Algorithms for matrix sector function

Krystyna Ziętak

(the joint work with Beata Laszkiewicz)

Institute of Mathematics and Computer Science Wrocław University of Technology

Novi Sad, April 28 - 30, 2008

(日) (四) (日) (日)

Outline

- Matrix sector function
- 2 Conditioning of matrix sector function
- 3 Algorithms for matrix sector function
 - Schur algorithm
 - Newton's method
 - Halley's method
- 4 Numerical experiments

(日) (四) (日) (日)

The sector regions

$$\Phi_k = \left\{ z \in \mathbb{C} : \frac{2k\pi}{p} - \frac{\pi}{p} < \arg(z) < \frac{2k\pi}{p} + \frac{\pi}{p} \right\}$$

$$k = 0, \dots, p - 1$$

The sector regions, p=4

(日) (四) (モン (モン) モー (

The scalar *p*-sector function

• $s_p(\lambda)$ is the *pth* root of unity which lies in the same sector Φ_k in which λ is.

- $\sqrt[p]{a}$ principal *pth* root of $a \notin \mathbb{R}^-$, $\sqrt[p]{a}$ lies in Φ_0
- s_p(λ) is not defined for the *pth* roots of nonpositive real numbers.

Principal matrix *p*th root

Let nonsingular complex matrix A have no negative eigenvalue. There is a unique pth root of A:

$$X = A^{1/p}$$

all of whose eigenvalues lie in the region Φ_0 .

$$X^p = A, \qquad \arg \lambda_j(X) \in \left(-\frac{\pi}{p}, \frac{\pi}{p}\right)$$

N.J. Higham, *Functions of Matrices: Theory and Computation*, SIAM 2008

The scalar *p*-sector function

Let
$$\lambda = |\lambda| e^{i\varphi} \in \mathbb{C}, \quad \lambda \neq 0,$$

$$\varphi = \arg(\lambda) \neq \frac{2k\pi}{p} + \frac{\pi}{p}, \quad k \in \{0, 1, \dots, p-1\}$$

Then

$$s_p(\lambda) = e^{i2\pi q/p}$$

where $q \in \{0, 1, \dots, p-1\}$ such that

$$\frac{2q\pi}{p} - \frac{\pi}{p} < \varphi < \frac{2q\pi}{p} + \frac{\pi}{p}$$

(日) (四) (日) (日)

Matrix sector function of $A \in \mathbb{C}^{n \times n}$

$$\operatorname{sect}_{p}(A) = A\left(\sqrt[p]{A^{p}}\right)^{-1}$$
$$\lambda_{j}(A) \neq 0, \quad \operatorname{arg}(\lambda_{j}) \neq 2\pi(q + \frac{1}{2})/p$$
$$q \in \{0, \dots, p-1\}$$

Matrix sector function is some *pth* root of identity *I*.

(日) (同) (日) (日)

Matrix sector function

$$\operatorname{sect}_{p}(A) = Z\operatorname{diag}\left(s_{p}(\lambda_{j})I_{r_{j}}\right)Z^{-1}$$

$$A = Z \operatorname{diag} \left(J_1, J_2, \ldots, J_m \right) Z^{-1},$$

Jordan canonical form Jordan block $J_k(\lambda)$

・ロト ・個ト ・モト ・モト

Matrix sign function

Let

$$A = Z \operatorname{diag}(J_1, J_2) Z^{-1},$$

eigenvalues of J_1 lie in the open left half-plane, those of J_2 in open right half-plane. Then

$$\operatorname{sign}(A) = Z\operatorname{diag}(-l_1, l_2)Z^{-1}$$

Algorithms for matrix sign function: Schur method, Newton's method, Pade family of iterations,...

