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Lanczos method

C. Lanczos,
An iteration method for the solution

of the eigenvalue problem of linear di�erential and
integral equation,

J. Res. Nat. Bur. Standards 45 (1950),
255�282.

Conjugate gradient method

M.R. Hestenes, E. Stiefel,
Methods of conjugate gradients for solving linear

systems,
J. Nat. Bur. Standards 49 (1952), 409�436.
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Pioneering papers of Wo¹niakowski

1 H. Wo¹niakowski, Numerical stability of the
Chebyshev method for the solution of large linear
systems,
Numer. Math. 28 (1977), 191�209.

2 H. Wo¹niakowski, Roundo� error analysis
iterations for large linear systems,
Numer. Math. 30 (1978), 301�314.

3 H. Wo¹niakowski, Roundo�-error analysis of a
new class of conjugate-gradient algorithms,
Linear Alg. Appl. 29 (1980), 507�529.
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Pioneering PhD thesis

1 C.C. Paige, The computation of eigenvalues
and eigenvectors of very large sparse matrices,
University of London 1971.

2 A. Greenbaum, Convergence properties of the
conjugate gradient algorithm in exact and �nite
precision arithmetic,
University of California, Berkeley 1981.

Review paper

G. Meurant, Z. Strako²,
The Lanczos and conjugate gradient algorithms
in �nite precision arithmetic,
Acta Numerica 2006, 471�542.
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Roundo� error analysis of iterations for linear systems

Ax = b, A Hermitian positive de�nite

α exact solution, y computed solution in �

Numerical stability of method

||y − α|| is of order 2−t ||A|| ||A−1|| ||α||

Well behaviour

(A + ∆A)y = b, ||∆A|| is of order 2−t ||A||
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Numerical stability of iterative method

xk computed sequence in �

lim
k
||xk − α|| is of order 2−t ||A|| ||A−1|| ||α||

Wo¹niakowski 1977

Chebyshev method is numerically stable,

but not well-behaved

residuals

||Axk − b|| are of order 2−t ||A||2||A−1|| ||α||
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Chebyshev method

xk − α = Wk(A)(x0 − α)

Wk(z) =
Tk(f (z))

Tk(f (0))
, f (z) =

b + a

b − a
− 2

z

b − a

Tk(z) Chebyshev polynomial

rk := Axk−b, xk+1 := xk+[pk−1(xk−xk−1)−rk ]/qk ,

new algorithm for computing pk and qk
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Jacobi, Gauss-Seidel, SOR

A = AH > 0 has property A

consistently ordered, A = D − L−U, γD−1U + γ−1D−1U

A =

[
D1 A12

A21 D2

]

Wo¹niakowski 1978
Jacobi, Richardson, SOR methods are

numerically stable, but not well-behaved

Gauss-Seidel is well-behaved
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Conjugate gradient method cg

Ax = b

A = AH > 0, order n

In exact arithmetic cg generates

orthogonal residual vectors rk = b − Axk

< ri , rj >= 0

in exact arithmetic α = A−1b is obtained

after at most n steps.
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Hestenes-Stiefel formulation of cg

given x0, r0 = b − Ax0, p0 = r0

for j = 1, 2, . . .

xj = xj−1 + γj−1pj−1

γj−1 =
< rj−1, rj−1

< pj ,Apj−1 >
, δj =

< rj , rj >

< rj−1, rj−1 >

pj = rj + δjpj−1, rj = rj−1 − γj−1Apj−1,
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Wo¹niakowski 1980
new class of conjugate gradient

algorithms

numerical stability of these algorithms

with iterative re�nement

numerical well behaviour if

2−t[cond2(A)]2

is at most of order unity

Gatlinburg VII at Asilomar 1977
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Wo¹niakowski algorithm

Wo¹niakowski cg

rk = Axk − b, zk = xk − ckrk

yk = xk−1 − zk , ck =
< rk , rk >

< rk ,Ark >
xk+1 = zk − ukyk

algorithm for computation of uk is not given
explicitly

Classical version of cg : xk+1 = xk + γkpk
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In: Accuracy and Stability of Numerical Algorithms

Higham writes:

1 Wo¹niakowski (1980) analyses a class of

conjugate gradient algorithms (which

does not include the usual conjugate

gradient method).

2 Wo¹niakowski obtains a forward error

bound proportional to [cond(A)]3/2 and a

residual bound proportional to cond(A).
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In: Accuracy and Stability of Numerical Algorithms

Higham writes:

1 Greenbaum (1989) presents a detailed error
analysis of the conjugate gradient method, but
her concern is with the rate of convergence
rather than the attainable accuracy.

2 Notay (1993) analyses how rounding errors
in�uence the convergence rate of the conjugate
gradient method for matrices with isolated
eigenvalues at the ends of the spectrum.
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Wo¹niakowski class of cg algorithms

For these algorithms there exists computed

vector xk such that
||A1/2(xk − α)|| ≤ cn2

−t||A1/2|| ||xk ||

If ||A1/2|| ||xk || is of order ||A1/2xk ||
then these cg algorithms

are numerically stable in A-norm:

||A1/2(xk − α)|| = 0(2−t
cond(A)||A1/2xk ||),

but not well behaved
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Relationship between cg and Lanczos

Krylov subspace

A n × n, nonsingular sym. posit. def., ||v ||2 = 1

Kk(v ,A) = span{v ,Av , . . . ,Ak−1v},

Ax = b, r0 = b − Ax0

xk = x0 + Vkyk

Vk is the matrix of orthonormal basis of Kk(v1,A),
where Krylov subspace is generated by Lanczos
algorithm with v1 = r0/||r0||
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Conjugate gradient method cg and Lanczos

Matrix notation Lanczos algorithm

AVk = VkTk + ηk+1vk+1e
T
k , Tk sym. tridiag .

(∗) Tkyk = ||r0||e1, xk = x0 + Vkyk

(*) is equivalent to cg method

of Hestenes and Stiefel
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Properties of cg

If rk = b − Axk = r0 − AVkyk is orthogonal to Vk

then rn+1 = 0

r0 = b − Ax0, v1 = r0/||r0||
Kk(v1,A) = span{r0, . . . , rk−1}
< ri , rj >= 0, rk ⊥ Kk(v1,A)

vk+1 = (−1)k
rk

||rk ||
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Error norms in cg

1 Lanczos and cg can be formulated in

terms of orthogonal polynomials and

Gauss quadrature of some integral

determined by A, v1
2 Lanczos and cg can be viewed as matrix

representations of Gauss quadrature

3 A−norm of the error xk − α and

Euclidean norm of the error in cg can be

computed using Gauss quadrature.
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Error norms in cg

1 Computing A−norm of the error xk − α

is closely related to approximating

quadratic forms.

2 This has been studied extensively by

Gene Golub with many

collaborators during the last

thirty-�ve years (see the review paper

of Meurant and Strako²)
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Lanczos and cg in �nite precision

1 What happens numerically to the equivalence of
Lanczos and cg

as well as to the equivalence with orthogonal
polynomials and Gauss quadrature?

2 How do we evaluate convergence of cg in �nite
precision arithmetic?

3 see Z. Strako² and P. Tichy, On error estim.
in cg and why it works in �nite precision
computation,
Electr. Trans. Numer. Anal. 13 (2002).
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Conclusion
from Strako² and Tichy talk:

Hestenes and Stiefel cg (1952)
should be celebrated,
but also studied,
even after 50 years!
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Most important of all

My congratulations to

Henryk

who was the pioneer
in this �eld!!!
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Many happy and fruitful years!!!
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