A Padé family of iterations for the matrix sector function and the matrix pth root

Krystyna Ziętak

(the joint work with Beata Laszkiewicz)

Institute of Mathematics and Computer Science
Wrocław University of Technology

Gdańsk, GAMM 2009
Outline

1. Matrix sector function
2. Padé family of iterations for matrix sector function
3. Structure-preserving matrix iterations
4. Generally convergent methods for polynomials
5. Padé iterations for matrix pth root
6. References
Sector regions

\[\Phi_k = \left\{ z \in \mathbb{C} : \frac{2k\pi}{p} - \frac{\pi}{p} < \arg(z) < \frac{2k\pi}{p} + \frac{\pi}{p} \right\} \]

\(k = 0, \ldots, p - 1 \)

p=2

p=3

p=4
Scalar p-sector function

$s_p(\lambda)$ is the nearest pth root of unity to λ

Representation

$$s_p(\lambda) = \frac{\lambda}{\sqrt[p]{\lambda^p}}$$

- $\sqrt[p]{a}$ principal pth root of $a \notin \mathbb{R}^{-}$
- $s_p(\lambda)$ is not defined for the pth roots of nonpositive real numbers.
Let nonsingular complex matrix A have no negative eigenvalue. Then there exists unique principal pth root of A:

$$X = A^{1/p}$$

$$X^p = A, \quad \arg \lambda_j(X) \in \left(-\frac{\pi}{p}, \frac{\pi}{p}\right).$$

• $A \in \mathbb{C}^{n \times n}$ nonsingular
• $\arg(\lambda_j) \neq \frac{2\pi(q + \frac{1}{2})}{p}$ for $q \in \{0, \ldots, p - 1\}$

Matrix sector function of $A \in \mathbb{C}^{n \times n}$

$$S = \text{sect}_p (A) = A \left(\sqrt[p]{A^p} \right)^{-1}$$

Shieh, Tsay, Wang 1984

S is specific pth root of I: $S^p = I$, $AS = SA$
Matrix sector function

\[\text{sect}_p(A) = Z \text{diag} \left(s_p(\lambda_j) l_{r_j} \right) Z^{-1} \]

\[A = Z \text{diag} (J_1, J_2, \ldots, J_m) Z^{-1}, \]

Jordan canonical form

Jordan block \(J_k(\lambda) \) of order \(r_k \)
Algorithms for matrix sector function

\[\text{sect}_p(A) = A(A^p)^{-1/p} \]

\[\text{sect}_p(A) = A \exp(-\log(A^p)/p) \]

- Schur algorithms based on Schur decomposition \(A = QRQ^H \)

\[\text{sect}_p(A) = Q \text{sect}_p(R) Q^H \]

- Newton’s and Halley’s iterations
- Padé family of iterations
Padé family iterations for scalar sector function

\[s_p(\lambda) = \frac{\lambda}{\sqrt[p]{\lambda^p}} = \frac{\lambda}{\sqrt[p]{1 - z}} \]

\[z = 1 - \lambda^p \]

\[P_{km}/Q_{km} - [k/m] \text{ Padé approximant} \]

\[x_{i+1} = h_{km}(x_i) = x_i \frac{P_{km}(1 - x_i^p)}{Q_{km}(1 - x_i^p)}, \quad x_0 = \lambda_j \]
Padé family for matrix sector function

\[X_{i+1} = h_{km}(X_i), \quad X_0 = A \]

If for every \(\lambda_j(A) \) scalar Padé iterations converge to \(\text{sect}_p(\lambda_j) \) then matrix Padé iterations are convergent to \(\text{sect}_p(A) \).

pure rational iterations

function \(h_{km} \) does not depend on \(A \)

Iannazzo 2007
\[h_{01}(z) = \frac{pz}{z^p + (p - 1)} \]

\[h_{10}(z) = \frac{z}{p}[-z^p + (1 + p)], \quad h_{11}(z) = z\frac{(p - 1)z^p + (p + 1)}{(p + 1)z^p + (p - 1)} \]

\[h_{12}(z) = \frac{2pz[(2p - 1)z^p + (p + 1)]}{(p + 1)z^{2p} + (4p^2 + 2p - 2)z^p + (2p^2 - 3p + 1)} \]

\[h_{22}(z) = \frac{z[(2p^2 - 3p + 1)z^{2p} + (8p^2 - 2)z^p + (2p^2 + 3p + 1)]}{(2p^2 + 3p + 1)z^{2p} + (8p^2 - 2)z^p + (2p^2 - 3p + 1)} \]
Region of convergence of Padé iterations

\[[m - 1/m] \]

\[\begin{align*}
[0/1] & \\
[1/2] & \\
[3/4] &
\end{align*} \]

