Padé approximants of $(1 - z)^{-1/p}$ and their applications to computing the matrix *p*-sector function and the matrix *p*th roots

Krystyna Ziętak

March 17, 2015

ション ふゆ く 山 マ チャット しょうくしゃ

Outline

- sign and *p*-sector functions
 Applications
- Padé approximants
- 4 Reciprocal of power series
- Useful formulas for Gauss hypergeometric functions
- 6 Padé and dual Padé iterations for sign and sector
- Dual Padé iterations for pth root of A

8 References

Coauthors sign and p-sector functions Padé approximants Reciprocal of power series Useful formulas for Gauss hyper

The talk is based on:

- Gomilko, Greco, Ziętak, A Padé family of iterations for the matrix sign function and related problems, *Numer. Lin. Alg. Appl.* (2012).
- Gomilko, Karp, Lin, Ziętak, Regions of convergence of a Padé family of iterations for the matrix sector function, J. Comput. Appl. Math. (2012).
- Laszkiewicz, Ziętak, A Padé family of iterations for the matrix sector function and the matrix *p*th root, *Numer. Lin. Alg. Appl.* (2009).
- Ziętak, The dual Padé families of iterations for the matrix pth root and the matrix p-sector function, J. Comput. Appl. Math. (2014).

Coauthors

- Oleksandr Gomilko (Toruń, Poland, and Kiev, Ukraine)
- Federico Greco (Perugia, Italy)
- Dmitry B. Karp (Vladivostok, Russia)
- Beata Laszkiewicz (Jelenia Gora, Poland)
- Minghua Lin (Waterloo, Canada)

A

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

scalar *p*-sector function,
$$z \in \mathbb{C}$$

 $\operatorname{sect}_p(z) = \frac{z}{\sqrt[p]{z^p}}$
the nearest *pth* root of unity to *z*
for $p = 2$ sign function
 $\operatorname{sign}(z) = \begin{cases} 1 & \operatorname{if Re}(z) > 0 \\ -1 & \operatorname{if Re}(z) < 0 \end{cases}$

~

red - principal sector Φ_0

matrix *p*-sector function A nonsingular $\operatorname{sect}_p(A) = A(A^p)^{-1/p}$ $\arg(\lambda_i(A)) \neq (2q+1)\pi/p, \qquad q=0,1,\ldots,p-1$ matrix principal *p*th root $X = A^{1/p}$

$$X^{p} = A, \qquad \lambda_{j}(X) \in \Phi_{0}$$

ション ふゆ く 山 マ チャット しょうくしゃ

no eigenvalue of A lies on closed negative real axis

Canonical Jordan form

$$A = W J W^{-1}$$

Matrix *p*-sector function

$$\operatorname{sect}_{\rho}(A) = W \operatorname{diag}\left(\operatorname{sect}_{\rho}(\lambda_j)\right) \ W^{-1}$$

λ_j eigenvalues of A

Applications

applications of *sign*(A)

- solving the matrix equations of Sylvester, Lyapunov, Riccati,
- *p* number of eigenvalues of *A* of order *n* in the open left half-plane,
 - q number of eigenvalues in the open right half-plane

$$p = \frac{1}{2}(n - \operatorname{trace}(\operatorname{sign}(A))), \quad q = \frac{1}{2}(n + \operatorname{trace}(\operatorname{sign}(A)))$$

• quantum chromodynamics, lattice QCD, the overlap-Dirac operator of Neuberger – solving the linear systems

$$(G - \operatorname{sign}(H))x = b$$

see, for example, N.J.Higham, *Functions of Matrices. Theory and Computation*, SIAM 2008.

Applications of matrix *p*-sector function

- determining the number of eigenvalues in a specific sector
- obtaining corresponding invariant subspaces

After suitable change of variable, iterations for computing $sect_p(A)$ can be applied to computing

- pth roots of a matrix
- polar decomposition of a matrix (p = 2)

$$[k/m]$$
 Pade approximant to $g(z)$
 $g(z) - \frac{P_{km}(z)}{Q_{km}(z)} = O(z^{k+m+1})$

 $P_{km}(z)$ polynomial of degree $\leq k$ $Q_{km}(z)$ polynomial of degree $\leq m$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$g(z) = (1-z)^{-1/p} = {}_{2}F_{1}(1/p, 1; 1; z)$$

