A Padé family of iterations for the matrix sector function and the matrix pth root

Krystyna Ziętak

(the joint work with Beata Laszkiewicz)

Institute of Mathematics and Computer Science Wrocław University of Technology

Gdańsk. GAMM 2009

Outline

- Matrix sector function
- Pade family of iterations for matrix sector function
- Structure-preserving matrix iterations
- Generally convergent methods for polynomials
- 5 Padé iterations for matrix pth root
- 6 References

Sector regions

$$\Phi_k = \left\{ z \in \mathbb{C} : \frac{2k\pi}{p} - \frac{\pi}{p} < \arg(z) < \frac{2k\pi}{p} + \frac{\pi}{p} \right\}$$

$$k = 0, \ldots, p-1$$

Scalar p-sector function

 $s_p(\lambda)$ is the nearest pth root of unity to λ

Representation

$$s_p(\lambda) = \frac{\lambda}{\sqrt[p]{\lambda^p}}$$

- $\sqrt[p]{a}$ principal *pth* root of $a \notin \mathbb{R}^-$
- $s_p(\lambda)$ is not defined for the *pth* roots of nonpositive real numbers.

Principal matrix pth root

Let nonsingular complex matrix A have no negative eigenvalue. Then there exists unique principal pth root of A:

$$X = A^{1/p}$$

$$X^p = A$$
, $\arg \lambda_j(X) \in \left(-\frac{\pi}{p}, \frac{\pi}{p}\right)$.

N.J. Higham, Functions of Matrices: Theory and Computation, SIAM 2008

•
$$arg(\lambda_i) \neq 2\pi(q + \frac{1}{2})/p$$
 for $q \in \{0, ..., p-1\}$

Matrix sector function of $A \in \mathbb{C}^{n \times n}$

$$S = \operatorname{sect}_{p}(A) = A\left(\sqrt[p]{A^{p}}\right)^{-1}$$

Shieh, Tsay, Wang 1984

S is specific *pth* root of 1:
$$S^p = I$$
, $AS = SA$

$$\operatorname{sect}_{p}(A) = Z \operatorname{diag}(s_{p}(\lambda_{j}) I_{r_{i}}) Z^{-1}$$

$$A = Z \operatorname{diag} (J_1, J_2, \dots, J_m) Z^{-1},$$

lordan canonical form Jordan block $J_k(\lambda)$ of order r_k

Algorithms for matrix sector function

$$\operatorname{sect}_{p}(A) = A(A^{p})^{-1/p}$$
$$\operatorname{sect}_{p}(A) = A \exp(-\log(A^{p})/p)$$

 Schur algorithms based on Schur decomposition $A = QRQ^H$

$$\operatorname{sect}_{p}(A) = Q \operatorname{sect}_{p}(R) Q^{H}$$

- Newton's and Halley's iterations
- Padé family of iterations

$$s_p(\lambda) = \frac{\lambda}{\sqrt[p]{\lambda^p}} = \frac{\lambda}{\sqrt[p]{1-z}}$$
$$z = 1 - \lambda^p$$

$$P_{km}/Q_{km}$$
 - $\lfloor k/m
floor$ Padé approximant to $\sqrt[p]{1-z}$

$$x_{i+1} = h_{km}(x_i) = x_i \frac{P_{km}(1 - x_i^p)}{Q_{km}(1 - x_i^p)}, \qquad x_0 = \lambda_j$$

$$X_{i+1} = h_{km}(X_i), \quad X_0 = A$$

If for every $\lambda_i(A)$ scalar Padé iterations converge to $\operatorname{sect}_p(\lambda_i)$ then matrix Padé iterations are convergent to $sect_p(A)$.