Fréchet derivative and condition numbers of matrix function

Let F = F(X) be a matrix function. The Fréchet derivative of F at X in the direction E is a linear mapping such that

$$F(X + E) - F(X) = L(X, E) = o(||E||).$$

Absolute and relative condition numbers of F(X)

$$\operatorname{cond}_{\operatorname{abs}}(F,X) = \lim_{\varepsilon \to 0} \sup_{||E|| \le \varepsilon} \frac{||F(X+E) - F(X)||}{\varepsilon} = ||L(X)||$$
$$\operatorname{cond}_{\operatorname{rel}}(F,X) = \frac{||L(X)|| ||X||}{||F(X)||}$$

Fréchet derivative of matrix sign function

Matrix sign decomposition - Higham

$$A = SN, S = sign(A), N = (A^2)^{1/2}$$

 $S^2 = I, S^{-1} = S$

$$S + \Delta_S = \operatorname{sign}(A + \Delta_A)$$

 $L = L(A, \Delta_A)$ Fréchet derivative of matrix sign function of A in direction Δ_A

$$\Delta_S - L = o(||\Delta_A||)$$

Fréchet derivative of matrix sector function

$$\operatorname{sect}_{p}(A) + \Delta_{S} = \operatorname{sect}_{p}(A + \Delta_{A})$$

Matrix sector decomposition A = SN, $S = \operatorname{sect}_{p}(A)$, $N = (A^{p})^{1/p}$, $S^{-1} = S^{p-1}$

The Fréchet derivative $L = L(A, \Delta_A)$ of matrix sector function is the unique solution of

$$NL + \sum_{k=0}^{p-2} S^k L S^{-k} N = \Delta_A - S^{-1} \Delta_A S$$

Schur algorithm

Real Schur algorithm for f(A)

 $A \in \mathbb{R}^{n \times n}$, $A = QRQ^T$ real Schur decomposition

 ${\it R}$ upper quasi-triangular and block, ${\it Q}$ orthogonal

Matrix function f of R has the same block structure as R

Parlett 1976

Main blocks of R are 1×1 or 2×2 .

Recurrence relations between blocks of R and f(R) lead to real Schur algorithm for f.

Schur algorithm

Schur algorithm for matrix *p*th root

Schur algorithms

Higham 1987 - square root Smith 2003 - *p*th root

Stability of Schur algorithm - Smith 2003

Let $A = QRQ^T$ be real Schur decomposition, $U = (R)^{1/p}$.

$$\beta(U) = \frac{||U||_F^p}{||R||_F} \ge 1$$

Schur algorithm for *p*th root stable provided $\beta(U)$ is sufficiently small.

Schur algorithm

Algorithms for matrix sector function

$$\operatorname{sect}_p(A) = A(A^p)^{-1/p}$$

 $\operatorname{sect}_p(A) = A \exp(-\log(A^p)/p)$

MATLAB: expm, logm

(日) (四) (日) (日)

- real Schur algorithm
- Newton's iterations
- Halley's method

Schur algorithm

Real Schur algorithm for sector

$$A = QRQ^{T}$$
 real Schur decomposition
 $U = \operatorname{sect}_{p}(R), \quad \operatorname{sect}_{p}(A) = QUQ^{T}.$
 $RU = UR, \quad U^{p} = I$

Recurrence relations between blocks of R and U and some Sylvester equations for the blocks lead to real Schur algorithm for sector.

Remark. If A has multiple complex eigenvalues in the sectors different from $\Phi_{p/2}$ (if p even) and Φ_0 then real Schur algorithm does not work.

Newton's method

Newton's method for sector

Shieh, Tsay, Wang, 1984

$$X_0 = A$$

$$X_{k+1} = \left((p-1)X_k^p + I
ight) p X_k^{1-p}$$

Newton's method is applied to the scalar equation

$$x^{p} - 1 = 0; \quad x_{0} = \lambda_{i}(A)$$

Convergence regions for matrix sector function follow from the results of Higham and Iannazzo for matrix *p*th roots.

