Padé approximants of $(1-z)^{-1 / p}$ and their applications to computing the matrix p-sector function and the matrix pth roots

Krystyna Ziẹtak

March 17, 2015

Outline

(1) Coauthors
(2) sign and p-sector functions

- Applications
(3) Padé approximants

4 Reciprocal of power series
(5) Useful formulas for Gauss hypergeometric functions

6 Padé and dual Padé iterations for sign and sector
(7) Dual Padé iterations for p th root of A
(8) References

The talk is based on:

- Gomilko, Greco, Ziętak, A Padé family of iterations for the matrix sign function and related problems, Numer. Lin. Alg. Appl. (2012).
- Gomilko, Karp, Lin, Ziẹtak, Regions of convergence of a Padé family of iterations for the matrix sector function, J. Comput. Appl. Math. (2012).
- Laszkiewicz, Ziętak, A Padé family of iterations for the matrix sector function and the matrix p th root, Numer. Lin. Alg. Appl. (2009).
- Ziẹtak, The dual Padé families of iterations for the matrix p th root and the matrix p-sector function, J. Comput. Appl. Math. (2014).

Coauthors

- Oleksandr Gomilko
(Toruń, Poland, and Kiev, Ukraine)
- Federico Greco (Perugia, Italy)
- Dmitry B. Karp (Vladivostok, Russia)
- Beata Laszkiewicz (Jelenia Gora, Poland)
- Minghua Lin (Waterloo, Canada)

scalar p-sector function,
 $z \in \mathbb{C}$

$$
\operatorname{sect}_{p}(z)=\frac{z}{\sqrt[p]{z^{p}}}
$$

the nearest p th root of unity to z
for $p=2$ sign function

$$
\operatorname{sign}(z)=\left\{\begin{array}{cc}
1 & \text { if } \operatorname{Re}(z)>0 \\
-1 & \text { if } \operatorname{Re}(z)<0
\end{array}\right.
$$

red - principal sector Φ_{0}

matrix p-sector function

A nonsingular

$$
\operatorname{sect}_{p}(A)=A\left(A^{p}\right)^{-1 / p}
$$

$\arg \left(\lambda_{j}(A)\right) \neq(2 q+1) \pi / p$,
$q=0,1, \ldots, p-1$
matrix principal p th root $X=A^{1 / p}$

$$
X^{p}=A, \quad \lambda_{j}(X) \in \Phi_{0}
$$

no eigenvalue of A lies on closed negative real axis

Canonical Jordan form

$$
A=W J W^{-1}
$$

Matrix p-sector function

$$
\operatorname{sect}_{p}(A)=W \operatorname{diag}\left(\operatorname{sect}_{p}\left(\lambda_{j}\right)\right) W^{-1}
$$

λ_{j} eigenvalues of A

applications of $\operatorname{sign}(A)$

- solving the matrix equations of Sylvester, Lyapunov, Riccati,
- p - number of eigenvalues of A of order n in the open left half-plane, q - number of eigenvalues in the open right half-plane

$$
p=\frac{1}{2}\left(n-\operatorname{trace}(\operatorname{sign}(A)), \quad q=\frac{1}{2}(n+\operatorname{trace}(\operatorname{sign}(A))\right.
$$

- quantum chromodynamics, lattice QCD, the overlap-Dirac operator of Neuberger - solving the linear systems

$$
(G-\operatorname{sign}(H)) x=b
$$

see, for example, N.J.Higham, Functions of Matrices. Theory and Computation, SIAM 2008.

