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Strict spectral approximants of matrix

M closed convex set in C™*"

min |[A— X||, spectral norm ’
XeM

Strict spectral approximation

B is strict spectr. approx. of A if the vector
o(A — B) of singular values is minimal with respect
to ordinary lexicographic ordering in

{o(A—X): X € M}.

KZ SIMAX 1995,
Householder Symposium 1993 (Lake Arrowhead)



Strict spectral approximants of matrix

Cp NOrm

lexicographic ordering

[3,3,2,0] is bigger then [3,2,2, 2]

o(A) = [o1,...,0,], vector of singular values
1/p
Al =1loll,= | D _ai(AP] . 1<p<oo
J

p = oo spectral norm
p =1 trace norm
p = 2 Frobenius norm



Strict spectral approximants of matrix

Another characterization of strict spectral approx.

Theorem, KZ, 1997

~

X is strict spectr. approx. to A iff

IA=Xllp > [IA=Xllp, X#X, XeM,

for all p sufficiently large

Rogers and Ward 1981
¢,-minimal positive approximant of operator
in finite-dimensional complex Hilbert space



Strict spectral approximants of matrix

Conjecture

M linear subspace of matrices

Let
min ||A — X]||, = [|A — X,l||,.
Xe'/{‘/lH Hp H pHp

Then

lim X, = X, strict spectral approx.
p—00




Strict spectral approximants of matrix

Canonical trace approximant

c1 - trace norm , M convex

Legg, Ward, 1985

Xp—>)?1, when p—1

where X unique canonical trace approximant
minimizing

3" (A = X)In(o(A - X))

over all trace approximants X € M of A.




Strict spectral approximants of matrix

Vector case - strict Chebyshev approximation

Overdetermined real linear system

min

in [|Ax = Bll, = 1A%, — bllp, 1< p<oo
xeR"

Rice 1962 - strict Chebyshev solution

Descloux 1963, Pélya algorithm

lim ||Ax, — bl|p = ||Axsc — bl

p—00

Axs strict Cheb. approx. to b




Strict spectral approximants of matrix

o some generalizations of Descloux result
Pélya algorithm on convex sets in R”
o Egger, Huotari 19809:

o There exists closed, convex set in R” for
which best approx. x, in /-norm to fixed
b € R" fails to converge as p — 00.

o If best approx. x, converges it need not
converge to strict Chebysh. approx.



Approximants with restricted spectrum

Approximation by PSD matrices

A=B+iC

B=B" C=C" real and imaginary parts

min [|A— X|]|, spectral norm
X is PSD




Approximants with restricted spectrum

A=B+iC, B"=B, cl=cC

Halmos approximant (1972)
Let

5(A) = inf{r > 0: B+ (r*I — C*)¥? and r?/ — C? are PSD}

Then
Pu(A) = B + (6% — C?)V/?

Algorithm - Higham 1988



Approximants with restricted spectrum

Approximation by matrices with spectrum in strip

min ||A X||, spectral norm
XeX(S

X(S) = {X € C™" : spectrum of X is in S}

= [0,00) x [0,00) = {x + iy : x > 0, y >0}

Khalil, Maher, Numer. Functional Anal. Optim. 2000

S, =1[0,00) x [0, 4], operators



Approximants with restricted spectrum

Khalil, Maher
spectrum of X in S, = [0, 00) X [0, 4]

min ||A — X]
X

BL, KZ; 2008

X = Re(X) + iIm(X) = X1 + iXz

@ spectrum of Xj in [0, c0)

@ spectrum of X, in [0, a]




Approximants with restricted spectrum

[E;,E, 1ntervals, [0,00) or [0, a

A=B+iC, B=Re(A), C=Im(A)

Corrected version of theorem of Khalil, Maher (BL, KZ 2008)

Let
K={|[A—=X]||: X =Xy +iX; € C™"}

X1 has spectrum in Eq,
X5 has spectrum in E,
L={r>0:B+[r?l —(C— C)4"? for some C}
C Hermitian with spectrum in [E,.

Then

d(A) = inf K = inf L.




Approximants with restricted spectrum

Best approximant
X = B+ [0 — (C — C)V?

for some Hermitian C with spectrum in E,

C is strict spectral approximant of C by

Hermitian matrices with spectrum in [E,.




Approximants with restricted spectrum

Algorithm

Let A=B+iC
S:[0,00)XE2

o Compute strict spectral approx. C to C,
spectrum C in [E,.

o Compute Halmos approx. P, to A—iC
by Higham algorithm.

e Compute X = P, + iC.