A D > A B > A B > A B >

Newton's method

Regions of convergence of Newton for sector

determined experimentally

Newton's method, p=5, 30 iterations

Newton's method, p=7, 30 iterations

Newton's method

Convergence of Newton for sector

If all eigenvalues of A lie in

$$igcup_{k=0}^{
ho-1}(\mathbb{B}_k\cup\mathbb{C}_k\cup\mathbb{R}_k^+)$$

$$\mathbb{B}_{k} = \left\{ z \in \mathbb{C} : |z| \ge 1, \ \frac{2k\pi}{p} - \frac{\pi}{2p} < \arg(z) < \frac{2k\pi}{p} + \frac{\pi}{2p} \right\}$$
$$\mathbb{C}_{k} = \left\{ z \in \mathbb{C} : \frac{1}{2^{1/p}} \le |z| \le 1, \frac{2k\pi}{p} - \frac{\pi}{2p} < \arg(z) < \frac{2k\pi}{p} + \frac{\pi}{2p} \right\}$$
$$\mathbb{R}_{k}^{+} = \left\{ z : \mathbb{C} : \ \operatorname{Re} \ z > 0 \ \operatorname{and} \ \frac{2k\pi}{p} - \frac{\pi}{2p} < \arg(z) < \frac{2k\pi}{p} + \frac{\pi}{2p} \right\}$$

イロト イロト イヨト イヨト

ж

then Newton is convergent

Newton's method

Convergence regions of Newton

Region \mathbb{B}_k

and

Newton's method

Convergence regions of Newton

Additional regions

Halley's method

Halley's method for sector

Bakkaloğlu, Koç, 1995

$$X_0 = A$$

$$X_{k+1} = X_k \left[(p-1) X_k^p + (p+1) I
ight] imes \left[(p+1) X_k^p - (p-1) I
ight]^{-1}$$

Halley's method is applied to the scalar equation

$$x^{p} - 1 = 0; \quad x_{0} = \lambda_{i}(A)$$

(日)

Halley's method

1.6

0.8

0.4

(z) 0.

-0.4

-0.8

-1.2

-1.6

-1.6 -1.2 -0.8

-0.4

0.4

0.8 1.2 1.6 2.0

0.0

real(z)

Regions of convergence of Halley for sector

determined experimentally

Halley's method, p=5, 30 iterations

Halley's method, p=7, 30 iterations

 $\omega_j p$ th root of unity color: $|z_{30} - \omega_i| < 10^{-5}$

Halley's method

Halley's method

Stability of Newton's and Halley's methods for matrix sector function

- Matrix sector function is idempotent, i.e. sect_p(sect_p(A)) = sect_p(A).
- From the theorem of Higham we deduce that Newton's and Halley's iterations are stable, i.e.
 Fréchet derivatives of the functions, generating iterations, have bounded powers.

Halley's method

Stability of Newton's and Halley's methods for matrix sector function

- Matrix sector function is idempotent, i.e. sect_p(sect_p(A)) = sect_p(A).
- From the theorem of Higham we deduce that Newton's and Halley's iterations are stable, i.e. Fréchet derivatives of the functions, generating iterations, have bounded powers.

A □ > A □ > A □ > A □ >

Halley's method

Fréchet derivative

Let $A \in \mathbb{C}^{n \times n}$ be such that $\operatorname{sect}_p(A)$ exists and the Newton iterates X_k are convergent to $\operatorname{sect}_p(A)$. Let

$$Y_{k+1} = \frac{1}{p} \left((p-1)Y_k - X_k^{1-p} \left(\sum_{j=0}^{p-2} X_k^{p-2-j} Y_k X_k^j \right) X_k^{1-p} \right),$$

$$Y_0 = \Delta_A, \qquad X_0 = A.$$

Then the sequence Y_k tends to the Fréchet derivative $L(A, \Delta_A)$ of $\operatorname{sect}_p(A)$: $\lim_{k\to\infty} Y_k = L(A, \Delta_A)$.

