Linear least squares problems and smoothing filters

Krystyna Ziętak (Wroclaw)
Iwona Wróbel (Warsaw)

Birmingham, September 14, 2010

Outline

(1) Savitzky-Golay filters
(2) Gram polynomials
(3) Persson and Strang filters

4 Experiments
(5) Legendre-based filter

6 References

Goal of talk is to show that false formula can lead to better method.

Task

Given points $t_{1}<\ldots<t_{m}$ and measured data corrupted by random noise

$$
y_{1}, \ldots, y_{m} .
$$

Compute smoothed value of y_{i}

$$
\widetilde{y}_{i}=\sum_{j=-N_{L}}^{N_{R}} g_{j} y_{i+j}
$$

where g_{j} are filter coefficients

Concept of Savitzky and Golay (1964)

interior point $t_{i}: \quad 1+N_{L} \leq i \leq m-N_{R}$
polynomial $v(t)$ approximates data over the set of points $\left\{t_{i-N_{L}}, \ldots, t_{i+N_{R}}\right\}$
in the least-squares sense

$$
\text { smoothed } \quad \tilde{y}_{i}=v\left(t_{i}\right)
$$

$N_{L}=N_{R}=N$

$$
\begin{gathered}
\widetilde{y}_{i}=v\left(t_{i}\right)=\sum_{j=-N}^{N} g_{j} y_{i+j}=g^{T} y \\
g=A_{i}\left(A_{i}^{T} A_{i}\right)^{-1} A_{i}^{T} e
\end{gathered}
$$

A_{i} rectangular Vandermonde, t_{i-N}, \ldots, t_{i+N}

$$
\begin{gathered}
y=\left[y_{i-N}, \ldots, y_{i+N}\right]^{T} \\
e=[0, \ldots, 0,1,0, \ldots, 0]^{T}
\end{gathered}
$$

Uniformly spaced data
 $$
t_{j+1}-t_{j}=\Delta
$$

$$
\text { new variable, } \quad t \rightarrow h=\left(t-t_{i}\right) / \Delta
$$

$$
\text { new points } \quad t_{j} \rightarrow h_{j}=j-i \quad t_{i} \rightarrow 0
$$

Savitzky-Golay filter coefficients

$$
\begin{aligned}
& g^{T}= {\left[g_{-N}, \ldots g_{N}\right] } \\
& g=A_{i}\left(A_{i}^{T} A_{i}\right)^{-1} A_{i}^{T} e= \\
&=B\left(B^{T} B\right)^{-1} B^{T} e=B\left(B^{T} B\right)^{-1} e_{1}
\end{aligned}
$$

B rectangular Vandermonde, $-N, \ldots, N$

$$
e_{1}=[1,0, \ldots, 0]^{T}, \quad e=[0, \ldots, 0,1,0, \ldots, 0]^{T}
$$

$$
\begin{aligned}
& B=\left[\begin{array}{ccccc}
1 & -N & (-N)^{2} & \cdots & (-N)^{n} \\
1 & -N+1 & (-N+1)^{2} & \cdots & (-N+1)^{n} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & N & N^{2} & \cdots & N^{n}
\end{array}\right] \\
& C=\left[\begin{array}{ccccc}
(-N)^{n} & (-N)^{n-1} & \cdots & -N & 1 \\
(-N+1)^{n} & (-N+1)^{n-1} & \cdots & -N+1 & 1 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
N^{n} & N^{n-1} & \cdots & N & 1
\end{array}\right]
\end{aligned}
$$

How to compute $g=B\left(B^{T} B\right)^{-1} e_{1}$?
n degree of approx. polynomial

$$
\begin{gathered}
C=Q R \\
g=\frac{1}{r_{n+1, n+1}} Q e_{n+1}
\end{gathered}
$$

Gander, von Matt

Orthogonal (discrete) Gram polynomials

 orthogonal over point set $\mathcal{S}_{N}=\{-N, \ldots, N\}$$$
q_{j}(h)=\sum_{k=0}^{j}(-1)^{k+j} \frac{(j+k)^{(2 k)}(N+h)^{(k)}}{(k!)^{2}(2 N)^{(k)}}, \quad q_{0}(h)=1,
$$