Applications of matrix p-sector function

- determining the number of eigenvalues in a specific sector
- obtaining corresponding invariant subspaces

After suitable change of variable, iterations for computing $\operatorname{sect}_{p}(A)$ can be applied to computing

- p th roots of a matrix
- polar decomposition of a matrix $(p=2)$
[k/m] Pade approximant to $g(z)$

$$
g(z)-\frac{P_{k m}(z)}{Q_{k m}(z)}=O\left(z^{k+m+1}\right)
$$

$P_{k m}(z)$ polynomial of degree $\leq k$
$Q_{k m}(z)$ polynomial of degree $\leq m$

$$
g(z)=(1-z)^{-1 / p}={ }_{2} F_{1}(1 / p, 1 ; 1 ; z)
$$

Gauss hypergeometric function

$$
{ }_{2} F_{1}(\alpha, \beta ; \gamma ; z)=\sum_{j=0}^{\infty} \frac{(\alpha))_{j}(\beta)_{j} z^{j}}{j!(\gamma)_{j}}, \quad|z|<1
$$

Pochhammer's symbol

$$
(\alpha)_{j}=\alpha(\alpha+1) \cdots(\alpha+j-1), \quad(\alpha)_{0}=1
$$

Padé approximants to $(1-z)^{-1 / p}$

$$
\frac{P_{k m}(z)}{Q_{k m}(z)}=\frac{{ }_{2} F_{1}\left(-k, \frac{1}{p}-m ;-k-m ; z\right)}{{ }_{2} F_{1}\left(-m,-\frac{1}{p}-k ;-k-m ; z\right)}
$$

Gomilko, Greco, KZI (2012)
formula for denominators of Padé approximants of ${ }_{2} F_{1}(a, 1 ; c ; z), k \geq m-1$:

- H. van Rossum (1955)
- Baker, Graves-Morris - books $(1975,1981)$
- Kenney, Laub $(1989,1991)$
- Wimp, Beckermann (1993)

Padé approximants

$$
(1-z)^{-\sigma}, \quad \sigma \in(0,1)
$$

Numerators

- Kenney and Laub (1991), $\quad p=2$

$$
P_{k m}(z)=\sum_{j=0}^{k} \frac{(\ldots)}{(\ldots)} z^{j}
$$

- Driver, Jordaan $(2002,2009)$

$$
P_{k m}(z)=\sum_{j=0}^{k} \sum_{i=0}^{j} \frac{(\ldots)}{(\ldots)} z^{j}
$$

$0<\sigma<1$

- $[k / m]$ Padé approximant to $(1-z)^{-\sigma}$ is the reciprocal of $[m / k]$ approximant to $(1-z)^{\sigma}$.
- $P_{k m}(1)<\left|P_{k m}(z)\right|$ for $|z|<1$.
- $Q_{k m}(1)<\left|Q_{k m}(z)\right|$ for $|z|<1$.

$$
\frac{Q_{k k}(1)}{P_{k k}(1)}=\frac{(-\sigma+1)_{k}}{(\sigma+1)_{k}}<1
$$

Padé approximants

$$
(1-z)^{-\sigma}, \quad \sigma \in(0,1)
$$

Error (GKLZ 2012)

$$
\frac{P_{k m}(z)}{Q_{k m}(z)}=(1-z)^{-\sigma}-D_{k m}^{(\sigma)} z^{k+m+1} \frac{{ }_{2} F_{1}(\ldots)}{Q_{k m}(z)}
$$

$D_{k m}^{(\sigma)}>0, \quad$ constant, given explicitly

Laszkiewicz, KZI 2009

$$
P_{k k}\left(1-z^{p}\right)=\operatorname{rev}\left(Q_{k k}\left(1-z^{p}\right)\right)
$$

$$
\begin{gathered}
\operatorname{rev}\left(a_{0} z^{k}+a_{1} z^{k-1}+\ldots+a_{k}\right)= \\
a_{k} z^{k}+a_{k-1} z^{k-1}+\ldots+a_{0}
\end{gathered}
$$

proof-Zeilberger algorithm

- structure preserving (in automorphism groups) by Padé iterations for p-sector function
- construction of generally convergent iterative methods for roots of polynomial $z^{3}-1$

Hawkins (2002) gives two generally convergent methods for $z^{3}-1$, which in fact are generated by principal Padé iterations for sector $(p=3)$.