"'Yellow flower'' \quad \mathbb{L}_p^{\text{Pade}} = \{ z \in \mathbb{C} : |1 - z^p| < 1 \}
Pade \([k/m]\) for sign \((p = 2)\)

Kenney, Laub (1991) - local convergence

For \(k \geq m - 1\), if \(|1 - x_0^2| < 1\) then

\[|1 - x_n^2| \leq |1 - x_0^2|(k+m+1)^n\]

and

\[\lim_{n \to \infty} x_n = \text{sign}(x_0)\]

\(x_0 \in \mathbb{C}\)
Padé $[k/m]$ for sector

First conjecture for Padé iterations for sector

For $k \geq m - 1$, if

$$x_{n+1} = x_n \frac{P_{km}(1 - x_n^p)}{Q_{km}(1 - x_n^p)}$$

$$|1 - x_0^p| < 1$$

then

$$|1 - x_n^p| \leq |1 - x_0^p|^{(k+m+1)n}$$

$$\lim_{n \to \infty} x_n \to s_p(x_0)$$
Halley - Pade $[1/1]$ for sector

\[
X_{i+1} = X_i \frac{(p - 1)X_i^p + (p + 1)i}{(p + 1)X_i^p + (p - 1)i}, \quad X_0 = A
\]

If all eigenvalues of A lie in

\[\mathbb{B}^{(\text{Hall})}_p = \bigcup_{k=0}^{p-1} \left\{ z \in \mathbb{C} : \frac{2k\pi}{p} - \frac{\pi}{2p} < \arg(z) < \frac{2k\pi}{p} + \frac{\pi}{2p} \right\}\]

then Halley is convergent to sector.
Principal Padé $[m/m]$ iterations for matrix sector

Second conjecture for principal Padé iterations for sector

If all eigenvalues of A lie in $\mathbb{B}_p^{(\text{Hall})}$ then principal Pade $[m/m]$ iterations are convergent to sector.

"Yellow flower" $\mathbb{L}_p^{(\text{Pade})}$ is in $\mathbb{B}_p^{(\text{Hall})}$.
Regions of convergence determined experimentally for Padé $[k/m]$ and $p = 5$
Particular cases

- The first conjecture with "flowers" is true for Padé $[k/0]$ (it follows from the result of Lakic for the pth root).

- The first conjecture is true for Padé $[0/1]$.

- The second conjecture is true for Halley $[1/1]$.
Structure-preserving matrix iterations

\[X_{k+1} = f(X_k) \in \mathcal{G} \quad \text{if} \quad X_0 = A \in \mathcal{G} \]

Automorphism groups \(\mathcal{G} \)

\[A^* = M^{-1}A^T M, \quad \text{or} \quad A^* = M^{-1}A^* M, \quad \text{adjoint} \]

\[\mathcal{G} = \{ A : A^* = A^{-1} \} \]

bilinear (real or complex) or sesquilinear forms

\[< x, y > = x^T M y, \quad < x, y > = x^* M y \]
Examples of automorphism groups

- $M = I$, A real, \mathcal{G} – real orthogonals
- $M = I$, A complex, \mathcal{G} – unitaries
- $M = I$, A complex, \mathcal{G} – complex orthogonals
- $M = J$, A real, \mathcal{G} – real symplectics
- symplectics, perplectics, pseudo-unitaries,...
Structure-preserving rational matrix iterations

Higham, Mackey, Tisseur 2004

If \(f(x) = X^r w(X^t) \text{rev} w(X^t)^{-1} \) and \(X \in \mathbb{G} \) then \(f(X) \in \mathbb{G} \).