$a^{(0)}=1$
$a^{(k)}=a(a-1) \cdots(a-k+1)$

"discrete" Dirac delta

$$
\delta_{N}=e=[0, \ldots, 0,1,0, \ldots, 0]^{T} \in \mathbb{R}^{n+1}
$$

$$
\mathcal{S}_{N}=\{-N, \ldots, N\}, \quad n \text { degree, even }
$$

polynomial least-squares approximation over \mathcal{S}_{N} to δ_{N}

$$
q(h)=\frac{q_{n}(0) q_{n+1}(h)}{\xi \eta h}
$$

ξ and η constant, depend on n and N
filter coefficients $g^{T}=[q(-N), \ldots, q(N)]$

orthogonal Legendre polynomials $[-1,1]$

$$
\left\langle P_{i}, P_{j}\right\rangle=\int_{-1}^{1} P_{i}(s) P_{j}(s) d s
$$

recurrence relation

$$
\begin{gathered}
P_{k}(s)=\frac{2 k-1}{k} s P_{k-1}(s)-\frac{k-1}{k} P_{k-2}(s), \quad k=1,2, \ldots \\
P_{0}(s)=1 .
\end{gathered}
$$

linear change of variable

$$
[-1,1] \rightarrow[-N, N]
$$

Filter coefficients

Dirac delta $\delta(s)$

$$
\begin{array}{ll}
\delta(s)=0 & \text { for } s \neq 0, \\
\delta(s)=\infty & \text { for } s=0,
\end{array}
$$

Persson-Strang

least-squares approximation to Dirac delta on interval $[-N, N]$ expressed by Legendre polynomials

Savitzky-Golay

least-squares approximation to vector
$e=[0, \ldots, 0,1,0, \ldots, 0]^{T}$
over the point set $\{-N,-N+1, \ldots, N\}$

Persson and Strang filter (2003)

degree of polynomial n even, $[-N, N]$
uniformly spaced data, filter coefficients g_{-N}, \ldots, g_{N}
Persson-Strang polynomial $\quad g_{j}=L(j)$

$$
L(h)=\frac{n+1}{2} P_{n}(0) \frac{P_{n+1}\left(\frac{2 h}{2 N+1}\right)}{h}
$$

Optimal "Legendre" polynomial $\quad g_{j}=K(j)$

$$
K(h)=\frac{n+1}{2} P_{n}(0) \frac{P_{n+1}\left(\frac{h}{N}\right)}{h}
$$

Examples of approximating polynomials $n=2$

- Savitzky-Golay (Gram)

$$
q(h)=\frac{-15 h^{2}}{(2 N-1)(2 N+1)(2 N+3)}+\frac{9 N^{2}+9 N-3}{(2 N-1)(2 N+1)(2 N+3)}
$$

- Persson-Strang

$$
L(h)=\frac{-15 h^{2}}{(2 N+1)^{3}}+\frac{9}{4(2 N+1)}
$$

- optimal Legendre

$$
K(h)=\frac{-15 h^{2}}{8 N^{3}}+\frac{9}{8 N}
$$

Figure: Savitzky-Golay polynomial $q(h)$ (green); $q(h)-L(h)$ and $q(h)-K(h) ; N=16$ (on left), $\quad N=100$ (on right); degree $n=2$

Figure : Savitzky-Golay polynomial $q(h)$ (green); $q(h)-L(h)$ and $q(h)-K(h) ; N=16$ (on left), $\quad N=100$ (on right); degree $n=4$

Gander and von Matt test function on $[0,1]$

$$
F(t)=e^{-100\left(t-\frac{1}{5}\right)^{2}}+e^{-500\left(t-\frac{2}{5}\right)^{2}}+e^{-2500\left(t-\frac{3}{5}\right)^{2}}+e^{-12500\left(t-\frac{4}{5}\right)^{2}}
$$

- uniform spaced data;

$$
t_{j}=\frac{j-1}{m-1} \text { for } j=1, \ldots, m, \text { where } m=1000
$$

- $y_{j}=F\left(t_{j}\right)+\varepsilon \times$ randn, where $\varepsilon=0.1$
- degree of polynomial $n=4$
- window $N=16$

Savitzky-Golay, Persson-Strang, optimal Legendre

Figure: $F(t)$ exact and noise (on left); $\quad F(t)$ exact and smoothed by Savitzky-Golay (on right)

Figure : $F(t)$ exact and smoothed by optimal Legender (on left); $F(t)$ exact and smoothed by Persson-Strang (on right)

