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Goal of talk is to show that

false formula can lead to better method.
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Task

Given points t1 < . . . < tm and

measured data corrupted by random noise

y1, . . . , ym.

Compute smoothed value of yi

ỹi =

NR∑

j=−NL

gjyi+j

where gj are filter coefficients
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Concept of Savitzky and Golay (1964)

interior point ti : 1 + NL ≤ i ≤ m − NR

polynomial v(t) approximates data

over the set of points {ti−NL
, . . . , ti+NR

}

in the least-squares sense

smoothed ỹi = v(ti)
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NL = NR = N

ỹi = v(ti) =

N∑

j=−N

gjyi+j = gTy

g = Ai(A
T
i Ai)

−1AT
i e

Ai rectangular Vandermonde, ti−N , . . . , ti+N

y = [yi−N , . . . , yi+N ]
T

e = [0, . . . , 0, 1, 0, . . . , 0]T
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Uniformly spaced data tj+1 − tj = ∆

new variable, t → h = (t − ti)/∆

new points tj → hj = j − i ti → 0
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Savitzky-Golay filter coefficients

gT = [g−N , . . . gN ]

g = Ai(A
T
i Ai)

−1AT
i e =

= B(BTB)−1BTe = B(BTB)−1e1

B rectangular Vandermonde, −N , . . . ,N

e1 = [1, 0, . . . , 0]T , e = [0, . . . , 0, 1, 0, . . . , 0]T
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B =




1 −N (−N)2 · · · (−N)n

1 −N + 1 (−N + 1)2 · · · (−N + 1)n

...
...

... · · ·
...

1 N N2 · · · Nn




C =




(−N)n (−N)n−1 · · · −N 1
(−N + 1)n (−N + 1)n−1 · · · −N + 1 1

...
... · · ·

...
...

Nn Nn−1 · · · N 1
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How to compute g = B(BTB)−1e1?

n degree of approx. polynomial

C = QR

g =
1

rn+1,n+1
Qen+1

Gander, von Matt
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Orthogonal (discrete) Gram polynomials

orthogonal over point set SN = {−N , . . . ,N}

qj(h) =

j∑

k=0

(−1)k+j (j + k)(2k)(N + h)(k)

(k!)2(2N)(k)
, q0(h) = 1,

a(0) = 1

a(k) = a(a − 1) · · · (a − k + 1)
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“discrete” Dirac delta

δN = e = [0, . . . , 0, 1, 0, . . . , 0]T ∈ R
n+1

SN = {−N , . . . ,N}, n degree, even

polynomial least-squares approximation over SN to δN

q(h) =
qn(0)qn+1(h)

ξηh

ξ and η constant, depend on n and N

filter coefficients gT = [q(−N), . . . , q(N)]
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orthogonal Legendre polynomials [−1, 1]

〈Pi ,Pj〉 =

∫
1

−1

Pi(s)Pj(s)ds.

recurrence relation

Pk(s) =
2k − 1

k
sPk−1(s)−

k − 1

k
Pk−2(s), k = 1, 2, . . .

P0(s) = 1.

linear change of variable

[−1, 1] → [−N ,N ]
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Filter coefficients

Dirac delta δ(s)

δ(s) = 0 for s 6= 0,

δ(s) = ∞ for s = 0,

Persson-Strang

least-squares approximation to Dirac delta on interval [−N ,N ]
expressed by Legendre polynomials

Savitzky-Golay

least-squares approximation to vector
e = [0, . . . , 0, 1, 0, . . . , 0]T

over the point set {−N ,−N + 1, . . . ,N}
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Persson and Strang filter (2003)

degree of polynomial n even, [−N ,N ]

uniformly spaced data, filter coefficients g
−N , . . . , gN

Persson-Strang polynomial gj = L(j)

L(h) =
n + 1

2
Pn(0)

Pn+1

(
2h

2N+1

)

h

Optimal “Legendre" polynomial gj = K (j)

K (h) =
n + 1

2
Pn(0)

Pn+1

(
h
N

)

h
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Examples of approximating polynomials n = 2

Savitzky-Golay (Gram)

q(h) =
−15h2

(2N − 1)(2N + 1)(2N + 3)
+

9N2 + 9N − 3

(2N − 1)(2N + 1)(2N + 3)