Gauss hypergeometric function

$$_{2}F_{1}(\alpha,\beta;\gamma;z) = \sum_{j=0}^{\infty} \frac{(\alpha)_{j}(\beta)_{j}}{j!(\gamma)_{j}} z^{j}, \quad |z| < 1$$

Pochhammer's symbol $(\alpha)_j = \alpha(\alpha + 1) \cdots (\alpha + j - 1), \quad (\alpha)_0 = 1.$

Padé approximants to
$$(1 - z)^{-1/p}$$

$$\frac{P_{km}(z)}{Q_{km}(z)} = \frac{{}_{2}F_{1}(-k, \frac{1}{p} - m; -k - m; z)}{{}_{2}F_{1}(-m, -\frac{1}{p} - k; -k - m; z)}$$
Gomilko, Greco, KZI (2012)

ション ふゆ く 山 マ チャット しょうくしゃ

formula for denominators of Padé approximants of $_2F_1(a, 1; c; z)$, $k \ge m - 1$:

- H. van Rossum (1955)
- Baker, Graves-Morris books (1975, 1981)
- Kenney, Laub (1989, 1991)
- Wimp, Beckermann (1993)

Padé approximants $(1-z)^{-\sigma}$, $\sigma \in (0,1)$

Numerators

• Kenney and Laub (1991), p = 2

$$P_{km}(z) = \sum_{j=0}^{k} \frac{(...)}{(...)} z^{j}$$

• Driver, Jordaan (2002, 2009)

$$P_{km}(z) = \sum_{j=0}^{k} \sum_{i=0}^{j} \frac{(...)}{(...)} z^{j}$$

$0 < \sigma < 1$

• [k/m] Padé approximant to $(1-z)^{-\sigma}$ is the reciprocal of [m/k] approximant to $(1-z)^{\sigma}$.

•
$$P_{km}(1) < |P_{km}(z)|$$
 for $|z| < 1$

•
$$Q_{km}(1) < |Q_{km}(z)|$$
 for $|z| < 1$.

$$\frac{Q_{kk}(1)}{P_{kk}(1)} = \frac{(-\sigma+1)_k}{(\sigma+1)_k} < 1$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Padé approximants $(1-z)^{-\sigma}$, $\sigma \in (0,1)$

Error (GKLZ 2012)

$$egin{aligned} & rac{P_{km}(z)}{Q_{km}(z)} = (1-z)^{-\sigma} - D_{km}^{(\sigma)} z^{k+m+1} \; rac{2F_1(\ldots)}{Q_{km}(z)} \ & D_{km}^{(\sigma)} > 0, \quad ext{constant, given explicitly} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Laszkiewicz, KZI 2009

$$\mathcal{P}_{kk}(1-z^{
ho})=\mathrm{rev}(\mathcal{Q}_{kk}(1-z^{
ho}))$$

$$\operatorname{rev}\left(a_{0}z^{k}+a_{1}z^{k-1}+\ldots+a_{k}\right)=a_{k}z^{k}+a_{k-1}z^{k-1}+\ldots+a_{0}$$

proof - Zeilberger algorithm

- structure preserving (in automorphism groups) by Padé iterations for *p*-sector function
- construction of generally convergent iterative methods for roots of polynomial $z^3 1$

Hawkins (2002) gives two generally convergent methods for $z^3 - 1$, which in fact are generated by principal Padé iterations for sector (p = 3).

$$\begin{split} P_{mm}(1-z^{p}) &= \sum_{j=0}^{m} b_{j} z^{j} \\ b_{j} &= (-1)^{j} \frac{(1/p-m)_{m}}{(-2m)_{m}} \sum_{\ell=j}^{m} \left(\begin{array}{c} \ell \\ j \end{array} \right) \frac{(1/p)_{\ell} (\ell-2m)_{m}}{\ell! (\ell+1/p-m)_{m}} \\ &= \left(\begin{array}{c} m \\ j \end{array} \right) \frac{m!}{(2m)! p^{m}} \prod_{\ell=m-j+1}^{m} (\ell p-1) \prod_{\ell=j+1}^{m} (\ell p+1) \end{split}$$

auxiliary function $F(j) = \sum ...$

$$F(j) + (1 - p(j + 1))F(j + 1) = 0, \quad F(j) = \prod_{\ell=j+1}^{m} (\ell p - 1)$$

proof - Zeilberger algorithm

Roots and poles of [k/m] Padé approximants

$$(1-z)^{-\sigma}, \qquad 0 < \sigma < 1$$

Kenney, Laub (1991)

For $k \ge m - 1$ all poles are bigger than 1.

