrix X.

4.2 The W-conjecture

There are several versions of computing the inverse G from GEPP-triangular
factorization of X, see [2], which are either left-residual - or right-residual-

stable in a broad subset M of n × n matrices. Hence such GEPP-inversion

algorithms guarantee the Alt-Property of computed inverses. For well-
conditioned matrices X it means practically the Conj-Property of G. But
also for badly conditioned matrices X we can check directly that frequently

both residuals ||GX − I||F , ||XG − I||F are small (are bounded by εxg), see
[2], [10]. That means that G has the Conj-Property in spite of (4.7) with
large c.

J.H. Wilkinson explained this phenomenon, in [10, pp. 110-111], show-
ing that the matrix G (computed via GEPP-factorization by A-method, see
[2]) has the NC-Property provided the triangular systems – involved in the
computation of G from GEPP – are solved to high accuracy. This happens
frequently but not always. It seems probable that this is the only reason why

happens the Conj-Property of inverses computed via GEPP-factorization.
Let us express it as follows:

W-conjecture. If an inverse G computed via GEPP-factorization of X has
the Conj-Property then, probably, G has also the (stronger) NC-Property.

The experiments of subsection 4.5 and all our experiments with GEPP-
inversion seem to justify the W-conjecture.
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4.3 HS with inverses not always satisfying (2.3)

In (2.3) we postulate in fact the NC-property (4.4) of all computed inverses
Gk of X̃k, k = 0, . . . , l − 1. Hence , see remark 2.4 (iii), the NC-property

of all {Gk} is sufficient for good behaviour of the HS-process with practical

scaling.
The problem is whether the inverses Gk not satisfying (2.3) can spoil

(and how much?) the quality of the computed unitary factor Ũ?
We will consider only the case of Gk with Alt-Property (this includes

the Conj-Property and NC-Property as special subcases). Let us incorpo-
rate these eventual deviations (from the normality of (2.3)) into our general
description of HS.

Let assume hence the relations

Xk = X̃k + ∆k, X−1
k = Gk + ∆′

k (4.8)

and let us introduce the quantities (in general: false epsilons): ε̌
(k)
x

df
=

||∆k||F ||Xk||−1
2 , ε̌

(k)
g

df
= ||∆′

k||F ||X−1
k ||−1

2 .

Let us assume further the relations: ĉk ≫ 1, εĉk ≪ 1, ĉk
df
= cond2(X̃k).

We present below a simplified version of theorem 4.1 in [9], using an approx-

imate equality a ≈ b (a, b nonnegative) meaning any of the following three

possibilities:

|a − b| 6 O(ε), |a − b| 6 O(εĉk) max{a, b}, |a − b| 6 O(ĉ−1
k ) max{a, b}.

Theorem 4.1. The only minimizer ∆k of the linear functional

ϕk(∆)
df
= max

∆∈Cn×n

{

||∆||F
||X̃k||2

,
||X̃−1

k − Gk − X̃−1
k ∆X̃−1

k ||F
||Gk||2

}

defines in (4.8) the nonsingular matrix Xk and the matrix ∆′

k such that the
following relations hold:

ck
df
= cond2(Xk) ≈ ĉk, ε̌(k)

x ≈ ε̌(k)
g ≈ ϕ̂k

df
= ϕk(∆k).

Introducing the quantities, see (3.1):

ε
(A)
k

df
= min

{

e
(L)
k , e

(R)
k

}

, ε̌
(A)
k

df
= max

{

e
(L)
k , e

(R)
k

}

, e
(c)
k =

√

e
(L)
k e

(R)
k ,

we specify ϕ̂k according to the assumed property of Gk:
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(i) If Gk has the Alt-Only-Property then ϕ̂k = ϕ̂
(Alt)
k where

1

2
ε̌
(A)
k . ϕ̂

(Alt)
k .

1√
2
e
(c)
k c

1/2
k .

1√
2
ε
(A)
k ck. (4.9)

(ii) If Gk has the Conj-Only-Property then ϕ̂k = ϕ̂
(Conj)
k where

1

2
ε
(A)
k . ϕ̂

(Conj)
k .

