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Matrix sector function

Scalar p-sector function

sp(A) is the nearest pth root of unity to A |

Representation

A

SP()‘) - W

o {/a principal pth root of a ¢ R~
o sp(A) is not defined for the pth roots
of nonpositive real numbers.




Matrix sector function

Principal matrix pth root

Let nonsingular complex matrix A have
no negative eigenvalue. Then there exists
unique principal pth root of A:

X = Al/P
XP=A, arg\i(X) e (—Z E).

p’p

N.J. Higham, Functions of Matrices: Theory and
Computation, SIAM 2008




@ A € C"™" nonsingular
o arg(\) #2n(q+3)/pforqe{0,...,p—1}

Matrix sector function of A € C"™"

S =sect, (A) = A ( v AP)_l

Shieh, Tsay, Wang 1984

S is specific pth root of /: SP =/,
AS = SA




Matrix sector function

sect, (A) = Zdiag (sp(Aj)/r,) Z!

A= Zdiag (4, by, Im) 274,

Jordan canonical form

Jordan block Ji(A) of order r,




Pade family of iterations for matrix sector function

Algorithms for matrix sector function

sect,(A) = A(AP)1/P
sectp(A) = A exp(—log(AP)/p)

o Schur algorithms based on Schur
decomposition A = QRQ"

sectp(A) = Qsect,(R)Q"”

o Newton's and Halley's iterations

o Padé family of iterations




Pade family of iterations for matrix sector function

Padé family iterations for scalar sector function

N
A A v
z=1-X°

Pim/ Qim - [k/m] Padé approximant

to vV1—z

Pim(1 — x,-p)

i1 = him(Xi) = xi :
Xi+1 = hiem(Xi) Xka(l_X’_p)




Pade family of iterations for matrix sector function

Padé family for matrix sector function

Xiz1 = him(Xi), Xo=A

If for every \j(A) scalar Padé iterations
converge to sect,()j) then matrix Padé
iterations are convergent to sect,(A).

pure rational iterations
function hy, does not depend on ‘ .
lannazzo 2007 9’




Pade family of iterations for matrix sector function

pz
hoi(z) = #+(p=1)

(p—1)z2" +(p+1)
(p+1)zP +(p—1)

ho(e) = S[=2" + (L4 P hus(2) =2

2pz[(2p — 1)z° + (p + 1)]
(p+1)z2P + (4p% +2p — 2)zP + (2p% — 3p + 1)

hi2(z) =

haal(2) = z[(2p? — 3p + 1)z2P + (8p? — 2)zP + (2p* + 3p + 1)]
22T T (2p2 +3p+ 1)22P + (8p2 — 2)zP + (2p2 — 3p + 1)




Pade family of iterations for matrix sector function

Region of convergence of Padé iterations
[m —1/m]

[0/1] [1/2] [3/4]

Yellow flower" L& ={zeC: [1-2z°| <1}




Pade family of iterations for matrix sector function

Pade [k/m] for sign (p

Kenney, Laub (1991) - local convergence

For k > m—1,if |1 — x3| <1 then

11— x| < 1 — gD’

and

lim x, = sign(xp)
n—oo

X0€C




Pade family of iterations for matrix sector function

Padé [k/m] for sector
First conjecture for Padé iterations for sector

For k >m—1, if

Bl =)
1—x5] <1

then
11— xP| < |1 — x| ktmt)

lim x, — sp(x0)
n—oo




Pade family of iterations for matrix sector function

Halley - Pade [1/1] for sector

(p— )X+ (p+ 1)
"(p+1)XP+(p— 1)1

T realte)

If all eigenvalues of A lie in

Hall T s s
) S =z { %— <arg(z)<2k +5}

then Halley is convergent to sector.



Pade family of iterations for matrix sector function

Principal Padé [m/m] iterations for matrix sector

Second conjecture
for principal Padé iterations for sector

If all eigenvalues of A lie in IB%gHaH)

then principal Pade [m/m] iterations are
convergent to sector.