Gomilko, Greco, KZI (2011)

- If k < m-1, then k + 1 poles are bigger than 1, the remaining poles have moduli bigger than 1.
- If $1 \le k \le m$, then all roots of $P_{km}(z)$ lie in $(1,\infty)$
- If k > m ≥ 1, then m roots of P_{km}(z) lie in (1,∞), remaining roots have moduli bigger than 1

K. Driver and K. Jordaan (2002, 2008)

Zeros of polynomials $_2F_1(-n, b; c; z)$

- For c > 0 and b > +n-1, all zeros are simple and lie in (0, 1)
- For b < 1 − n and d > 0, all zeros are simple and lie in (−∞, 0)

• For
$$-n < b < 0$$
, if

$$-k < b < -k+1,$$

for some $k \in \{1, \ldots, n\}$, then

- k zeros in $(1,\infty)$,
- In addition, if (n k) is even, then (n k) zeros is non-real; if (n k) is odd, then one real negative zero and (n k 1) zeros is non-real.

Roots of polynomials

$$w(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$$

- Kakeya: If $0 < a_n < a_{n-1} < \cdots < a_0$, then roots satisfy $|r_i| > 1$.
- Gomilko, Greco, KZI (2011): Let

a₀ > 0, sign(a_j) = (−1)^{k+1} for j = k + 2,..., n, w(x) has k + 1 roots bigger than 1.

Then remaining roots have moduli bigger than 1.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

$$1-(1-z)\left(rac{P_{km}(z)}{Q_{km}(z)}
ight)^p$$

show: all Taylor coefficients are positive !!!

Remark. This function is applied in the proof of local convergence of some iterative methods for $sect_p(A)$.

$$rac{P_{km}(z)}{Q_{km}(z)}$$
 $[k/m]$ Pade approximant to $g(z) = rac{1}{(1-z)^{1/p}}$

Comparison: cases $k \ge m-1$ and k < m-1for p = 2

$$1 - (1 - z) \left(\frac{P_{km}(z)}{Q_{km}(z)}\right)^2 = \frac{Q_{km}^2(z) - (1 - z)P_{km}^2(z)}{Q_{km}^2(z)}$$

for the both cases all coefficients of polynomial $Q_{km}^2 - (1-z)P_{km}^2$ are positive

for
$$k \geq m-1$$
 all roots of Q_{km} lay in $(1,\infty)$

for k < m-1 there are some roots of Q_{km} outside of $(1,\infty)$

$$|Q_{km}(z)| > Q_{km}(1), \qquad |z| < 1$$

Coauthors sign and p-sector functions Padé approximants Reciprocal of power series Useful formulas for Gauss hyper 00

$$r_j > 0$$
 for $j = 1, \ldots, k$ roots of polynomial $u(z)$ of order n

Power series expansion of 1/u(z)

$$u(z) = r_1 r_2 \cdots r_k \left(1 - \frac{z}{r_1}\right) \cdots \left(1 - \frac{z}{r_k}\right) v(z)$$
$$\frac{1}{1-z} = 1 + z + z^2 + \cdots$$
$$u(z) = Q_{km}(z)$$

(ロ)、

Reciprocal of some power series

Gomilko, Greco, KZI 2011

Let

$$F(z) = \sum_{j=0}^{\infty} d_j z^j, \qquad F(0) > 0, \quad d_j \text{ real},$$

be analytical in $|z| < \gamma$ and let F(z) have roots r_1, \ldots, r_k counted with multiplicity in $(0, \gamma)$,

$$(-1)^{k+1}d_j \ge 0, \quad j \ge k+1.$$

Then all coefficients of the power series expansion of the reciprocal of F(z) are positive.

investigations signs of coefficients of reciprocals of some power series initiated by Kaluza in 1928