Persson-Strang

L(h) =
−15h2

(2N + 1)3
+

9

4(2N + 1)

optimal Legendre

K (h) =
−15h2

8N3
+

9

8N
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Figure : Savitzky-Golay polynomial q(h) (green); differences
q(h)− L(h) and q(h)− K (h); N = 16 (on left), N = 100 (on
right); degree n = 2
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Figure : Savitzky-Golay polynomial q(h) (green); differences
q(h)− L(h) and q(h)− K (h); N = 16 (on left), N = 100 (on
right); degree n = 4
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Gander and von Matt test function on [0, 1]

F (t) = e−100(t− 1
5
)2 + e−500(t− 2

5
)2 + e−2500(t− 3

5
)2 + e−12500(t− 4

5
)2

uniform spaced data;
tj =

j−1

m−1
for j = 1, . . . ,m, where m = 1000

yj = F (tj) + ε× randn, where ε = 0.1

degree of polynomial n = 4

window N = 16

Savitzky-Golay, Persson-Strang, optimal Legendre
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Figure : F (t) exact and noise (on left); F (t) exact and smoothed
by Savitzky-Golay (on right)
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Figure : F (t) exact and smoothed by optimal Legender (on left);
F (t) exact and smoothed by Persson-Strang (on right)
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Errors: F (t) exact – smoothed data (subtraction)
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Figure : Savitzky-Golay (green) and Persson-Strang (red), (on left);
Savitzky-Golay (green), optimal Legendre (red), (on right)
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Gander-von Matt test function on [0, 0.5]

F (t) = e−100(t− 1
5
)2 + e−500(t− 2

5
)2 + e−2500(t− 3

5
)2 + e−12500(t− 4

5
)2

uniform spaced data;
tj =

j−1

m−1
for j = 1, . . . ,m, where m = 1000

yj = F (tj) + ε× randn, where ε = 0.1

degree of polynomial n = 4

window N = 32

Savitzky-Golay, Persson-Strang, optimal Legendre



PWr

Savitzky-Golay filters Gram polynomials Persson and Strang filters Experiments Legendre-based filter References

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Savitzky−Golay
N=32,n=4

Figure : F (t) exact and noise (on left); F (t) exact and smoothed
by Savitzky-Golay (on right); N = 32, n = 4
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Errors: F (t) exact – smoothed data (subtraction)
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Figure : error Savitzky-Golay (blue), optim. Legendre (red), on left;
error Savitzky-Golay (blue), Persson-Strang (red), on right,
N = 32, n = 4
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Persson and Strang write that the Legendre-based filters have
extra advantages:

“ in the case of irregularly spaced or missing

data the polynomials stay the same and it is

only the sampling points that change. (...)

The simplicity becomes especially valuable when the input no
longer consists of uniformly spaced samples.
The output from the new filter will be the natural non-uniform
generalization of an ordinary convolution".

[ti−N , ti+N ] → [−N ,N ]
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window ti−NL
, . . . , ti+NR

new variable

h =
t − ti

∆t
, ∆t =

ti+NR
− ti−NL

NL + NR

new points

h
(i)
j =

tj − ti

∆t
for j = i − NL, . . . i + NR .

αi = h
(i)
i−NL

, βi = h
(i)
i+NR

approximation of Dirac delta on [αi , βi ]
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Pk(t) Legendre polynomial

[−1, 1] → [αi , βi ]

Z
(i)
k (h) = Pk

(
2

βi − αi

h +
αi + βi

αi − βi

)

K (i)(h) =
n + 1

2
·
Z

(i)
n+1

(0)Z
(i)
n (h)− Z

(i)
n (0)Z

(i)
n+1

(h)

−h

ỹi =

i+NR∑

j=i−NL

g
(i)
j yj , where g

(i)
j = K (i)(h

(i)
j )
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Bad news



PWr

Savitzky-Golay filters Gram polynomials Persson and Strang filters Experiments Legendre-based filter References

A. Eisinberg, P. Pugliese, N. Salerno,
Numer. Math. 2001

Vandermonde matrices on integer nodes:
the rectangular case

their case

1, 2, . . . ,N

B = V TV Hankel matrix

explicit Cholesky factor of B

pseudo-inverse of V

combinatorial identities

our case

−N , . . . ,N
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