Matrix sign (p = 2) Kenney-Laub $Y_{k+1} = \frac{1}{2}(Y_k - X_k^{-1}Y_kX_k^{-1})$

Implementation

Newton

$$X_{k+1} = \left[(p-1)X_k^p + l \right] \left(X_k^{-1} \right)^{p-1}$$

Halley

$$X_{k+1} = X_k \left[(p-1) X_k^p + (p+1) I
ight] imes \left[(p+1) X_k^p - (p-1) I
ight]^{-1}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Example 1- test matrix

$$A \in \mathbb{C}^{n \times n}, \qquad Y = A^{1/p}$$

$$C = \begin{bmatrix} 0 & I & & \\ & 0 & I & \\ & & \ddots & \ddots & \\ A & & & 0 \end{bmatrix} \in \mathbb{C}^{pn \times pn}.$$
$$\operatorname{sect}_{p}(C) = \begin{bmatrix} 0 & Y^{-1} & 0 \\ \vdots & 0 & \ddots & \\ 0 & \ddots & \ddots & Y^{-1} \\ AY^{-1} & 0 & \cdots & 0 \end{bmatrix}$$

eigenvalues of
$$A \in \mathbb{R}^{8 \times 8}$$
: $\frac{-k^2}{10} \pm ik$, $k = 1, 2, 3, 4$

black boxes - eigenvalues of C for p = 3, convergence regions

C has 4 groups of eigen. with 2p eigenvalues with the same module in each group

for p = 3: $\beta(U) \approx 10^{16}$ for p = 6: $\beta(U) \approx 10^{35}$ U = sect(R), R quasi-triang. from Schur decomp. of C

Table: Results for C
$$n = 24, p = 3, ||\hat{X}|| = 1.71 \times 10^6, iter_{Newt} = 8, iter_{Hall} = 5$$
alg. $||\hat{X}|| = 1.71 \times 10^6, iter_{Newt} = 8, iter_{Hall} = 5$ Alg. $||\hat{X}|| = 1.71 \times 10^6, iter_{Newt} = 8, iter_{Hall} = 5$ Alg. $||\hat{X}|| = 1.71 \times 10^6, iter_{Newt} = 8, iter_{Hall} = 5$ Alg. $||\hat{X}|| = 0.71 \times 10^6, iter_{Newt} = 1.12 \times 10^6, iter_{Newt} = 1.1$

n = 48, p = 6, $\|\hat{X}\| = 8.76 \times 10^5$, $iter_{Newt} = 9$, $iter_{Hall} = 5$

alg.	$\ \hat{X}^p - I\ $	$\ C\hat{X}-\hat{X}C\ $	$\frac{\ C\hat{X}-\hat{X}C\ }{\ \hat{X}\ \ C\ }$
Newt	5.07 <i>e</i> - 09	3.21 <i>e</i> - 09	8.10 <i>e</i> - 18
Hall	4.00 <i>e</i> - 09	3.57 <i>e</i> – 09	9.03 <i>e</i> - 18
$\mathtt{r}-\mathtt{Sch}$	8.81e – 04	5.81 <i>e</i> - 08	1.47 <i>e</i> – 16

for p = 6 $max_j |\lambda_j^{\mathrm{schur}} - \lambda_j^A| \approx 10^{-10}$

Example 2

Т

$$A = D + T$$
, $D = \operatorname{diag}(\lambda_j)$, complex triangular real, $n = 40$

Table: Results for
$$A$$

 $p = 5$, $\|\hat{X}\| = 1.1$, $iter_{Newt} = 28$, $iter_{Hall} = 16$

alg.	$\ \hat{X}^p - I\ $	$\ A\hat{X} - \hat{X}A\ $	$rac{\ A\hat{X}-\hat{X}A\ }{\ \hat{X}\ \ A\ }$
Newt	6.40 <i>e</i> - 16	5.57 <i>e</i> — 15	4.13 <i>e</i> – 17
Hall	1.45 <i>e</i> – 15	1.65e-11	1.22 <i>e</i> – 13

