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Lanczos method

C. Lanczos,
An iteration method for the solution
of the eigenvalue problem of linear differential and
integral equation,
J. Res. Nat. Bur. Standards 45 (1950),
255-282.

Conjugate gradient method

M.R. Hestenes, E. Stiefel,
Methods of conjugate gradients for solving linear

systems,
J. Nat. Bur. Standards 49 (1952), 409-436.

Krystyna Zietak The conjugate gradient method in finite precision comput



Pioneering papers of Wozniakowski

@ H. Wozniakowski, Numerical stability of the
Chebyshev method for the solution of large linear

systems,
Numer. Math. 28 (1977), 191-209.
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Pioneering papers of Wozniakowski

@ H. Wozniakowski, Numerical stability of the
Chebyshev method for the solution of large linear

systems,
Numer. Math. 28 (1977), 191-209.

@ H. Wozniakowski, Roundoff error analysis

iterations for large linear systems,
Numer. Math. 30 (1978), 301-314.

© H. Wozniakowski, Roundoff-error analysis of a

new class of conjugate-gradient algorithms,
Linear Alg. Appl. 29 (1980), 507-529.
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Pioneering PhD thesis

@ C.C. Paige, The computation of eigenvalues
and eigenvectors of very large sparse matrices,
University of London 1971.

Review paper
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Pioneering PhD thesis

@ C.C. Paige, The computation of eigenvalues
and eigenvectors of very large sparse matrices,
University of London 1971.

@ A. Greenbaum, Convergence properties of the
conjugate gradient algorithm in exact and finite
precision arithmetic,

University of California, Berkeley 1981.

Review paper

o G. Meurant, Z. Strakos,
The Lanczos and conjugate gradient algorithms
in finite precision arithmetic,
Acta Numerica 2006, 471-542.
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Roundoff error analysis of iterations for linear systems

Ax = b, A Hermitian positive definite

a exact solution, y computed solution in 7/

Numerical stability of method

ly — el is of order 27*[JA[[ IA7H] []a]

Well behaviour

(A+ AA)y = b, [||AA|| is of order 27| A
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Numerical stability of iterative method

xx computed sequence in f/

lim|lxi — | is of order 27*[A]| |A77]] [|a

v

Wozniakowski 1977

o Chebyshev method is numerically stable,

A\
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xx computed sequence in f/
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Wozniakowski 1977
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Numerical stability of iterative method

xx computed sequence in f/

lim|lxi — | is of order 27*[A]| |A77]] [|a

v

Wozniakowski 1977

o Chebyshev method is numerically stable,

e but not well-behaved

e residuals

| Axi — b|| are of order 2~[|Al[?||A=1|| |||
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Chebyshev method

Xk — 0 = Wk(A)(XO — Oz)

_ Tk(f(2)) :b—l—a_2 z

= TF0) W=D %

Wk(z)

Tk(z) Chebyshev polynomial

re = Axk—b,  Xki1 = xk+[Pk—1(xk—Xk—-1)—rk]/ Gk,

new algorithm for computing p, and g,
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Jacobi, Gauss-Seidel, SOR

A= A" >0 has property A

consistently ordered, A=D—-L—U, ~D'U+~"1D7U

Dy Ap
A=
{ An D ]

Wozniakowski 1978
o Jacobi, Richardson, SOR methods are

numerically stable, but not well-behaved
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Jacobi, Gauss-Seidel, SOR

A= A" >0 has property A

consistently ordered, A=D—-L—U, ~D'U+~"1D7U

Dy Ap
A=
{ An D ]

Wozniakowski 1978
o Jacobi, Richardson, SOR methods are

numerically stable, but not well-behaved

o Gauss-Seidel is well-behaved
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Conjugate gradient method cg

Ax = b
A=A" >0, ordern

o In exact arithmetic cg generates
orthogonal residual vectors r, = b — Ax

<rj,r>=0
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Conjugate gradient method cg

Ax = b
A=A" >0, ordern

o In exact arithmetic cg generates
orthogonal residual vectors r, = b — Ax

<rj,r>=0

o in exact arithmetic o = A~1b is obtained
after at most n steps.
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Hestenes-Stiefel formulation of cg

e given xg, rh=b—Axg, po=ro
o forj=1,2,...
Xj = Xj—1 1 7j-1Pj-1
_ S G __<hLiihi>
< Pj; APj-1 > < [fj-1,lj-1 >
pi =ri+djpj-1,  ri=rji-1— Y-1Apj-1,
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Wozniakowski 1980
o new class of conjugate gradient

algorithms

Gatlinburg VII at Asilomar 1977
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Wozniakowski 1980
o new class of conjugate gradient

algorithms

o numerical stability of these algorithms
with iterative refinement

Gatlinburg VII at Asilomar 1977
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Wozniakowski 1980
o new class of conjugate gradient
algorithms

o numerical stability of these algorithms
with iterative refinement

o numerical well behaviour if
2 t[cond,(A)]?

is at most of order unity

Gatlinburg VII at Asilomar 1977
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Wozniakowski algorithm

Wozniakowski cg

e = AXk — b, Zj = Xk — Ckrlg
< I, gk >
Yk = Xk—1 — Zk Ck =
’ < 1y, Arg >

Xk+1 = Zk — UkYk
algorithm for computation of uy is not given
explicitly

Classical version of cg: xx11 = xk + Ykpx |
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In: Accuracy and Stability of Numerical Algorithms

Higham writes:

@ Wozniakowski (1980) analyses a class of
conjugate gradient algorithms (which
does not include the usual conjugate
gradient method).
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In: Accuracy and Stability of Numerical Algorithms

Higham writes:

@ Wozniakowski (1980) analyses a class of
conjugate gradient algorithms (which
does not include the usual conjugate
gradient method).

