On some known and open matrix nearness problems

Krystyna Ziętak

Institute of Mathematics and Computer Science Wrocław University of Technology

Householder Symposium XVII
Zeuthen, June 1-6, 2008

Outline

(1) Strict spectral approximants of matrix
(2) Approximants with restricted spectrum
(3) Unitary and subunitary approximants

4 Minimal rank approximants
\mathcal{M} closed convex set in $\mathbb{C}^{m \times n}$

$$
\min _{X \in \mathcal{M}}\|A-X\|, \quad \text { spectral norm }
$$

Strict spectral approximation

B is strict spectr. approx. of A if the vector $\sigma(A-B)$ of singular values is minimal with respect to ordinary lexicographic ordering in

$$
\{\sigma(A-X): X \in \mathcal{M}\} .
$$

KZ SIMAX 1995, Householder Symposium 1993 (Lake Arrowhead)

lexicographic ordering

$[3,3,2,0]$ is bigger then $[3,2,2,2]$
$\sigma(A)=\left[\sigma_{1}, \ldots, \sigma_{n}\right], \quad$ vector of singular values
$\|A\|_{p}=\|\sigma\|_{p}=\left(\sum_{j} \sigma_{j}(A)^{p}\right)^{1 / p}, \quad 1 \leq p \leq \infty$
$p=\infty$ spectral norm $p=1$ trace norm
$p=2$ Frobenius norm

Another characterization of strict spectral approx.

Theorem, KZ, 1997

\widehat{X} is strict spectr. approx. to A iff

$$
\|A-X\|_{p}>\|A-\widehat{X}\|_{p}, \quad X \neq \widehat{X}, \quad X \in \mathcal{M}
$$

for all p sufficiently large

Rogers and Ward 1981 c_{p}-minimal positive approximant of operator in finite-dimensional complex Hilbert space

Conjecture

\mathcal{M} linear subspace of matrices

Let

$$
\min _{X \in \mathcal{M}}\|A-X\|_{p}=\left\|A-X_{p}\right\|_{p} .
$$

Then

$$
\lim _{p \rightarrow \infty} X_{p}=X_{\infty} \quad \text { strict spectral approx. }
$$

Canonical trace approximant

c_{1} - trace norm , \mathcal{M} convex

Legg, Ward, 1985

$$
X_{p} \rightarrow \widehat{X}_{1}, \quad \text { when } \quad p \rightarrow 1
$$

where \widehat{X}_{1} unique canonical trace approximant minimizing

$$
\sum_{j=1}^{n} \sigma_{j}(A-X) \ln \left(\sigma_{j}(A-X)\right)
$$

over all trace approximants $X \in \mathcal{M}$ of A.

Vector case - strict Chebyshev approximation

Overdetermined real linear system

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{p}=\left\|A x_{p}-b\right\|_{p}, \quad 1 \leq p \leq \infty
$$

Rice 1962 - strict Chebyshev solution
Descloux 1963, Pólya algorithm

$$
\lim _{p \rightarrow \infty}\left\|A x_{p}-b\right\|_{p}=\left\|A x_{\infty}-b\right\|_{\infty}
$$

$A x_{\infty}$ strict Cheb. approx. to b

- some generalizations of Descloux result Pólya algorithm on convex sets in \mathbb{R}^{n}
- Egger, Huotari 1989:
- There exists closed, convex set in \mathbb{R}^{n} for which best approx. x_{p} in I_{p}-norm to fixed $b \in \mathbb{R}^{n}$ fails to converge as $p \rightarrow \infty$.
- If best approx. x_{p} converges it need not converge to strict Chebysh. approx.

Approximation by PSD matrices

$$
\begin{gathered}
A=B+i C \\
B=B^{H}, C=C^{H}, \quad \text { real and imaginary parts }
\end{gathered}
$$

$\min _{x \text { is PSD }}\|A-X\|, \quad$ spectral norm

$$
A=B+i C, \quad B^{H}=B, C^{H}=C
$$

Halmos approximant (1972)
Let
$\delta(A)=\inf \left\{r>0: B+\left(r^{2} I-C^{2}\right)^{1 / 2}\right.$ and $r^{2} l-C^{2}$ are $\left.\operatorname{PSD}\right\}$