$$
\begin{gathered}
P_{m m}\left(1-z^{p}\right)=\sum_{j=0}^{m} b_{j} z^{j} \\
b_{j}=(-1)^{j} \frac{(1 / p-m)_{m}}{(-2 m)_{m}} \sum_{\ell=j}^{m}\binom{\ell}{j} \frac{(1 / p)_{\ell}(\ell-2 m)_{m}}{\ell!(\ell+1 / p-m)_{m}} \\
=\binom{m}{j} \frac{m!}{(2 m)!p^{m}} \prod_{\ell=m-j+1}^{m}(\ell p-1) \prod_{\ell=j+1}^{m}(\ell p+1)
\end{gathered}
$$

auxiliary function $F(j)=\sum \ldots$

$$
F(j)+(1-p(j+1)) F(j+1)=0, \quad F(j)=\prod_{\ell=j+1}^{m}(\ell p-1)
$$

Roots and poles of $[k / m]$ Padé approximants

$$
(1-\mathrm{z})^{-\sigma}, \quad 0<\sigma<\mathbf{1}
$$

Kenney, Laub (1991)

For $k \geq m-1$ all poles are bigger than 1 .

Gomilko, Greco, KZI (2011)

- If $k<m-1$, then $k+1$ poles are bigger than 1 , the remaining poles have moduli bigger than 1 .
- If $1 \leq k \leq m$, then all roots of $P_{k m}(z)$ lie in $(1, \infty)$
- If $k>m \geq 1$, then m roots of $P_{k m}(z)$ lie in $(1, \infty)$, remaining roots have moduli bigger than 1

K. Driver and K. Jordaan $(2002,2008)$

Zeros of polynomials ${ }_{2} F_{1}(-n, b ; c ; z)$

- For $c>0$ and $b>+n-1$, all zeros are simple and lie in $(0,1)$
- For $b<1-n$ and $d>0$, all zeros are simple and lie in $(-\infty, 0)$
- For $-n<b<0$, if

$$
-k<b<-k+1
$$

for some $k \in\{1, \ldots, n\}$, then

- k zeros in $(1, \infty)$,
- In addition, if $(n-k)$ is even, then $(n-k)$ zeros is non-real; if $(n-k)$ is odd, then one real negative zero and $(n-k-1)$ zeros is non-real.

Roots of polynomials

$$
w(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

- Kakeya: If $0<a_{n}<a_{n-1}<\cdots<a_{0}$, then roots satisfy $\left|r_{j}\right|>1$.
- Gomilko, Greco, KZI (2011):

Let

- $a_{0}>0$,
- $\operatorname{sign}\left(a_{j}\right)=(-1)^{k+1}$ for $j=k+2, \ldots, n$,
- $w(x)$ has $k+1$ roots bigger than 1 .

Then remaining roots have moduli bigger than 1 .

Crucial function

$$
1-(1-z)\left(\frac{P_{k m}(z)}{Q_{k m}(z)}\right)^{p}
$$

show: all Taylor coefficients are positive !!!

Remark. This function is applied in the proof of local convergence of some iterative methods for $\operatorname{sect}_{p}(A)$.

$$
\begin{gathered}
\frac{P_{k m}(z)}{Q_{k m}(z)}[k / m] \text { Pade approximant to } \\
g(z)=\frac{1}{(1-z)^{1 / p}}
\end{gathered}
$$

Comparison: cases $k \geq m-1$ and $k<m-1$

 for $p=2$$$
1-(1-z)\left(\frac{P_{k m}(z)}{Q_{k m}(z)}\right)^{2}=\frac{Q_{k m}^{2}(z)-(1-z) P_{k m}^{2}(z)}{Q_{k m}^{2}(z)}
$$

for the both cases all coefficients of polynomial $Q_{k m}^{2}-(1-z) P_{k m}^{2}$ are positive
for $k \geq m-1$ all roots of $Q_{k m}$ lay in $(1, \infty)$
for $k<m-1$ there are some roots of $Q_{k m}$ outside of $(1, \infty)$

$$
\left|Q_{k m}(z)\right|>Q_{k m}(1), \quad|z|<1
$$

$r_{j}>0$ for $j=1, \ldots, k$ roots of polynomial $u(z)$ of order n Power series expansion of $1 / u(z)$

$$
\begin{gathered}
u(z)=r_{1} r_{2} \cdots r_{k}\left(1-\frac{z}{r_{1}}\right) \cdots\left(1-\frac{z}{r_{k}}\right) v(z) \\
\frac{1}{1-z}=1+z+z^{2}+\cdots \\
u(z)=Q_{k m}(z)
\end{gathered}
$$

