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M closed convex set in Cm×n

min
X∈M

||A− X ||, spectral norm

Strict spectral approximation
B is strict spectr. approx. of A if the vector
σ(A− B) of singular values is minimal with respect
to ordinary lexicographic ordering in

{σ(A− X ) : X ∈M}.

KZ SIMAX 1995,
Householder Symposium 1993 (Lake Arrowhead)
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cp norm

lexicographic ordering

[3, 3, 2, 0] is bigger then [3, 2, 2, 2]

σ(A) = [σ1, . . . , σn], vector of singular values

||A||p = ||σ||p =

∑
j

σj(A)p

1/p

, 1 ≤ p ≤ ∞

p = ∞ spectral norm
p = 1 trace norm

p = 2 Frobenius norm
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Another characterization of strict spectral approx.

Theorem, KZ, 1997

X̂ is strict spectr. approx. to A iff

||A− X ||p > ||A− X̂ ||p, X 6= X̂ , X ∈M,

for all p sufficiently large

Rogers and Ward 1981
cp-minimal positive approximant of operator
in finite-dimensional complex Hilbert space
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Conjecture

M linear subspace of matrices

Let
min
X∈M

||A− X ||p = ||A− Xp||p.

Then

lim
p→∞

Xp = X∞ strict spectral approx.
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Canonical trace approximant

c1 - trace norm , M convex

Legg, Ward, 1985

Xp → X̂1, when p → 1

where X̂1 unique canonical trace approximant
minimizing

n∑
j=1

σj(A− X )ln(σj(A− X ))

over all trace approximants X ∈M of A.
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Vector case - strict Chebyshev approximation

Overdetermined real linear system

min
x∈Rn

||Ax − b||p = ||Axp − b||p, 1 ≤ p ≤ ∞

Rice 1962 - strict Chebyshev solution

Descloux 1963, Pólya algorithm

lim
p→∞

||Axp − b||p = ||Ax∞ − b||∞

Ax∞ strict Cheb. approx. to b
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some generalizations of Descloux result
Pólya algorithm on convex sets in Rn

Egger, Huotari 1989:

There exists closed, convex set in Rn for
which best approx. xp in lp-norm to fixed
b ∈ Rn fails to converge as p →∞.

If best approx. xp converges it need not
converge to strict Chebysh. approx.



Wroc

Strict spectral approximants of matrix Approximants with restricted spectrum Unitary and subunitary approximants Minimal rank approximants

Approximation by PSD matrices

A = B + iC

B = BH , C = CH , real and imaginary parts

min
X is PSD

||A− X ||, spectral norm
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A = B + iC , BH = B , CH = C

Halmos approximant (1972)
Let

δ(A) = inf{r > 0 : B + (r 2I − C 2)1/2 and r 2I − C 2 are PSD}

Then

Ph(A) = B + (δ2I − C 2)1/2

Algorithm - Higham 1988
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Approximation by matrices with spectrum in strip

min
X∈X(S)

||A− X ||, spectral norm

X(S) = {X ∈ Cn×n : spectrum of X is in S}

S = [0,∞)× [0,∞) = {x + iy : x ≥ 0, y ≥ 0}

Khalil, Maher, Numer. Functional Anal. Optim. 2000

Sa = [0,∞)× [0, a], operators
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Khalil, Maher
spectrum of X in Sa = [0,∞)× [0, a]

min
X
||A− X ||

BL, KZ; 2008

X = Re(X ) + iIm(X ) ≡ X1 + iX2

spectrum of X1 in [0,∞)

spectrum of X2 in [0, a]
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E1, E2 intervals, [0,∞) or [0, a]

A = B + iC , B = Re(A), C = Im(A)

Corrected version of theorem of Khalil, Maher (BL, KZ 2008)
Let

K = {||A− X || : X = X1 + iX2 ∈ Cn×n}

X1 has spectrum in E1,

X2 has spectrum in E2

L = {r > 0 : B + [r 2I − (C − C̃ )2]1/2 for some C̃}

C̃ Hermitian with spectrum in E2.