Then

$$
P_{h}(A)=B+\left(\delta^{2} I-C^{2}\right)^{1 / 2}
$$

Algorithm - Higham 1988

Approximation by matrices with spectrum in strip

$$
\min _{\min _{(\mathbb{C})}}\|A-X\|, \quad \text { spectral norm }
$$

$$
\begin{gathered}
\mathbb{X}(\mathbb{S})=\left\{X \in \mathbb{C}^{n \times n}: \text { spectrum of } X \text { is in } \mathbb{S}\right\} \\
\mathbb{S}=[0, \infty) \times[0, \infty)=\{x+i y: x \geq 0, y \geq 0\}
\end{gathered}
$$

Khalil, Maher, Numer. Functional Anal. Optim. 2000

$$
\mathbb{S}_{a}=[0, \infty) \times[0, a], \quad \text { operators }
$$

Khalil, Maher

spectrum of X in $\mathbb{S}_{a}=[0, \infty) \times[0, a]$

$$
\min _{X}\|A-X\|
$$

BL, KZ; 2008

$$
X=\operatorname{Re}(X)+i \operatorname{Im}(X) \equiv X_{1}+i X_{2}
$$

- spectrum of X_{1} in $[0, \infty)$
- spectrum of X_{2} in $[0, a]$

$$
\begin{gathered}
\mathbb{E}_{1}, \mathbb{E}_{2} \quad \text { intervals, }[0, \infty) \text { or }[0, a] \\
A=B+i C, \quad B=\operatorname{Re}(A), \quad C=\operatorname{Im}(A)
\end{gathered}
$$

Corrected version of theorem of Khalil, Maher (BL, KZ 2008)
Let

$$
\begin{gathered}
\mathbb{K}=\left\{\|A-X\|: X=X_{1}+i X_{2} \in \mathbb{C}^{n \times n}\right\} \\
X_{1} \text { has spectrum in } \mathbb{E}_{1}, \\
X_{2} \text { has spectrum in } \mathbb{E}_{2} \\
\mathbb{L}=\left\{r>0: B+\left[r^{2} I-(C-\tilde{C})^{2}\right]^{1 / 2} \text { for some } \tilde{C}\right\} \\
\tilde{C} \quad \text { Hermitian with spectrum in } \mathbb{E}_{2} .
\end{gathered}
$$

Then

$$
\delta(A)=\inf \mathbb{K}=\inf \mathbb{L}
$$

Best approximant

$$
\widehat{X}=B+\left[\delta^{2} I-(C-\tilde{C})^{2}\right]^{1 / 2}
$$

for some Hermitian \tilde{C} with spectrum in \mathbb{E}_{2}

Conjecture

\tilde{C} is strict spectral approximant of C by Hermitian matrices with spectrum in \mathbb{E}_{2}.

Algorithm

Let $A=B+i C$

$$
\mathbb{S}=[0, \infty) \times \mathbb{E}_{2}
$$

- Compute strict spectral approx. \hat{C} to C, spectrum \hat{C} in \mathbb{E}_{2}.
- Compute Halmos approx. \hat{P}_{h} to $A-i \hat{C}$ by Higham algorithm.
- Compute $\hat{X}=\hat{P}_{h}+i C$.

Example

Let $A=B+\mathrm{i} C$

$$
B=\left[\begin{array}{ccc}
3 & -5 & 1 \\
-5 & -3 & 1 \\
1 & 1 & -1
\end{array}\right], \quad C=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

C_{k} Hermitian approx. of C with spectrum in $[0, \infty)$:

$$
C_{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right], \quad C_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad C_{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 / 8 & 1 / 2 \\
0 & 1 / 2 & 5 / 2
\end{array}\right]
$$

C_{1} - strict spectral approx.
C_{4} Halmos approximant: $C_{4}=\operatorname{diag}(0,1,3)$.
Let $X^{(k)}=P_{k}+\mathrm{i} C_{k}$

$$
\begin{array}{l|cccc}
\hline & k=1 & k=2 & k=3 & k=4 \\
\hline\left\|A-X^{(k)}\right\|_{2} & 6.2087 & 6.2140 & 6.2156 & 6.2700
\end{array}
$$

Special cases

Let $A=B+i C$

- If B PSD then conjecture true.
- If If B is not PSD and C has spectrum in \mathbb{E}_{2} then true.

Conjecture

$$
\delta(A)=\left\{r>0: B+\left[r^{2} I-(C-\widehat{C})^{2}\right]^{1 / 2} \text { is PSD }\right\}
$$

\widehat{C} strict spectral approx. of C

Numerical experiments

Let $r>0$ such that
$B+\left[r^{2} I-(C-\tilde{C})^{2}\right]^{1 / 2}, \quad$ PSD for some \tilde{C}.
Then also

$$
B+\left[r^{2} I-(C-\hat{C})^{2}\right]^{1 / 2}
$$

is PSD, where \hat{C} is strict Chebysh. approx. to C.