1√
2
ε
(c)
k c

1/2
k , ε

(c)
k

df
= e

(c)
k . (4.10)

(iii) If Gk has the NC-Property then ϕ̂k = ϕ̂
(NC)
k where ϕ̂

(NC)
k . max{εx, εg}.

If matrices Gk, Gk+1 can have the Alt – or Conj – or NC-Property

then the bound ε̂ in the relevant relations of section 2 must be replaced

with ε̌∗k: ε̌∗k
df
= 2ϕ̂k + ϕ̂k+1 + 3

√
nν. But for important recursive formulas

(2.20), (2.21) we should rather choose the presentation exposing the poten-

tially dominating terms. For example, when ξk ≪ 1,Hk+1 ∈ HPD and Gk

has the Alt-Only-Property or the Conj-Only-Property, let us choose the
presentation:

δk ≈
∣

∣

∣
|ϕ∗

k + θ′kϕ̂k+1| + θ′′k|δk+1 + O(ν)|
∣

∣

∣
χkrk, θ′k, θ

′′

k ∈ [−1, 1],

where ϕ∗

k
df
= ||∆kγk +∆′H

k γ−1
k ||F (2fk)−1. Closer examination of the matrices

∆k, ∆′

k shows that the following bounds (respectively) hold:

ϕ̂
(Alt)
k . ϕ∗

k .
√

2ϕ̂
(Alt)
k or ϕ∗

k . 2ϕ̂
(Conj)
k . (4.11)

Hence in the case of distinctly Alt-Only-Property of Gk (when ε̌
(A)
k ≫

max{ϕ̂k+1, δk+1}) the relation

δk &
1

2
ε̌(A) =

1

2
max{e(L)

k , e
(R)
k } (4.12)

is inevitable, see (4.9).

Conclusion 4.1. The rounding errors in the computation of Gk with
Alt-Only- or Conj-Only-Property are dangerous.
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4.4 Experiments with inverses Gk having the Alt-Only-Property

We apply here in HS the practical-scaling and the computation of the inverses
Gk via GEPP-factorization of X̃k (versions LRS - or RRS-stable).

In example 3.1 we presented already such experiment with the 10 × 10
matrix A1 = tril(rand(10))8rand(U)), see [2].

Example 4.1. The matrices H̃ passed the positivity test only in examples
(i), (ii) below. Matrices A3, A4 are defined in [2].

(i) The results for A2 = AT
1 , ∆̃9 = 6.2 × 10−16 are presented in table 4.1.

Table 4.1

k ck e
(L)
k e

(R)
k δ̂k

0 8.75e + 14∗ 8.79e − 09 3.25e − 17∗ 5.45e − 09
1 1.86e + 06 5.57e − 15 6.12e − 17∗ 2.69e − 15
2 2.96e + 02 6.39e − 16 3.46e − 16 3.46e − 16

(ii) Table 4.2 includes the results for n = 15, A3 = rand(Q)qr(vand(15)),
∆̃10 = 9.17 × 10−16.

Table 4.2

k ck e
(L)
k e

(R)
k δ̂k

0 1.58e + 13 3.68e − 17∗ 3.91e − 14 2.13e − 14
1 1.11e + 06 8.92e − 17∗ 1.65e − 14 8.23e − 15
2 4.82e + 02 1.38e − 16 1.21e − 15 7.12e − 16
3 1.15e + 01 2.22e − 16 3.01e − 16 5.47e − 16

(iii) In table 4.3 we give the results for n = 25, A4 = rand(Q)qr(vand(25)),
∆̃10 = 2.46 × 10−15.

Table 4.3

k ck e
(L)
k e

(R)
k δ̂k

0 1.87e + 18! 2.93e − 17∗ 1.39e − 10 8.55e − 11
1 4.25e + 08 8.65e − 17∗ 1.67e − 12 7.67e − 13
2 1.10e + 04 1.15e − 16 6.69e − 15 3.75e − 15
3 5.26e + 01 3.47e − 16 6.38e − 16 1.09e − 15
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Remarks 4.1.

(i) For example (i) see remarks 3.1 (i), (ii).

(ii) In examples (ii), (iii) G0 and G1 have the LRS-Only-Property.