> pure rational iterations function h_{km} does not depend on A_{km} lannazzo 20(

$$h_{01}(z) = \frac{pz}{z^p + (p-1)}$$

$$h_{10}(z) = \frac{z}{\rho}[-z^{\rho} + (1+\rho)], \quad h_{11}(z) = z\frac{(\rho-1)z^{\rho} + (\rho+1)}{(\rho+1)z^{\rho} + (\rho-1)}$$

$$h_{12}(z) = \frac{2pz[(2p-1)z^p + (p+1)]}{(p+1)z^{2p} + (4p^2 + 2p - 2)z^p + (2p^2 - 3p + 1)}$$

$$h_{22}(z) = \frac{z[(2p^2 - 3p + 1)z^{2p} + (8p^2 - 2)z^p + (2p^2 + 3p + 1)]}{(2p^2 + 3p + 1)z^{2p} + (8p^2 - 2)z^p + (2p^2 - 3p + 1)}$$

[0/1]

[1/2]

[3/4]

"'Yellow flower"
$$\mathbb{L}_p^{ ext{(Pade}} = \{z \in \mathbb{C}: \ |1-z^p| < 1\}$$

Kenney, Laub (1991) - local convergence

For $k \ge m - 1$, if $|1 - x_0^2| < 1$ then

$$|1 - x_n^2| \le |1 - x_0^2|^{(k+m+1)^n}$$

and

$$\lim_{n\to\infty} x_n = sign(x_0)$$

$$x_0 \in C$$

Padé [k/m] for sector

First conjecture for Padé iterations for sector

For k > m-1. if

$$x_{n+1} = x_n \frac{P_{km}(1 - x_n^p)}{Q_k m(1 - x_n^p)}$$
$$|1 - x_0^p| < 1$$

then

$$|1 - x_n^p| \le |1 - x_0^p|^{(k+m+1)^n}$$

 $\lim_{n \to \infty} x_n \to s_p(x_0)$

Halley - Pade [1/1] for sector

$$X_{i+1} = X_i \frac{(p-1)X_i^p + (p+1)I}{(p+1)X_i^p + (p-1)I}, \qquad X_0 = A$$

If all eigenvalues of A lie in

$$\mathbb{B}_p^{ ext{(Hall)}} = \bigcup_{k=0}^{p-1} \left\{ z \in \mathbb{C} : \frac{2k\pi}{p} - \frac{\pi}{2p} < \arg(z) < \frac{2k\pi}{p} + \frac{\pi}{2p} \right\}$$

then Halley is convergent to sector.

Second conjecture for principal Padé iterations for sector

If all eigenvalues of A lie in $\mathbb{B}_p^{(\mathrm{Hall})}$ then principal Pade [m/m] iterations are convergent to sector.

"Yellow flower" $\mathbb{L}_p^{(\text{Pade})}$ is in $\mathbb{B}_p^{(\text{Hall})}$.

Regions of convergence determined experimentally for Padé [k/m] and p=5

m=0

m=1

m=2

m=3

- The first conjecture with "flowers" is true for Padé [k/0] (it follows from the result of Lakic for the pth root)
- The first conjecture is true for Padé [0/1].
- The second conjecture is true for Halley [1/1].

$$X_{k+1} = f(X_k) \in \mathbb{G}$$
 if $X_0 = A \in \mathbb{G}$

Automorphism groups G

$$A^{\star}=M^{-1}A^{T}M, \quad \mathrm{or} \quad A^{\star}=M^{-1}A^{*}M, \quad \mathsf{adjoint}$$

$$\mathbb{G}=\left\{A:A^{\star}=A^{-1}\right\}$$

bilinear (real or complex) or sesquilinear forms

$$\langle x, y \rangle = x^T M y, \quad \langle x, y \rangle = x^* M y$$

- M = I, A real, \mathbb{G} real orthogonals
- M = I, A complex, \mathbb{G} unitaries
- M = I, A complex, \mathbb{G} complex orthogonals
- M = J, A real, \mathbb{G} real sympletics
- sympletics, perpletics, pseudo-unitaries,...

Structure-preserving rational matrix iterations

Higham, Mackey, Tisseur 2004

If $f(x) = X^r w(X^t) \operatorname{rev} w(X^t)^{-1}$ and $X \in \mathbb{G}$ then $f(X) \in \mathbb{G}$.

$$w(x^{t}) = a_{0} + a_{1}x^{t} + a_{2}x^{2t} + \dots + a_{k}x^{kt}$$
$$rev w(x^{t}) = a_{k} + a_{k-1}x^{t} + a_{k-2}x^{2t} + \dots + a_{0}x^{kt}$$