Part II - partial isometry approximants

Polar decomposition

$$
A=U H, \quad A \in \mathbb{C}^{m \times n}, \quad m \geq n
$$

U orthonormal columns
H - Hermitian positive definite

Approximation by unitary matrices

$$
\|A-U\|=\min _{Z-\text { unitary }}\|A-Z\|
$$

Fan, Hoffman 1955

$$
\|\cdot\| \text { - unitarily invariant }
$$

Canonical polar decomposition

$$
A=U H, \quad A \in \mathbb{C}^{m \times n}
$$

U - partial isometry (subunitary matrix) H - Hermitian positive semidefinite

Partial isometry

$$
\|U x\|_{2}=\|x\|_{2}, \quad x \in \operatorname{range}\left(U^{H}\right)
$$

Partial isometry

Equivalent conditions

- $U U^{H} U=U$
- $U^{H}=U^{\dagger} \quad$ Moore-Penrose inverse
- $U U^{H}$ is an orthogonal projector
- singular values of U are 0 or 1

Ben-Israel, Greville, Generalized Inverses

Approximation by partial isometries

$$
A=P \Sigma Q^{H} \in \mathbb{C}^{m \times n}
$$

Theorem (B.L;K.Z., 2006)

- for all partial isometries E of rank $r=\operatorname{rank}(A)$ we have

$$
\|A-\hat{E}\| \leq\|A-E\|, \text { where } \hat{E}=P\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] Q^{H}
$$

- for all partial isometries E we have

$$
\begin{aligned}
& \|A-\hat{X}\| \leq\|A-E\| \leq\|A+\tilde{E}\|, \text { where } \\
& \hat{X}=P\left[\begin{array}{cc}
I_{q} & 0 \\
0 & 0
\end{array}\right] Q^{H}, \quad \tilde{E}=P\left[\begin{array}{c}
I_{n} \\
0
\end{array}\right] Q^{H} .
\end{aligned}
$$

q number of $\sigma_{j}(A) \geq \frac{1}{2}$

Algorithms

Algorithm I:

\hat{X} is computed directly from the SVD of A

Algorithms

Algorithm I:

\hat{X} is computed directly from the SVD of A

Algorithm II:

\hat{X} is the limit of the sequence $X_{k}, X_{0}=A$, generated by Gander's method with $f=19 / 13$

Algorithms

Algorithm I:

\hat{X} is computed directly from the SVD of A

Algorithm II:

\hat{X} is the limit of the sequence $X_{k}, X_{0}=A$, generated by Gander's method with $f=19 / 13$

Algorithm III:

Stage 1: computing polar decomposition $A=E H$
Stage 2: computing unitary polar factor E_{C} of $C=2 H-I$ Stage 3: computing $\hat{X}=\frac{1}{2} E\left(E_{C}+I_{n}\right)$

In algorithm III we apply Higham's method for computing polar factors

Test matrices

Gander's method $f=19 / 13$

A random with singular values:
$(0, b) 30$ per cent;
$(c, 1) 40$ per cent;
$(1,3 / 2)$ rest

computing best partial isometry: average time

Part III - minimal rank approximants

Minimal rank approximation $A \in \mathbb{C}^{m \times n}$

$$
\min _{B \text { minimal rank }}\|A-B\|_{2}<\delta,
$$

spectral norm, δ given, Golub 1968

Algorithm IV

- computing Hermitian polar factor H of A
- computing unitary polar factor E_{D} of $D=H-\delta I$
- computing $\hat{B}=\frac{1}{2} A\left(E_{D}+I\right)$

Minimal rank approximation $A \in \mathbb{C}^{m \times n}$

Algorithm IV-bis

- computing unitary polar factor E of $A^{H} A-\delta^{2} I$
- computing $\hat{B}=\frac{1}{2} A(E+I)$
- SVD: computing \hat{B} by means SVD applied to A
- SVD-bis: computing \hat{B} by means SVD applied to $A^{H} A$

$$
\text { A } 2 n \times n
$$

Numerical tests for rectangular $A, 2 n \times n$

minimal rank approximant: average time

Numerical tests for square A

average time of computing minimal rank approximant

References

- KZ, Strict approximation of a matrix, SIMAX 16 (1995)
- BL, KZ, Approximation of matrices and family of Gander methods for polar decomposition, BIT Numer. Math. 46 (2006)
- BL, KZ, Approximation by matrices with restricted spectra,
LAA 428 (2008)

Thank you for your atention!!!