Approximants with restricted spectrum

Example

Let A= B +iC
3 -5 1 -1 00
B=|-5 3 1|, Cc=|0 00
1 1 -1 0 0 2
Cx Hermitian approx. of C with spectrum in [0, c0):
0 0O 0 0O 0 O 0
G=|oo0o0|.,G=|000]|, G=|01/8 1)2
00 2 001 0 1/2 5/2

(1 - strict spectral approx.
C4 Halmos approximant: G, = diag(0, 1, 3).
Let X&) = P, +iC,

k=1 k=2 k=3 k=4
[J[A— XW]], 62087 6.2140 6.2156 6.2700




Approximants with restricted spectrum

Special cases

Let A= B+ iC
o If B PSD then conjecture true.
@ If If B is not PSD and C has spectrum in [E, then true.

§(A) = {r>0:B+[r’l — (C — C)*]*/%s PsD}

C strict spectral approx. of C



Approximants with restricted spectrum

Numerical experiments
Let r > 0 such that

B+[r?1—(C—C)qY?, PSD for some C.
Then also
B+ [r?l —(C — C)/?

is PSD, where C is strict Chebysh. approx.
to C.




Unitary and subunitary approximants

Part Il - partial isometry approximants




Unitary and subunitary approximants

Polar decomposition

A= UH, AeC™" m>n

U orthonormal columns
H - Hermitian positive definite

Approximation by unitary matrices

[A=Ull=_min ||A—Z]

—unitary

Fan, Hoffman 1955
|| - || = unitarily invariant




Unitary and subunitary approximants

Canonical polar decomposition

A= UH, AeCm "

U - partial isometry (subunitary matrix)
H - Hermitian positive semidefinite

Partial isometry

| Ux||2 = [|x]]2, X € range(UH)




Unitary and subunitary approximants

Partial isometry

Equivalent conditions

o UUMU =U

o UM = U Moore-Penrose inverse

o UUM" is an orthogonal projector

o singular values of U are 0 or 1

v

Ben-Israel, Greville, Generalized Inverses



Unitary and subunitary approximants

Approximation by partial isometries

A= PLQ"ecCm™"

Theorem (B.L;K.Z., 2006)

e for all partial isometries E of rank r = rank(A) we have

1A—E|| < |lA-E|| Whereézp[g 8}0”

o for all Partial isometries E we hﬂave
[|A—X]|| <||A—E|| < ||A+ E||, where

Y Iy O H r_ I H
k=r[h 0]n E-p[l]or

g number of o;(A) > 2




Unitary and subunitary approximants

Algorithms

Algorithm I
X is computed directly from the SVD of A




Unitary and subunitary approximants

Algorithms

Algorithm I

X is computed directly from the SVD of A

v

Algorithm |I:

X is the limit of the sequence Xy, Xo = A, generated by
Gander's method with f = 19/13

N,




Unitary and subunitary approximants

Algorithms

Algorithm I

X is computed directly from the SVD of A

Algorithm |I:

| \

X is the limit of the sequence Xy, Xo = A, generated by
Gander's method with f = 19/13

Algorithm Il

Stage 1: computing polar decomposition A = EH
Stage 2: computing unitary polar factor Ec of C =2H — |
Stage 3: computing X = 2E(Ec + I,)

In algorithm Il we apply Higham's method for computing
nolar factores




Unitary and subunitary approximants

Test matrices

Gander’s method f =19/13

05

b ¢
d
e
0
-05
-1
— g(s)
o b=05
o ¢=0.6069
-15 + d=0.2774
o e=0.1683
s -1 -05 0 0.5 1 15

A random with singular values:
(0, b) 30 per cent; (c,1) 40 per cent; (1,3/2) rest



computing best partial isometry: average

Unitary and subunitary approximants

time
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Part Il - minimal rank approximants




Minimal rank approximation A € C™*"

min I|A— Bl|2 <9,

B minimal rank

spectral norm, § given, Golub 1968

Algorithm IV

@ computing Hermitian polar factor H of A
@ computing unitary polar factor Ep of D = H — 6/
o computing B = LA(Ep + 1)




Minimal rank approximation A € C™*"

Algorithm 1V-bis
@ computing unitary polar factor E of AHA — §2/
e computing B = IA(E+1)

e SVD: computing B by means SVD applied to A
e SVD-bis: computing B by means SVD applied to AHA

A 2nxn



Numerical tests for rectangular A, 2n x n

minimal rank approximant: average time
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