- Higham Mackey, Tisseur principal Padé iterations for matrix sign are structure-preserving
- lannazzo some methods from König's family of iterations for matrix sector are structure-preserving

by principal Padé iterations for sector

$$h_{mm}(x) = x \frac{\sum_{j=0}^{m} b_{j}^{(m)} x^{pj}}{\sum_{j=0}^{m} c_{j}^{(m)} x^{pj}}$$

$$b_{j}^{(m)} = (-1)^{j} \sum_{k=1}^{m} {k \choose j} \frac{\left(\frac{1}{p}\right)_{k} \left(\frac{1}{p} - m\right)_{m} (k - 2m)_{m}}{k! (-2m)_{m} (k + \frac{1}{p} - m)_{m}}$$

$$(\alpha)_i = \alpha(\alpha+1)\dots(\alpha+j-1)$$

by means of Zeilberger algorithm

$$b_j^{(m)} = {m \choose j} \frac{m!}{(2m)!p^m} \prod_{k=m-j+1} (kp-1) \prod_{k=j+1} (kp+1),$$

Generally convergent methods for polynomials

Definition

Rational iterative root-finding algorithm is said *generally* convergent if it converges to a root for almost every initial guess and for almost every polynomial.

- Newton's method is generally convergent for quadratic polynomials.
- There does not exist a generally convergent algorithm for polynomials of degree greater than 3.

$$w(x) = x^3 + (c-1)x - c$$
, different roots

C. McMullen 1987

Every generally convergent algorithm for cubic polynomials is obtained by rational f such that

- f is convergent for $x^3 1$
- centralizer of f contains Möbius transformations that permute cube roots of unity

Then the generally convergent algorithm is given by

$$M_c \circ f \circ M_c^{-1}$$

 M_c Möbius transformation carrying cube roots of unity to roots of w(x)

- Centralizer of $a \in G$ is set of elements of group G which commute with a
- Möbius transformation

$$\frac{ax+b}{cx+d}$$
, $ad-bc \neq 0$

• roots of $w(x) = x^3 + (c-1)x - c$:

$$1, \quad \frac{1}{2}\left(-1-\sqrt{1-4c}\right), \quad \frac{1}{2}\left(-1+\sqrt{1-4c}\right)$$

J.M. Hawkins 2002

Characterization rational iterations f for $x^3 - 1$ which generate generally convergent algorithms for cubic polynomials – they have to be structure-preserving!

- Generally convergent algorithms for cubic polynomial, proposed by Hawkins, are generated by Padé iterations [2/2] and [3/3] for sector with p=3.
- We can use Padé iterations for sector with p = 3 to construct algorithm of arbitrary high order of convergence

Padé $\lfloor k/m \rfloor$ iterations for matrix pth root

$$X_{i+1} = X_i P_{km} (I - A^{-1} X_i^{\rho}) Q_{km} (I - A^{-1} X_i^{\rho})^{-1}, \quad X_0 = I$$

where $P_{km}(z) / Q_{km}(z)$ is $[k/m]$ Pade for $f(z) = (1-z)^{-1/\rho}$

Coupled Padé iteration for the pth root of A

$$X_{i+1} = X_i h(Y_i), \quad Y_{i+1} = Y_i h(Y_i)^p, \quad X_0 = I, Y_0 = A^{-1}$$

 X_i tends to $A^{1/p}$. Y_i tends to I. where $h(t) = P_{km}(1-t)/Q_{km}(1-t)$

[1/1] coupled iterations proposed by lannazzo

ererences

- Higham, Mackey, Mackey, Tisseur, Computing the polar decomposition ... in matrix groups, SIMAX, 25 (2004).
- Iannazzo, Numerical solution of certain nonlinear matrix equations, PhD, Pisa 2007.
- lannazzo, A family of rational iterations ..., SIMAX 30 (2008).
- Kenney, Laub, Rational iterative methods for the matrix sign function, SIMAX 12 (1991).
- Koç, Bakkaloğlu, Halley's method for the matrix sector function, IEEE Trans. on Automatic Control 40 (1995).
- Laszkiewicz, Ziętak, A Padé family of iterations for the matrix sector function and the matrix pth root, submitted.
- Shieh, Tsay, Wang, Matrix sector function ..., IEE Proc. 131 (1984).

Wrocław University of Technology