"Yellow flower" Lf,Pade) is in IB%E,HaH).




Pade family of iterations for matrix sector function

Regions of convergence determined experimentally

for Padé [k/m] and p = 5




Pade family of iterations for matrix sector function

Particular cases

o The first conjecture with "flowers" is true

for Padé [k/0] (it follows from the result
of Lakic for the pth root)

o The first conjecture is true for Padé [0/1].

o The second conjecture is true for Halley

[1/1].




Structure-preserving matrix iterations

Structure-preserving matrix iterations

Xep1 =f(Xk) €G if Xo=A€eG

Automorphism groups G

| A

A*=MTATM, or A*=M7A*M, adjoint
G={A: A=A}

bilinear (real or complex) or sesquilinear forms

<x,y>=x"My, <x,y>=x*My




Examples of automorphism groups

o M =1 Areal G - real orthogonals

o M =1, Acomplex, G — unitaries

o M =1, Acomplex, G — complex
orthogonals

o M = J, A real G - real sympletics

o sympletics, perpletics, pseudo-unitaries, ...




Structure-preserving matrix iterations

Structure-preserving rational matrix iterations

If f(x) = X w(X)revw (X)L and X € G
then 1(X) € G.

t t 2t kt
w(x®) = ag + aix" 4+ axx=" 4+ -+ - + agx
kt

revw(x®) = a + ar_1x" + a2x* 4 - 4 apx

o Higham Mackey, Tisseur — principal Padé iterations for
matrix sign are structure-preserving

@ lannazzo — some methods from Kdnig's family of
iterations for matrix sector are structure-preserving




Structure-preserving matrix iterations

Structure-preserving

by principal Padé iterations for sector

by means of Zeilberger algorithm

(my (m m!
bj - <J> (2m)!pm ) H (kp_]') H (kp+1)a

=m—j+1 k=j+1




Generally convergent methods for polynomials

Definition

Rational iterative root-finding algorithm is said generally
convergent if it converges to a root for almost every initial
guess and for almost every polynomial.

@ Newton's method is generally convergent for quadratic
polynomials.

@ There does not exist a generally convergent algorithm for
polynomials of degree greater than 3.




w(x) = x>+ (c —1)x — ¢, different roots

C. McMullen 1987

Every generally convergent algorithm for cubic polynomials is
obtained by rational f such that

e f is convergent for x> — 1

@ centralizer of f contains Mdbius transformations that
permute cube roots of unity

Then the generally convergent algorithm is given by
M.ofo M *

M. Mébius transformation carrying cube roots of unity to
roots of w(x)




@ Centralizer of a € G is set of elements of group G which
commute with a

@ Mobius transformation

ax+ b

m, ad—bc;zéO

e roots of w(x) =x3+ (c—1)x —c:

1, %(_1_m), %(_Hm)




J.M. Hawkins 2002

Characterization rational iterations f for
x3 — 1 which generate generally convergent
algorithms for cubic polynomials — they have

to be structure-preserving!

e Generally convergent algorithms for cubic polynomial,
proposed by Hawkins, are generated by Padé iterations
[2/2] and [3/3] for sector with p = 3.

@ We can use Padé iterations for sector with p = 3 to
construct algorithm of arbitrary high order of convergence &g




Padé [k/m] iterations for matrix pth root

Xis1 = XiPrn(l — A XP) Qe — ATIXPY L Xo = |

where Pim(2)/Qum(z)  is [k/m] Pade for f(z) = (1—z) /P
Coupled Padé iteration for the pth root of A

Xiy1 = Xih(Y3), Y = Yih(Yi)P, Xo=1,Yo=A""

X; tends to AP, Y tends to /,
where h(t) = Pim(1 — t)/ Qum(1 — t)
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Thank you for your attention! |
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