@ Wozniakowski obtains a forward error

bound proportional to [cond(A)]*? and a
residual bound proportional to cond(A).
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In: Accuracy and Stability of Numerical Algorithms

Higham writes:

Q@ Greenbaum (1989) presents a detailed error
analysis of the conjugate gradient method, but
her concern is with the rate of convergence
rather than the attainable accuracy.
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In: Accuracy and Stability of Numerical Algorithms

Higham writes:

Q@ Greenbaum (1989) presents a detailed error
analysis of the conjugate gradient method, but
her concern is with the rate of convergence
rather than the attainable accuracy.

@ Notay (1993) analyses how rounding errors
influence the convergence rate of the conjugate
gradient method for matrices with isolated
eigenvalues at the ends of the spectrum.
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Wozniakowski class of cg algorithms

For these algorithms there exists computed

vector x, such that
|AY2(x — a)l] < 27 H[JAY2]] |||

If [|AY2|] ||xk|| is of order [|AY2x]]
then these cg algorithms
are numerically stable in A-norm:

[[A4Y2(x — )l = 0(2" Fcond(A)||AY2x]]),

but not well behaved
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Relationship between cg and Lanczos

Krylov subspace

A n X n, nonsingular sym. posit. def., ||v|]» =1

Ki(v, A) = span{v, Av, ..., A"y},

AX:b, r():b—AXo
Xk = xo + Viyk

Vi is the matrix of orthonormal basis of ICx(vy, A),
where Krylov subspace is generated by Lanczos
algorithm with v; = ro/||rol|
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Conjugate gradient method cg and Lanczos

Matrix notation Lanczos algorithm

AVie = Vi Tie + nkaa kaekT, Ti sym. tridiag.

(%) Twyk = ||roller, Xk = Xo + Viyk

(*) is equivalent to cg method
of Hestenes and Stiefel
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Properties of cg

If o = b— Axx = rg — AVjyx is orthogonal to V/
then r,.1 =0

o rg=b—Ax, wvi=ro/lrll

Krystyna Zietak The conjugate gradient method in finite precision comput



Properties of cg

If o = b— Axx = rg — AVjyx is orthogonal to V/
then r,.1 =0

ol’o:b—AXo, V1:I’0/HI’0H
o Kx(v1,A) =span{ry,...,rk 1}
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Properties of cg

If o = b— Axx = rg — AVjyx is orthogonal to V/
then r,.1 =0

ol’o:b—AXo, V1:I’0/HI’0H
o Kx(v1,A) =span{ry,...,rk 1}
o J rj,lj >= 0, rn L ’Ck(vl,A)
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Properties of cg

If o = b— Axx = rg — AVjyx is orthogonal to V/
then r,.1 =0

ol’o:b—AXo, V1:I’0/HI’0H
o Kx(v1,A) =span{ry,...,rk 1}
o J rj,lj >= 0, rn L ’Ck(vl,A)

(*]
k_ Tk

=(—1
et = I
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Error norms in cg

@ Lanczos and cg can be formulated in
terms of orthogonal polynomials and
Gauss quadrature of some integral
determined by A, »
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Error norms in cg

@ Lanczos and cg can be formulated in
terms of orthogonal polynomials and
Gauss quadrature of some integral
determined by A, »

@ Lanczos and cg can be viewed as matrix
representations of Gauss quadrature
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Error norms in cg

@ Lanczos and cg can be formulated in
terms of orthogonal polynomials and
Gauss quadrature of some integral
determined by A, »

@ Lanczos and cg can be viewed as matrix
representations of Gauss quadrature

@ A—norm of the error x, — o and
Euclidean norm of the error in c¢g can be
computed using Gauss quadrature.
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Error norms in cg

@ Computing A—norm of the error x, — «
is closely related to approximating
quadratic forms.
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Error norms in cg

@ Computing A—norm of the error x, — «
is closely related to approximating
quadratic forms.

@ This has been studied extensively by
Gene Golub with many
collaborators during the last
thirty-five years (see the review paper
of Meurant and Strako3)
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Lanczos and cg in finite precision

© What happens numerically to the equivalence of
Lanczos and cg
as well as to the equivalence with orthogonal
polynomials and Gauss quadrature?
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Lanczos and cg in finite precision

© What happens numerically to the equivalence of
Lanczos and cg
as well as to the equivalence with orthogonal
polynomials and Gauss quadrature?

© How do we evaluate convergence of cg in finite
precision arithmetic?
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Lanczos and cg in finite precision

© What happens numerically to the equivalence of
Lanczos and cg
as well as to the equivalence with orthogonal
polynomials and Gauss quadrature?

© How do we evaluate convergence of cg in finite
precision arithmetic?

© see Z. Strakos and P. Tichy, On error estim.
in cg and why it works in finite precision
computation,
Electr. Trans. Numer. Anal. 13 (2002).
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Conclusion
from Strakos and Tichy talk:

Hestenes and Stiefel cg (1952)
should be celebrated,

but also studied.
even after b0 years!
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Most important of all

My congratulations to
Henryk

who was the pioneer
in this field!!!
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Many happy and fruitful years!!!

Krystyna Zietak The conjugate gradient method in finite precision comput