Coefficients of power series expansions are positive

(Gomilko, Greco, KZI, 2012)

$$\frac{1}{Q_{km}(z)}$$

denominator of Padé approximant of $(1-z)^{-\sigma}$

Gomilko, Karp, Lin, KZI (2012)

• [k/m] Padé approximant to $(1-z)^{-\sigma}$

$$f_{km}(z) = 1 - (1-z) \left(\frac{P_{km}(z)}{Q_{km}(z)}\right)^{p}$$

Padé approximants to Stieltjes functions

Baker, Graves-Morris

Theorem. Let F(z) be a Stieltjes function. Then for $k \ge m - 1$ the $\lfloor k/m \rfloor$ Padé approximant has the power series expansion with all coefficients positive.

Remark. $_2F_1(1, b; c; -z)$ is Stieltjes for c > b > 0. Thus we can apply the theorem to $(1+z)^{-\sigma} = (1-(-z))^{-\sigma} = g(-z)$.

Stieltjes functions

$$F(z) = \sum_{j=0}^{\infty} d_j (-z)^j = \int_0^{\infty} \frac{d\varphi(u)}{1+zu},$$

$$\varphi(u) \text{ bounded, nondecreasing}$$

$$\int_0^{\infty} u^j d\varphi(u), \text{ finite moments}$$

$$(j = 0, 1, 2, ...)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hypergeometric functions $_2F_1(-m, b; -n; z)$

• Luke, book 1969 $\mathbf{n} < \mathbf{m}$ - not defined; $\mathbf{m} = \mathbf{n}$, $(1 - z)^{-b}$ for $\mathbf{n} > \mathbf{m}$

$${}_{2}F_{1}(-m,b;-n;z) = \sum_{j=0}^{m} \frac{(-m)_{j}(b)_{j}z^{j}}{j!(-n)_{j}} + \sum_{j=n+1}^{\infty} \frac{(-m)_{j}(b)_{j}z^{j}}{j!(-n)_{j}}$$

Bateman, Erdelyi (1953), Temme 1996
 n = m,

$$_{2}F_{1}(-m, b; -m; z) = \sum_{j=0}^{m} \frac{(b)_{j} z^{j}}{j!}$$

 $\text{for } n=m+q, \quad q=1,2,\ldots$

$$_{2}F_{1}(-m,b;-m-q;z) = \sum_{j=0}^{m} \frac{(-m)_{j}(b)_{j}z^{j}}{(-m-q)_{j}}$$

Clausen formula

$$\left({}_{2}F_{1}(a,b;a+b+\frac{1}{2};z)\right)^{2}={}_{3}F_{2}(2a,2b,a+b;2a+2b,a+b+\frac{1}{2};z)$$

hypergeometric polynomials, for k < m - 1Gomilko, Greco, KZI 2012

$$a=-m, \quad b=-rac{1}{2}-k$$

$$\left({}_{2}F_{1}(-m,-\frac{1}{2}-k;-k-m;z)\right)^{2} = \sum_{j=0}^{k+m} \dots + \sum_{j=k+m+1}^{2m} \dots$$

 $(-r)_{s}^{+} = (-r)(-r+1)\dots(-1)(1)(2)\dots(-r+s-1) =$ $(-1)^{r}r!(s-r-1)! \quad \text{for } s > r$

Identity - Gomilko, Karp, Lin, KZI (2012)

Let

$$H(z) = {}_{2}F_{1}(a, b; c; z), \quad G(z) = {}_{2}F_{1}(1 - a, 1 - b; 2 - c; z).$$

Then
 $[z(a + b - 1) - c + 1] H(z)G(z) + z(1 - z) [H(z)G'(z) - G(z)H'(z)] = 1 - c$

related to Legendre's identity, Elliott's identity, Anderson-Vamanamurthy-Vuorinen's identity

Elliott's identity

$$_{2}F_{1}(...;r)_{2}F_{1}(...;1-r) + _{2}F_{1}(...;r)_{2}F_{1}(...;1-r) - _{2}F_{1}(...;r)_{2}F_{1}(...;1-r) = ...$$

Iterations generated by Padé approximants

(ロ) (型) (E) (E) (E) (O)