Then
δ(A) = inf K = inf L.
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Best approximant

X̂ = B + [δ2I − (C − C̃ )2]1/2

for some Hermitian C̃ with spectrum in E2

Conjecture
C̃ is strict spectral approximant of C by
Hermitian matrices with spectrum in E2.
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Algorithm

Let A = B + iC

S = [0,∞)× E2

Compute strict spectral approx. Ĉ to C ,
spectrum Ĉ in E2.
Compute Halmos approx. P̂h to A− i Ĉ
by Higham algorithm.
Compute X̂ = P̂h + iC .
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Example

Let A = B + iC

B =

 3 −5 1
−5 −3 1
1 1 −1

 , C =

 −1 0 0
0 0 0
0 0 2

 .

Ck Hermitian approx. of C with spectrum in [0,∞):

C1 =

 0 0 0
0 0 0
0 0 2

 , C2 =

 0 0 0
0 0 0
0 0 1

 , C3 =

 0 0 0
0 1/8 1/2
0 1/2 5/2


C1 - strict spectral approx.
C4 Halmos approximant: C4 = diag(0, 1, 3).
Let X (k) = Pk + iCk

k = 1 k = 2 k = 3 k = 4
||A− X (k)||2 6.2087 6.2140 6.2156 6.2700
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Special cases

Let A = B + iC
If B PSD then conjecture true.
If If B is not PSD and C has spectrum in E2 then true.

Conjecture

δ(A) = {r > 0 : B + [r 2I − (C − Ĉ )2]1/2is PSD}

Ĉ strict spectral approx. of C
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Numerical experiments
Let r > 0 such that

B +[r 2I−(C− C̃ )2]1/2, PSD for some C̃ .

Then also

B + [r 2I − (C − Ĉ )2]1/2

is PSD, where Ĉ is strict Chebysh. approx.
to C .
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Part II - partial isometry approximants
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Polar decomposition

A = UH, A ∈ Cm×n, m ≥ n

U orthonormal columns
H - Hermitian positive definite

Approximation by unitary matrices

||A− U|| = min
Z−unitary

||A− Z ||

Fan, Hoffman 1955
|| · || − unitarily invariant
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Canonical polar decomposition

A = UH, A ∈ Cm×n

U - partial isometry (subunitary matrix)
H - Hermitian positive semidefinite

Partial isometry

||Ux ||2 = ||x ||2, x ∈ range(UH)
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Partial isometry

Equivalent conditions
UUHU = U

UH = U† Moore-Penrose inverse

UUH is an orthogonal projector
singular values of U are 0 or 1

Ben-Israel, Greville, Generalized Inverses
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Approximation by partial isometries

A = PΣQH ∈ Cm×n

Theorem (B.L;K.Z., 2006)

for all partial isometries E of rank r = rank(A) we have

||A− Ê || ≤ ||A− E ||, where Ê = P
[

Ir 0
0 0

]
QH

for all partial isometries E we have
||A− X̂ || ≤ ||A− E || ≤ ||A + Ẽ ||, where

X̂ = P
[

Iq 0
0 0

]
QH , Ẽ = P

[
In
0

]
QH .

q number of σj(A) ≥ 1
2
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Algorithms

Algorithm I:

X̂ is computed directly from the SVD of A

Algorithm II:

X̂ is the limit of the sequence Xk , X0 = A, generated by
Gander’s method with f = 19/13

Algorithm III:
Stage 1: computing polar decomposition A = EH
Stage 2: computing unitary polar factor EC of C = 2H − I
Stage 3: computing X̂ = 1

2E (EC + In)

In algorithm III we apply Higham’s method for computing
polar factors
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Test matrices

Gander′s method f = 19/13

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

g(s)
b=0.5
c=0.6069
d=0.2774
e=0.1683

e 
d 

b c 

A random with singular values:
(0, b) 30 per cent; (c , 1) 40 per cent; (1, 3/2) rest
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computing best partial isometry: average time
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Part III - minimal rank approximants
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Minimal rank approximation A ∈ Cm×n

min
B minimal rank

||A− B||2 < δ,

spectral norm, δ given, Golub 1968

Algorithm IV
computing Hermitian polar factor H of A
computing unitary polar factor ED of D = H − δI
computing B̂ = 1

2A(ED + I )
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Minimal rank approximation A ∈ Cm×n

Algorithm IV-bis

computing unitary polar factor E of AHA− δ2I
computing B̂ = 1

2A(E + I )

SVD: computing B̂ by means SVD applied to A
SVD-bis: computing B̂ by means SVD applied to AHA

A 2n × n
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Numerical tests for rectangular A, 2n × n
minimal rank approximant: average time
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Numerical tests for square A
average time of computing minimal rank approximant
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Thank you for your atention!!!
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