Example 3

A as in the previous example, n = 10

$$p=4, \quad \|\hat{X}\|=1.01, \quad \textit{iter}_{
m Newt}=22, \quad \textit{iter}_{
m Hall}=13$$

alg.	$\ \hat{X}^p - I\ $	$\frac{\ \hat{X}^{p}-I\ }{\ \hat{X}\ ^{p}}$	$\ A\hat{X} - \hat{X}A\ $	$rac{\ A\hat{X}-\hat{X}A\ }{\ \hat{X}\ \ A\ }$
Newt	2.68 <i>e</i> - 18	2.54 <i>e</i> - 18	1.47 <i>e</i> - 15	1.52e - 17
Hall	4.44 <i>e</i> - 16	4.22 <i>e</i> - 16	4.32 <i>e</i> - 15	4.46 <i>e</i> - 17
${\tt c-Sch}$	2.68 <i>e</i> - 18	2.55 <i>e</i> - 18	3.57 <i>e</i> - 16	3.69 <i>e</i> - 18

slow convergence of Newton

p = 10, $||\hat{X}|| = 1.02$, $iter_{Newt} = 51$, $iter_{Hall} = 28$

alg.	$\ \hat{X}^p - I\ $	$rac{\ \hat{X}^{p}-I\ }{\ \hat{X}\ ^{p}}$	$\ A\hat{X} - \hat{X}A\ $	$rac{\ A\hat{X}-\hat{X}A\ }{\ \hat{X}\ \ A\ }$
Newt	1.32 <i>e</i> – 15	1.08 <i>e</i> – 15	1.75 <i>e —</i> 15	1.47e - 17
Hall	1.94 <i>e</i> — 15	1.59 <i>e</i> — 15	3.29e – 08	2.76 <i>e</i> - 10
${\tt c-Sch}$	1.28e - 15	1.05e - 15	4.11 <i>e</i> - 16	3.45 <i>e</i> - 18

Summary

- Real Schur algorithm for the matrix sector function was proposed.
- Some convergence regions of Newton's and Halley's iterations were given.
- Conditioning and stability of the algorithms were discussed.
- Numerical experiments were presented.
 - the commutativity condition was not well satisfied by Halley in some cases,
 - accuracy of Schur algorithm for A with multiple eigenvalues was bad.

Other results in PhD of Beata Laszkiewicz, in preparation.

Summary

- Real Schur algorithm for the matrix sector function was proposed.
- Some convergence regions of Newton's and Halley's iterations were given.
- Conditioning and stability of the algorithms were discussed.

• Numerical experiments were presented.

- the commutativity condition was not well satisfied by Halley in some cases,
- accuracy of Schur algorithm for A with multiple eigenvalues was bad.

Other results in PhD of Beata Laszkiewicz, in preparation.

(日) (四) (日) (日)

Summary

- Real Schur algorithm for the matrix sector function was proposed.
- Some convergence regions of Newton's and Halley's iterations were given.
- Conditioning and stability of the algorithms were discussed.
- Numerical experiments were presented.
 - the commutativity condition was not well satisfied by Halley in some cases,
 - accuracy of Schur algorithm for A with multiple eigenvalues was bad.

Other results in PhD of Beata Laszkiewicz, in preparation.

Summary

- Real Schur algorithm for the matrix sector function was proposed.
- Some convergence regions of Newton's and Halley's iterations were given.
- Conditioning and stability of the algorithms were discussed.
- Numerical experiments were presented.
 - the commutativity condition was not well satisfied by Halley in some cases,
 - accuracy of Schur algorithm for A with multiple eigenvalues was bad.

Other results in PhD of Beata Laszkiewicz, in preparation.

Thank you for your attention!

References

- N.J. Higham, Functions of a matrix: Theory and Computation, SIAM 2008.
- B. Iannazzo, *Numerical solution of certain nonlinear matrix equations*, PhD, Pisa 2007.
- C. Kenney, A. Laub, *Rational iterative methods for the matrix sign function*, SIAM J. MAtrix Anal. Appl. 12 (2): 273 291, 1991.
- Ç.K. Koç, B. Bakkaloğlu, Halley's method for the matrix sector function IEEE Trans. on Automatic Control 40 (5): 994
 — 948, 1995.
- L.S. Shieh, Y.T. Tsay, C.T. Wang, Matrix sector function and their applications to system theory, IEE Proceedings 131 (5): 171 — 181, 1984.

(日)、(四)、(日)、(日)、