- sign function
 - Kenney, Laub (1991)
- square root
 - *Higham* (1997)
 - Higham, Mackey, Mackey, Tisseur (2004)
- polar decomposition Higham, Functions of Matrices,... (2008)
- *p*-sector function and *p*th root Laszkiewicz, KZI (2009)
- sign function reciprocal Padé iterations Greco-lannazzo-Poloni (2012)
- *p*-sector function and *p*th root dual Padé iterations, *KZI* (2014)

$$\operatorname{sect}_p(t) = rac{t}{\sqrt[p]{t^p}} = rac{t}{\sqrt[p]{1-(1-t^p)}}$$

$$ext{sect}_p(t) = t(1-z)^{-1/p}$$

 $z = 1 - t^p, \qquad t^p = 1 - z$

$$rac{P_{km}(z)}{Q_{km}(z)}$$
 - Padé approximant of $g(z)=(1-z)^{-1/p}$ $ext{sect}_p(t)pprox trac{P_{km}(1-t^p)}{Q_{km}(1-t^p)}$

Iterations for matrix p-sector function

Pade
$$X_{j+1} = X_j \frac{P_{km}(I - X_j^p)}{Q_{km}(I - X_j^p)}, \qquad X_0 = A$$

Laszkiewicz, KZI (2009)

for
$$p = 2$$
 (sign) Kenney-Laub (1991)

Halley k = m = 1

dual Pade
$$X_{j+1} = X_j \frac{Q_{km}(I - X_j^{-p})}{P_{km}(I - X_j^{-p})}, \qquad X_0 = A$$

KZI (2014)

Halley k = m = 1, Newton k = 0, m = 1Schröder k = 0, m arbitrary Cardoso, Loureiro (2011)

Principal Padé iterations (k = m) for *p*-sector are **structure preserving** in automorphism groups of matrices.

> arbitrary p - Laszkiewicz, KZI (2009) p = 2 Higham, Mackey, Mackey, Tisseur (2004)

> > ション ふゆ く 山 マ チャット しょうくしゃ

automorphism groups: unitaries, sympletics, perpletics,...

defined by bilinear and sequilinear forms

$$\langle Ax, Ay \rangle = \langle x, y \rangle$$

After suitable change of variable, (dual) Padé iterations for *p*-sector can be applied to computing

- *p*th roots
- square root (p = 2)
- polar decomposition

Convergence of pure matrix iterations (lannazzo, 2008)

convergence of scalar sequences of eigenvalues \rightarrow convergence of matrix sequences

(dual) Padé iterations for *p*-sector are pure matrix iterations

Certain regions of convergence for *p*-sector function

eigenvalues $\lambda_j(A)$ in regions:

Padé iterations - Gomilko, Karp, Lin, KZI 2012

$$\mathbb{L}_{p} = \{ z \in \mathbb{C} : |1 - z^{p}| < 1 \}, \quad X_{0} = A$$

"yellow flowers" - it was conjectured by Laszkiewicz, KZI 2009

dual Padé iterations - KZI 2014

$$\mathbb{L}_{-p} = \{ z \in \mathbb{C} : |1 - z^{-p}| < 1 \}, \quad X_0 = A$$

solid countur

In th proof one applies that coefficients of the power series expansion of $f_{km}(z) = 1 - (1 - z) \left(\frac{P_{km}(z)}{Q_{km}(z)}\right)^p$ are positive

Halley iterations for p = 3 and p = 5the unit circle (solid contour), the *p*th roots of unity (boxes) $\mathbb{L}_{p}^{(Pade)}$ for "Padé" (yellow flower) $\mathbb{L}_{-p}^{(Pade)}$ for "dual Padé" (solid contour)

Padé approximant to
$$g(z) = (1-z)^{-1/2}$$
, notation $1/Q_{km}(X) = (Q_{km}(X))^{-1}$

Padé for sign (Kenney-Laub, 1991)

$$Y_{j+1} = Y_j \frac{P_{km}(I - Y_j^2)}{Q_{km}(I - Y_j^2)}, \qquad Y_0 = A$$

reciprocal Padé for sign (Greco-lannazzo-Poloni, 2012)

$$Y_{j+1} = rac{Q_{km}(I - Y_j^2)}{Y_j P_{km}(I - Y_j^2)}, \qquad Y_0 = A$$

dual Padé for sign (KZI 2014)

$$Y_{j+1} = \frac{Y_j Q_{km} (I - Y_j^{-2})}{P_{km} (I - Y_j^{-2})}, \qquad Y_0 = A$$