Reciprocal of some power series

Gomilko, Greco, KZI 2011

Let

$$
F(z)=\sum_{j=0}^{\infty} d_{j} z^{j}, \quad F(0)>0, \quad d_{j} \text { real }
$$

be analytical in $|z|<\gamma$ and let $F(z)$ have roots r_{1}, \ldots, r_{k} counted with multiplicity in $(0, \gamma)$,

$$
(-1)^{k+1} d_{j} \geq 0, \quad j \geq k+1 .
$$

Then all coefficients of the power series expansion of the reciprocal of $F(z)$ are positive.
investigations signs of coefficients of reciprocals of some power series initiated by Kaluza in 1928

Theorem of Kaluza (1928)
Let

$$
\frac{1}{1+\sum_{k=1}^{\infty} a_{k} z^{k}}=1-\sum_{k=1}^{\infty} b_{k} z^{k}
$$

If $a_{k}>0$ and

$$
a_{k}^{2} \leq a_{k-1} a_{k+1}
$$

then $0 \leq b_{k} \leq a_{k}$.

Coefficients of power series expansions are positive
(Gomilko, Greco, KZI, 2012)

$$
\frac{1}{Q_{k m}(z)}
$$

denominator of Padé approximant of $(1-z)^{-\sigma}$
Gomilko, Karp, Lin, KZI (2012)

- $[k / m]$ Padé approximant to $(1-z)^{-\sigma}$

$$
f_{k m}(z)=1-(1-z)\left(\frac{P_{k m}(z)}{Q_{k m}(z)}\right)^{p}
$$

Padé approximants to Stieltjes functions

Baker, Graves-Morris

Theorem. Let $F(z)$ be a Stieltjes function.
Then for $k \geq m-1$ the $[k / m$] Padé approximant has the power series expansion with all coefficients positive.

Remark. ${ }_{2} F_{1}(1, b ; c ;-z)$ is Stieltjes for $c>b>0$. Thus we can apply the theorem to
$(1+z)^{-\sigma}=(1-(-z))^{-\sigma}=g(-z)$.

Stieltjes functions

$$
F(z)=\sum_{j=0}^{\infty} d_{j}(-z)^{j}=\int_{0}^{\infty} \frac{d \varphi(u)}{1+z u}
$$

$\varphi(u)$ bounded, nondecreasing

$$
\begin{aligned}
& \int_{0}^{\infty} u^{j} d \varphi(u), \text { finite moments } \\
& \qquad(j=0,1,2, \ldots)
\end{aligned}
$$

Hypergeometric functions ${ }_{2} \mathrm{~F}_{\mathbf{1}}(-\mathbf{m}, \mathbf{b} ;-\mathbf{n} ; \mathbf{z})$

- Luke, book 1969
$\mathbf{n}<\mathbf{m}-$ not defined; $\quad \mathbf{m}=\mathbf{n},(1-z)^{-b}$ for $\boldsymbol{n}>\mathbf{m}$
${ }_{2} F_{1}(-m, b ;-n ; z)=\sum_{j=0}^{m} \frac{(-m)_{j}(b)_{j} z^{j}}{j!(-n)_{j}}+\sum_{j=n+1}^{\infty} \frac{(-m)_{j}(b)_{j} z^{j}}{j!(-n)_{j}}$
- Bateman, Erdelyi (1953), Temme 1996 $\mathbf{n}=\mathbf{m}$,

$$
{ }_{2} F_{1}(-m, b ;-m ; z)=\sum_{j=0}^{m} \frac{(b)_{j} z^{j}}{j!}
$$

for $\mathbf{n}=\mathbf{m}+\mathbf{q}, \quad \mathbf{q}=\mathbf{1}, \mathbf{2}, \ldots$

$$
{ }_{2} F_{1}(-m, b ;-m-q ; z)=\sum_{j=0}^{m} \frac{(-m)_{j}(b)_{j} z^{j}}{(-m-q)_{j}}
$$