Errors: $F(t)$ exact - smoothed data (subtraction)

Figure : Savitzky-Golay (green) and Persson-Strang (red), (on left); Savitzky-Golay (green), optimal Legendre (red), (on right)

Gander-von Matt test function on $[0,0.5]$

$F(t)=e^{-100\left(t-\frac{1}{5}\right)^{2}}+e^{-500\left(t-\frac{2}{5}\right)^{2}}+e^{-2500\left(t-\frac{3}{5}\right)^{2}}+e^{-12500\left(t-\frac{4}{5}\right)^{2}}$

- uniform spaced data;
$t_{j}=\frac{j-1}{m-1}$ for $j=1, \ldots, m$, where $m=1000$
- $y_{j}=F\left(t_{j}\right)+\varepsilon \times$ randn, where $\varepsilon=0.1$
- degree of polynomial $n=4$
- window $N=32$

Savitzky-Golay, Persson-Strang, optimal Legendre

Figure: $F(t)$ exact and noise (on left); $\quad F(t)$ exact and smoothed by Savitzky-Golay (on right); $N=32, n=4$

Errors: $F(t)$ exact - smoothed data (subtraction)

Figure : error Savitzky-Golay (blue), optim. Legendre (red), on left; error Savitzky-Golay (blue), Persson-Strang (red), on right, $N=32, n=4$

Persson and Strang write that the Legendre-based filters have extra advantages:
"in the case of irregularly spaced or missing data the polynomials stay the same and it is only the sampling points that change. (...)

The simplicity becomes especially valuable when the input no longer consists of uniformly spaced samples.
The output from the new filter will be the natural non-uniform generalization of an ordinary convolution".

$$
\left[t_{i-N}, t_{i+N}\right] \rightarrow[-N, N]
$$

window $t_{i-N_{L}}, \ldots, t_{i+N_{R}}$

new variable

$$
h=\frac{t-t_{i}}{\Delta t}, \quad \Delta t=\frac{t_{i+N_{R}}-t_{i-N_{L}}}{N_{L}+N_{R}}
$$

new points

$$
h_{j}^{(i)}=\frac{t_{j}-t_{i}}{\Delta t} \quad \text { for } j=i-N_{L}, \ldots i+N_{R} .
$$

$$
\alpha_{i}=h_{i-N_{L}}^{(i)}, \quad \beta_{i}=h_{i+N_{R}}^{(i)}
$$

approximation of Dirac delta on $\left[\alpha_{i}, \beta_{i}\right]$
$P_{k}(t)$ Legendre polynomial

$$
\begin{aligned}
& {[-1,1] \rightarrow\left[\alpha_{i}, \beta_{i}\right]} \\
& Z_{k}^{(i)}(h)=P_{k}\left(\frac{2}{\beta_{i}-\alpha_{i}} h+\frac{\alpha_{i}+\beta_{i}}{\alpha_{i}-\beta_{i}}\right)
\end{aligned}
$$

$$
K^{(i)}(h)=\frac{n+1}{2} \cdot \frac{Z_{n+1}^{(i)}(0) Z_{n}^{(i)}(h)-Z_{n}^{(i)}(0) Z_{n+1}^{(i)}(h)}{-h}
$$

$$
\tilde{y}_{i}=\sum_{j=i-N_{L}}^{i+N_{R}} g_{j}^{(i)} y_{j}, \quad \text { where } g_{j}^{(i)}=K^{(i)}\left(h_{j}^{(i)}\right)
$$

Bad news

A. Eisinberg, P. Pugliese, N. Salerno, Numer. Math. 2001

Vandermonde matrices on integer nodes: the rectangular case
their case

$$
1,2, \ldots, N
$$

- $B=V^{T} V$ Hankel matrix
- explicit Cholesky factor of B
- pseudo-inverse of V
- combinatorial identities

our case

$$
-N, \ldots, N
$$

References

Abraham Savitzky (1919-1999)

was an Americal analytical chemist. He specialized in the digital processing of infrared spectra.

Marcel J.E. Golay (1902-1989)

was a Swiss-born mathematician, physicst and information theorist.

Golay error-correcting codes
Savitzky coauthored with Marcel J.E. Golay an oft-cited paper describing the Savitzky-Golay smoothing filter.

THANK YOU FOR YOUR ATTENTION