\[
w(x^t) = a_0 + a_1 x^t + a_2 x^{2t} + \cdots + a_k x^{kt}
\]

\[
\text{rev} w(x^t) = a_k + a_{k-1} x^t + a_{k-2} x^{2t} + \cdots + a_0 x^{kt}
\]

- Higham Mackey, Tisseur – principal Padé iterations for matrix sign are structure-preserving
- Iannazzo – some methods from König’s family of iterations for matrix sector are structure-preserving
Structure-preserving matrix iterations

by principal Padé iterations for sector

\[h_{mm}(x) = x \frac{\sum_{j=0}^{m} b_j^{(m)} x^{pj}}{\sum_{j=0}^{m} c_j^{(m)} x^{pj}} \]

\[b_j^{(m)} = (-1)^j \sum_{k=j}^{m} \binom{k}{j} \frac{1}{k!} \frac{1}{p} \frac{1}{p} - m \frac{m(k - 2m)_m}{(-2m)_m(k + \frac{1}{p} - m)_m} \]

\[(\alpha)_j = \alpha(\alpha + 1) \ldots (\alpha + j - 1) \]

by means of Zeilberger algorithm

\[b_j^{(m)} = \binom{m}{j} \frac{m!}{(2m)! p^m} \prod_{k=m-j+1}^{m} (kp - 1) \prod_{k=j+1}^{m} (kp + 1), \]
Generally convergent methods for polynomials

Definition

Rational iterative root-finding algorithm is said *generally convergent* if it converges to a root for almost every initial guess and for almost every polynomial.

- Newton’s method is generally convergent for quadratic polynomials.
- There does not exist a generally convergent algorithm for polynomials of degree greater than 3.
\[w(x) = x^3 + (c - 1)x - c, \quad \text{different roots} \]

C. McMullen 1987

Every generally convergent algorithm for cubic polynomials is obtained by rational \(f \) such that

- \(f \) is convergent for \(x^3 - 1 \)

- centralizer of \(f \) contains Möbius transformations that permute cube roots of unity

Then the generally convergent algorithm is given by

\[M_c \circ f \circ M_c^{-1} \]

\(M_c \) Möbius transformation carrying cube roots of unity to roots of \(w(x) \)
Centralizer of \(a \in G \) is set of elements of group \(G \) which commute with \(a \)

Möbius transformation

\[
\frac{ax + b}{cx + d}, \quad ad - bc \neq 0
\]

roots of \(w(x) = x^3 + (c - 1)x - c \):

\[
1, \quad \frac{1}{2} \left(-1 - \sqrt{1 - 4c} \right), \quad \frac{1}{2} \left(-1 + \sqrt{1 - 4c} \right)
\]
J.M. Hawkins 2002

Characterization rational iterations f for $x^3 - 1$ which generate generally convergent algorithms for cubic polynomials – they have to be structure-preserving!

- Generally convergent algorithms for cubic polynomial, proposed by Hawkins, are generated by Padé iterations $[2/2]$ and $[3/3]$ for sector with $p = 3$.

- We can use Padé iterations for sector with $p = 3$ to construct algorithm of arbitrary high order of convergence.
Padé \([k/m]\) iterations for matrix \(p\)th root

\[
X_{i+1} = X_i P_{km}(I - A^{-1}X_i^p)Q_{km}(I - A^{-1}X_i^p)^{-1}, \quad X_0 = I
\]

where \(P_{km}(z)/Q_{km}(z)\) is \([k/m]\) Padé for \(f(z) = (1-z)^{-1/p}\)

Coupled Padé iteration for the \(p\)th root of \(A\)

\[
X_{i+1} = X_i h(Y_i), \quad Y_{i+1} = Y_i h(Y_i)^p, \quad X_0 = I, Y_0 = A^{-1}
\]

\(X_i\) tends to \(A^{1/p}\), \(Y_i\) tends to \(I\),

where \(h(t) = P_{km}(1 - t)/Q_{km}(1 - t)\)

[1/1] coupled iterations proposed by Iannazzo
References

- Higham, Mackey, Mackey, Tisseur, Computing the polar decomposition ... in matrix groups, *SIMAX*, 25 (2004).
- Laszkiewicz, Ziętak, A Padé family of iterations for the matrix sector function and the matrix \(p \)th root, submitted.
Thank you for your attention!

Wrocław University of Technology