Clausen formula

$$
\left({ }_{2} F_{1}\left(a, b ; a+b+\frac{1}{2} ; z\right)\right)^{2}={ }_{3} F_{2}\left(2 a, 2 b, a+b ; 2 a+2 b, a+b+\frac{1}{2} ; z\right)
$$

hypergeometric polynomials, for $k<m-1$
Gomilko, Greco, KZI 2012

$$
a=-m, \quad b=-\frac{1}{2}-k
$$

$$
\left({ }_{2} F_{1}\left(-m,-\frac{1}{2}-k ;-k-m ; z\right)\right)^{2}=\sum_{j=0}^{k+m} \ldots+\sum_{j=k+m+1}^{2 m} \ldots
$$

$(-r)_{s}^{+}=(-r)(-r+1) \ldots(-1)(1)(2) \ldots(-r+s-1)=$
$(-1)^{r} r!(s-r-1)!$ for $s>r$

Identity - Gomilko, Karp, Lin, KZI (2012)

Let
$H(z)={ }_{2} F_{1}(a, b ; c ; z), \quad G(z)={ }_{2} F_{1}(1-a, 1-b ; 2-c ; z)$.
Then

$$
\begin{gathered}
{[z(a+b-1)-c+1] H(z) G(z)+} \\
z(1-z)\left[H(z) G^{\prime}(z)-G(z) H^{\prime}(z)\right]= \\
1-c
\end{gathered}
$$

related to Legendre's identity, Elliott's identity, Anderson-Vamanamurthy-Vuorinen's identity

Elliott's identity

$$
\begin{gathered}
{ }_{2} F_{1}(\ldots ; r)_{2} F_{1}(\ldots ; 1-r)+{ }_{2} F_{1}(\ldots ; r)_{2} F_{1}(\ldots ; 1-r)- \\
{ }_{2} F_{1}(\ldots ; r)_{2} F_{1}(\ldots ; 1-r)=\ldots
\end{gathered}
$$

Iterations generated by Padé approximants

- sign function

Kenney, Laub (1991)

- square root

Higham (1997)
Higham, Mackey, Mackey, Tisseur (2004)

- polar decomposition

Higham, Functions of Matrices,... (2008)

- p-sector function and p th root Laszkiewicz, KZI (2009)
- sign function
reciprocal Padé iterations
Greco-lannazzo-Poloni (2012)
- p-sector function and p th root dual Padé iterations, KZI (2014)

$$
\operatorname{sect}_{p}(t)=\frac{t}{\sqrt[p]{t^{p}}}=\frac{t}{\sqrt[p]{1-\left(1-t^{p}\right)}}
$$

$$
\begin{gathered}
\operatorname{sect}_{p}(t)=t(1-z)^{-1 / p} \\
z=1-t^{p}, \quad t^{p}=1-z
\end{gathered}
$$

$\frac{P_{k m}(z)}{Q_{k m}(z)}$ - Padé approximant of $g(z)=(1-z)^{-1 / p}$

$$
\operatorname{sect}_{p}(t) \approx t \frac{P_{k m}\left(1-t^{p}\right)}{Q_{k m}\left(1-t^{p}\right)}
$$

Iterations for matrix p-sector function

$$
\text { Pade } \quad X_{j+1}=X_{j} \frac{P_{k m}\left(I-X_{j}^{p}\right)}{Q_{k m}\left(I-X_{j}^{p}\right)}, \quad X_{0}=A
$$