(iii) Notice that the relation (4.12) is clearly demonstrated for k = 0 in all
tests of example 3.1 and example 4.1.

4.5 Experiments with inverses Gk having the Conj-Only-Property

We apply here in HS the optimal-scaling and the procedure INVCONJ(X)
yielding (via SVD of X) the computed inverse G of X with Conj-Property (if
possible: with Conj-Only-Property), see subsection 4.5 in [9]. We present

below the experiments with matrices As = Psdiag(σ
(s)
j )QT

s ∈ R
n×n for s =

5, 6, 7 (Ps, Qs orthogonal, random). In all these experiments the relative

residuals e
(L)
k , e

(R)
k are not exceeding 2.7× 10−15. Hence we present only the

quantities ck, c
1/2
k , δ̂k,mk, where mk is the number of singular values {σ̂(k)

i }
of Xk close to α̂k

df
=

(

σ̂
(k)
maxσ̂

(k)
min

)1/2
(with As ∈ R

n×n the rounding errors in

Gk with Conj-Only-Property are dangerous only when mk > 2 holds, see
subsection 4.5 in [9]).

Examples 4.2. In experiments below all matrices H̃ passed the positivity
test.

(i) In table 4.4 we present the results for n = 6, ∆̃6 = 5.76 × 10−16 and

{σ(5)
i } = {107,

√

2 × 107, 1, 1,
√

5 × 10−8, 10−7}.

Table 4.4

k ck
√

ck δ̂k mk

0 1.00e + 14 1.00e + 07 5.49e − 10 2
1 5.06e + 06 2.25e + 03 1.01e − 13 2
2 1.06e + 03 3.26e + 01 8.74e − 16 −

(ii) In table 4.5 we present the results for n = 20, ∆̃6 = 1.99 × 10−15 and

{σ(6)
i } = {1014, 107, . . . , 107, 1}.
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Table 4.5

k ck
√

ck δ̂k mk

0 9.99e + 13 1.00e + 07 7.04e − 09 18
1 5.17e + 06 2.27e + 03 1.72e − 15 −

(iii) In table 4.6 we present the results for n = 20, ∆̃8 = 1.87 × 10−15 and

σ
(7)
i = (1014/19)i−1 (i = 1, . . . , 20).

Table 4.6

k ck
√

ck δ̂k mk

0 1.00e + 14 1.00e + 07 4.39e − 10 2
1 3.61e + 06 1.90e + 03 1.31e − 13 2
2 7.27e + 02 8.50e + 01 6.62e − 15 1
3 1.35e + 01 3.07e + 00 2.10e − 15 −

Remark 4.2. The experimental results presented above are evidently consis-
tent with the bounds (4.11), (4.10).

5 The problems of scaling

Assuming: ξk ≪ 1,Hk+1 ∈ HPD and Gk, Gk+1 satisfying (2.3), we can use
the simplified form of recursion, see (2.21),

δk ≈ |δk+1 + ε′k|zk, zk
df
= χkrk, |ε′k| 6 ε̂,

where: χk 6 1, rk = max{1, (ck + ρk)(ckρk + 1)−1}, ρk = (γk/γ
(opt)
k )2. If

γk ≪ γ
(opt)
k and ck ≫ 1 then rk ≫ 1 holds. Though χk tends to decrease

with ρk, see theorem 2.2 in [9], it can happen that also zk ≫ 1 holds, what
implies δk ≫ δk+1. That is the problem of too small scaling parameters.

This can happen in one step, but also in several consecutive steps, when
zk > 1, zk−1 > 1, ... holds.

In HS with practical scaling rk <
√

n holds, hence the danger is not very

serious. What’s more: all known experiments seem to indicate that HS with

practical-scaling is immune to the danger of too small scaling parameters:

the relation zk
df
= χkrk . 1 is always observed. Section 5 in [9] proposes an

explanation for this phenomenon.
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But for drastically small scaling parameters the danger of zk ≫ 1 really

exists!

Example 5.1. For a random 10 × 10 matrix A8 we apply the HS-process
with GECP matrix-inversion and – essentially – (F )-scaling, introducing “ar-
tificially” very small γk for k = 0, 2, 4. The results are presented in table

5.1. We additionally compute the quantities χ̂k
df
= δ̂kr

−1
k (δ̂k+1 + 10−16)−1

(probably lower bounds on χk). Matrix H̃ passed the positivity test.