200

Computing $A^{1/p}$, Laszkiewicz, KZI 2009

Padé iterations

$$X_{i+1} = X_i P_{km} (I - A^{-1} X_i^p) \left(Q_{km} (I - A^{-1} X_i^p) \right)^{-1}, \quad X_0 = I$$

 $A^{1/p}$, coupled stable Padé iterations (Laszkiewicz, KZI 2009)

$$X_{i+1} = X_i h(Y_i), \quad Y_{i+1} = Y_i (h(Y_i))^p, \quad X_0 = I, Y_0 = A^{-1}$$

where
$$h(t) = P_{km}(1-t)/Q_{km}(1-t)$$

Computing $A^{1/p}$, KZI 2014

Dual Padé iterations

$$X_{i+1} = X_i P_{km} (I - A X_i^{-p}) \left(Q_{km} (I - A X_i^{-p}) \right)^{-1}, \quad X_0 = I$$

Properties of dual Padé family for *p*th root

KZI 2014

residuals for Padé iteration generated by [k/m]

$$S_\ell = I - A^{-1} X_\ell^p$$

$$S_{\ell+1} = f_{km}(S_\ell)$$

residuals for dual Padé iteration generated by [k/m]

$$R_{\ell} = I - AX_{\ell}^{-\mu}$$

$$R_{\ell+1} = f_{km}(R_\ell)$$

$$f_{km}(z) = 1 - (1-z) \left(rac{P_{km}(z)}{Q_{km}(z)}
ight)^p$$

Guo (2010) applies "dual residuals" to investigation of convergence of Newton and Halley iterations,

binomial expansion

$$(1-z)^{1/p} = \sum_{j=0}^{\infty} \beta_j z^j$$

KZI 2014

the ℓ th iterate Y_{ℓ} , computed by the dual Padé iteration generated by [k/m] Padé approximant applied to computing $(I - B)^{1/p}$, satisfies

$$Y_\ell = \sum_{j=0}^\infty arphi_{km,j}^{(\ell)} B^j$$

where $\varphi_{km,j}^{(\ell)} = \beta_j$ for $j = 0, \dots, (k + m + 1)^{\ell} - 1$

Guo (2010) - Newton (k = 0, m = 1) and Halley (k = m = 1) KZI (2014) - arbitrary k, m

References I

- Cardoso, Loureiro, On the convergence of Schröder iteration functions for *p*th roots of complex numbers, *Appl. Math. Comput.* 217 (2011).
- Greco, lannazzo, Poloni, The Padé iterations for the matrix sign function and their reciprocal are optimal, *Lin. Alg. Appl.* (2012).
- Guo, On Newton's and Halley's method for the principal *pth* root of a matrix, *Lin. Alg. Appl.* (2010).
- Higham, Mackey, Mackey, Tisseur, Computing the polar decomposition and the matrix sign decomposition in matrix group, *SIAM J. Matrix Anal.* 25 (2004).
- Kenney, Laub, Rational iterative methods for the matrix sign function, *SIAM J. Matrix Anal. Appl.* 12 (1991).

Reference II

- Anderson, Staff, Varga, On the Eneström-Kakeya theorem and its sharpness, *Linear Alg. Appl.* (1997).
- Driver, Jordaan, Convergence of ray sequences of Padé approximants for ₂F₁(a, 1; c; z), (c > a), Questiones Mathematicae 25 (2002). c and cubic transformation
- Driver, Jordaan, Zeros of the hypergeometric polynomial F(-n, b; c; z), Algorithms for Approx. IV (2002); arXiv 0812.0708v1 (2008).
- Kaluza, Über die Koeffizienten reziproker Potenzreihen, *Mathematische Zeitschrif* 28 (1928).
- Wimp, Beckermann, Some explicit formulas for Padé approximants of ratios of hypergeometric functions, *WSSIAA* 2 (1992).

Reference III

- Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, *Internat. J. Control* 32 (1980).
- Shieh, Tsay, Wang, Matrix sector functions and their applications to system theory, *Proc. IEE Control Theory and Appl.* 131 (1984).

ション ふゆ く 山 マ チャット しょうくしゃ