Laszkiewicz, KZI (2009)

$$
\text { for } p=2 \text { (sign) Kenney-Laub (1991) }
$$

Halley $k=m=1$
dual Pade $\quad X_{j+1}=X_{j} \frac{Q_{k m}\left(I-X_{j}^{-P}\right)}{P_{k m}\left(I-X_{j}^{-P}\right)}, \quad X_{0}=A$
KZI (2014)

Halley $k=m=1, \quad$ Newton $k=0, m=1$
Schröder $k=0, m$ arbitrary Cardoso, Loureiro (2011)

Principal Padé iterations ($k=m$) for p-sector are structure preserving in automorphism groups of matrices.

> arbitrary p - Laszkiewicz, KZI (2009) $p=2$ Higham, Mackey, Mackey, Tisseur (2004)
automorphism groups: unitaries, sympletics, perpletics,... defined by bilinear and sequilinear forms

$$
\langle A x, A y\rangle=<x, y\rangle
$$

After suitable change of variable, (dual) Padé iterations for p-sector can be applied to computing

- pth roots
- square root $(p=2)$
- polar decomposition

Convergence of pure matrix iterations (lannazzo, 2008)

convergence of scalar sequences of eigenvalues \rightarrow convergence of matrix sequences
(dual) Padé iterations for p-sector are pure matrix iterations

Certain regions of convergence for p-sector function

eigenvalues $\lambda_{j}(A)$ in regions:

Padé iterations - Gomilko, Karp, Lin, KZI 2012

$$
\mathbb{L}_{p}=\left\{z \in \mathbb{C}:\left|1-z^{p}\right|<1\right\}, \quad X_{0}=A
$$

"yellow flowers" - it was conjectured by Laszkiewicz, KZI 2009

dual Padé iterations - KZI 2014

$$
\mathbb{L}_{-p}=\left\{z \in \mathbb{C}:\left|1-z^{-p}\right|<1\right\}, \quad X_{0}=A
$$

solid countur
In th proof one applies that coefficients of the power series expansion of $f_{k m}(z)=1-(1-z)\left(\frac{P_{k m}(z)}{Q_{k m}(z)}\right)^{p}$ are positive

Halley iterations for $p=3$ and $p=5$
the unit circle (solid contour), the pth roots of unity (boxes)
$\mathbb{L}_{\rho}^{(\text {Pade })}$ for "Padé" (yellow flower)
$\mathbb{L}_{-p}^{(\text {Pade })}$ for "dual Padé" (solid contour)

Padé approximant to $g(z)=(1-z)^{-1 / 2}$, notation $1 / Q_{k m}(X)=\left(Q_{k m}(X)\right)^{-1}$

Padé for sign (Kenney-Laub, 1991)

$$
Y_{j+1}=Y_{j} \frac{P_{k m}\left(I-Y_{j}^{2}\right)}{Q_{k m}\left(I-Y_{j}^{2}\right)}, \quad Y_{0}=A
$$

reciprocal Padé for sign (Greco-lannazzo-Poloni, 2012)

$$
Y_{j+1}=\frac{Q_{k m}\left(I-Y_{j}^{2}\right)}{Y_{j} P_{k m}\left(I-Y_{j}^{2}\right)}, \quad Y_{0}=A
$$

dual Padé for sign (KZI 2014)

$$
Y_{j+1}=\frac{Y_{j} Q_{k m}\left(I-Y_{j}^{-2}\right)}{P_{k m}\left(I-Y_{j}^{-2}\right)}, \quad Y_{0}=A
$$

Computing A ${ }^{1 / p}$, Laszkiewicz, KZI 2009

Padé iterations

$$
X_{i+1}=X_{i} P_{k m}\left(I-A^{-1} X_{i}^{p}\right)\left(Q_{k m}\left(I-A^{-1} X_{i}^{p}\right)\right)^{-1}, \quad X_{0}=I
$$