Table 5.1

k ck ρk rk δ̂k χ̂k

0 9.61e + 14∗ 8.21e − 05∗ 1.21e + 04∗ 3.96e − 13 0.0013
1 1.12e + 09 1.12e + 00 1 2.46e − 14 0.422
2 1.17e + 04 1.27e − 04 5.13e + 03 5.85e − 14 0.013
3 5.17e + 03 1.08e + 00 1 6.71e − 16 0.647
4 3.15e + 01 3.25e − 02 1.55e + 01 8.36e − 16 0.154
5 1.64e + 01 1.37e + 00 1 1.51e − 16 0.302

Remarks 5.1.

(i) Table 5.1 demonstrates the tendency of χk to decrease with ρk.

(ii) Very small ρk (hence large τk, (2.9)) retard the decreasing of {ck}, see
relations (2.10), (2.11).

(iii) Section 5 in [9] presents more examples of this type.

Another problem is the influence of scaling on the effectiveness of the
HS-process. Both considered above ways of practical scaling have two ad-
vantages:

– for large n, say n > 10, the cost of computing of {γk} is negligible (with
respect to the cost of the matrix-inversion),

– there is a chance of accelerating the convergence when there are large
gaps in the spectrum of singular values of A.

The following way of quasi-optimal scaling:

• choose positive quantities a0, b0 such that a0 < σj(A) < b0 holds,

• compute: µ0 := b0/a0, γ
(q)
0 := (a0

√
µ0)−1, and for k > 0

µk := (µ
1/2
k−1 + µ

−1/2
k−1 )/2, γ

(q)
k := µ

−1/2
k ,

guarantees the first advantage for all n; however, it does not have the second
advantage.
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6 The switching criteria in HS

In our experiments, aimed to study the problems of sections 4 and 5, we
tested additionally the criteria (proposed in [4], [7], [8]) for accepting the
last computed iterate as the computed unitary factor Ũ . We tested also the
criteria (proposed in [4], [8]) for switching from (1,∞)-scaling to unscaled

iterations. Section 6 in [9] presents the details of these tests. One of the
conclusions is presented in section 7 (iii).

7 Final conclusions

(i) Matrix-inversion in the HS-process should yield the computed inverse
G of the matrix X (the inverse of the current iterate) satisfying the
condition (2.3) (the NC-property). This property is warranted by the
inversion via GECP-triangularization of X. Using in HS the standard
inversion via GEPP, see [2], can fail, yielding for some special matrices
A a poor unitary factor Ũ . This will never occur for well-conditioned
matrices A, say: cond2(A) 6 102.

(ii) Using in the HS-process a good matrix-inversion, see (i), and either (F )-
scaling [7] or (1,∞)-scaling [4] (with appropriate switch to unscaled
iterations) practically guarantees good quality of the computed unitary
factor Ũ of A (the same quality, as yields the unitary factor computed
via SVD of A).

(iii) An appropriate stopping criterion in most cases guarantees that Ũ =
X̃l is the first iterate reaching the limiting accuracy. With the stopping
criterion in [4] frequently one redundant step is performed.

(iv) The formal cost (the number of arithmetic operations) of the HS-process
in the standard-double precision is at most of the same order as for
SVD (is smaller for well-conditioned matrices or matrices with large
gap in the spectrum of the singular values).

(v) Using in the HS-process scaling parameters {γk} distinctly larger or
smaller than the optimal ones, see relations (2.9) and (2.10), can spoil
the convergence. Using {γk} distinctly smaller is spoiling also the
quality of Ũ as an approximate unitary factor of A. Practical scaling,
see (iii), is not involving such impendency.
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A1 Numerical correctness of inverting matrices
via GECP

.
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Theorem A1.1. Let assume that the GECP-process for n×n matrix X yields
the permutation matrices PL, PR, and lower and upper triangular matrices
L = tril(L) = [lij], R = triu(R) = [rij ], respectively, such that the following
relations hold:

PL(X +∆)P T
R = L ·R, ||∆|| 6 εx||X||, rii 6= 0, lii = 1 for every i. (A1.1)

Let G be the inverse of X, computed by the B-method via GECP of X (that
means: from the factors PL, PR, L,R). Then the matrix G satisfies the
relations:

G + ∆′ = (X + ∆)−1, ||∆′|| 6 εg||G||, (A1.2)

where εx, εg are modest multiples of ν (the computing precision).