$A^{1 / P}$, coupled stable Padé iterations (Laszkiewicz, KZI 2009)

$$
X_{i+1}=X_{i} h\left(Y_{i}\right), \quad Y_{i+1}=Y_{i}\left(h\left(Y_{i}\right)\right)^{p}, \quad X_{0}=I, Y_{0}=A^{-1}
$$

where $h(t)=P_{k m}(1-t) / Q_{k m}(1-t)$
Computing $A^{1 / p}$, KZI 2014
Dual Padé iterations

$$
X_{i+1}=X_{i} P_{k m}\left(I-A X_{i}^{-p}\right)\left(Q_{k m}\left(I-A X_{i}^{-p}\right)\right)^{-1}, \quad X_{0}=I
$$

Properties of dual Padé family for pth root

KZI 2014

residuals for Padé iteration generated by $[\mathrm{k} / \mathrm{m}]$

$$
\begin{gathered}
S_{\ell}=I-A^{-1} X_{\ell}^{p} \\
S_{\ell+1}=f_{k m}\left(S_{\ell}\right)
\end{gathered}
$$

residuals for dual Padé iteration generated by [k / m]

$$
\begin{aligned}
& R_{\ell}=I-A X_{\ell}^{-p} \\
& R_{\ell+1}=f_{k m}\left(R_{\ell}\right)
\end{aligned}
$$

$$
f_{k m}(z)=1-(1-z)\left(\frac{P_{k m}(z)}{Q_{k m}(z)}\right)^{p}
$$

Guo (2010) applies "dual residuals". to investigation of convergence of Newton and Halley iterations

binomial expansion

$$
(1-z)^{1 / p}=\sum_{j=0}^{\infty} \beta_{j} z^{j}
$$

KZI 2014

the ℓ th iterate Y_{ℓ}, computed by the dual Padé iteration generated by $[k / m]$ Pade approximant applied to computing $(I-B)^{1 / p}$, satisfies

$$
Y_{\ell}=\sum_{j=0}^{\infty} \varphi_{k m, j}^{(\ell)} B^{j}
$$

where $\varphi_{k m, j}^{(\ell)}=\beta_{j}$ for $j=0, \ldots,(k+m+1)^{\ell}-1$
Guo (2010) - Newton $(k=0, m=1)$ and Halley $(k=m=1)$ KZI (2014) - arbitrary k, m

References I

- Cardoso, Loureiro, On the convergence of Schröder iteration functions for p th roots of complex numbers, Appl. Math. Comput. 217 (2011).
- Greco, Iannazzo, Poloni, The Padé iterations for the matrix sign function and their reciprocal are optimal, Lin. Alg. Appl. (2012).
- Guo, On Newton's and Halley's method for the principal pth root of a matrix, Lin. Alg. Appl. (2010).
- Higham, Mackey, Mackey, Tisseur, Computing the polar decomposition and the matrix sign decomposition in matrix group, SIAM J. Matrix Anal. 25 (2004).
- Kenney, Laub, Rational iterative methods for the matrix sign function, SIAM J. Matrix Anal. Appl. 12 (1991).

Reference II

- Anderson, Staff, Varga, On the Eneström-Kakeya theorem and its sharpness, Linear Alg. Appl. (1997).
- Driver, Jordaan, Convergence of ray sequences of Padé approximants for ${ }_{2} F_{1}(a, 1 ; c ; z),(c>a)$, Questiones Mathematicae 25 (2002). c and cubic transformation
- Driver, Jordaan, Zeros of the hypergeometric polynomial $F(-n, b ; c ; z)$, Algorithms for Approx. IV (2002); arXiv 0812.0708v1 (2008).
- Kaluza, Über die Koeffizienten reziproker Potenzreihen, Mathematische Zeitschrif 28 (1928).
- Wimp, Beckermann, Some explicit formulas for Padé approximants of ratios of hypergeometric functions, WSSIAA 2 (1992).

Reference III

- Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Internat. J. Control 32 (1980).
- Shieh, Tsay, Wang, Matrix sector functions and their applications to system theory, Proc. IEE Control Theory and Appl. 131 (1984).