Proof. We will use here the ∞-norm of matrices: ||·|| = ||·||∞. Not lessening
the generality of considerations let assume PL = I = PR. Let introduce the
matrices

D
df
= diag(rii), U

df
= D−1R = [uij ]. (A1.3)

The GECP process guarantees the relations for every i, j:

lii = uii = 1, |lij| 6 1, |uij | 6 1,

what implies the bounds:

||L|| 6 n, ||U || 6 n, ||L−1|| 6 2n−1, ||U−1|| 6 2n−1. (A1.4)

Let present the B-method as following two assignment-statements:

V := R−1, G := V ∗ L−1. (A1.5)

Let vT
i ,gT

i be the i-th rows of V and G, respectively. Row-wise implemen-
tation of (A1.5) amounts to solving the following triangular equations:

vT
i R

!
= eT

i , gT
i L

!
= vT

i (i = 1, . . . , n),

where eT
i is the i-th row of the identity matrix. The computed solutions

vi,gi of these equations satisfy the equalities

vT
i (R + δRi) = eT

i , gT
i (L + δLi) = vT

i , (A1.6)

where the perturbation matrices δRi, δLi (equivalent to rounding-errors in
the solving algorithms) are bounded:

|δRi| ≤ νc|R|, |δLi| ≤ νc|L|. (A1.7)
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(c ≈ 1, if “inner products” are cumulated on higher-precision variable, oth-
erwise c = n.)

Let rewrite the equalities (A1.6) in the form

vT
i R = eT

i (I + Φi)
−1, gT

i (I + Ψi) = vT
i L−1, (A1.8)

where, with δUi
df
= D−1δRi, see (A1.3),

Φi
df
= R−1δRi = U−1δUi, Ψi

df
= δLiL

−1. (A1.9)

(We assume ||Φi|| < 1
2 , since ||Φi|| ≤ νcn2n−1, see (A1.4), is for large n

practically always a severe overbound.)
All row-equalities (A1.8) can be presented in the matrix form:

V R = I − Φ̂, G + ∆′

1 = V L−1, (A1.10)

where [using the equality (I + Φ)−1 = I −Φ(I + Φ)−1] the i-th row of Φ̂ is
equal to eT

i Φi(I + Φi)
−1, and the i-th row of ∆′

1 is equal to gT
i Ψi. From

(A1.4), (A1.7), (A1.9) follow the bounds

||Φ̂|| 6 ε1(1 − ε1)−1, ||∆1|| 6 ε1||G||, ε1
df
= νcn2n−1. (A1.11)

From (A1.1), (A1.10), (A1.11) we obtain ultimately

G + ∆′ = (X + ∆)−1, ||∆′|| < νcn2n||G||, (A1.12)

where ∆′ df
= ∆′

1 + Φ̂(I − Φ̂)−1(G + ∆′

1), what completes the proof. 2

Remarks A.1.

(i) Relations (A1.1) are satisfied for any sufficiently well-conditioned matrix
X. But simple modification of GECP guarantees (A1.1) (with εx being
a modest multiple of ν) for any matrix X 6= 0. This allows us to apply
the HS-process also for such matrices.

(ii) Let’s note that ||∆′|| ≈ maxi ||gT
i δLiL

−1 + eT
i U−1δUiG|| and that the

bounds (A1.4) on ||L−1|| and ||U−1|| are for larger n practically never
approached. Hence in most cases (A1.12) is a severe overbound on
||∆′||. We can expect that εg in (A1.2) is practically always a modest
multiple of ν.

(iii) In [10, pp. 110–111] Wilkinson proves the NC-property (A1.2) of the
matrix G, computed via GEPP by the A-method, see [2], under assump-
tions that all involved triangular systems are solved to high accuracy.
Since in the case of GECP this condition is always satisfied hence theo-
rem A.1 is valid also for the A-method.
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