# Digital Signal Processing 

Exercises

Jacek Cichoń<br>Faculty of Information and Communication Technology Wrocław University of Science and Technology, 2023/24

## Notation:

- digital unit impuls function: $\delta[n]= \begin{cases}1: & n=0 \\ 0: & n \neq 0\end{cases}$
- digital unit step function: $u[n]= \begin{cases}0: & n<0 \\ 1: & n \geq 0\end{cases}$
- digital ramp function: $r[n]= \begin{cases}0: & n<0 \\ n: & n \geq 0\end{cases}$
- imaginary unit is denoted by $j$
- conjugate of complex number $z$ is denoted by $z^{*}$


## 1 Signals

Ex. 1 - Draw the graph of the sequences

1. $x[n]=u[n-1]-u[n-5]$
2. $y[n]=u[n]-2 u[n-4]+u[n-6]$
3. $z[n]=r[n]-2 r[n-4]+r[n-8]$

Ex. 2 - Show that

1. $r[n]=\sum_{k=-\infty}^{n-1} u[k]$
2. $r[n]=\sum_{k=0}^{\infty} k \delta[n-k]$

Ex. 3 - Let

$$
x[n]= \begin{cases}1 & : n=0 \\ 3 & : n=1 \\ 2 & : n=3 \\ 0 & : \text { else }\end{cases}
$$

1. Express $x[m]$ in terms of shifted $\delta$ signals
2. Express $x[m]$ in terms of shifted $u(n)$ signals

Ex. 4 - Let

$$
f[n]= \begin{cases}0: & n \leq 0 \vee n \geq 6 \\ 1: & 1 \leq n \leq 2 \\ -1: & 3 \leq n \leq 5\end{cases}
$$

Express $f$ in terms of unite step function.

Ex. 5 - Determine whether or not the following signals are periodic and for each signal which is periodic determine its fundamental period

1. $x[n]=\sin (0.25 n)$
2. $x[n]=\cos (\pi+n)$
3. $x[n]=e^{\frac{j \pi n}{10}} \cos \left(\frac{\pi n}{5}\right)$

Ex. 6 - Find the even and odd parts of the following signals:

1. $x(n)=u(n)$
2. $x(n)=q^{n} u(n)$

Ex. 7 - Find the period of the sequence

$$
x[n]=\cos \left(\frac{\pi n}{4}\right) \cos \left(\frac{\pi n}{5}\right)+\cos \left(\frac{\pi n}{10}\right) .
$$

Ex. 8 - Let $x=\{\underline{2}, 4,4,3,3,5\}^{*}$ be a periodic signal with period 6 and let $y=\{\underline{0}, 0,0,3,3,-2,1,1,1,4,-1,2,2,2\}^{*}$ be a periodic signal with period 15 . Find the fundamental period of the signal $x+y$.

Ex. 9 - Given the sequence $x[n]=(5-n)(u[n]-u[n-5])$ make a sketch of

1. $y_{0}[n]=x[n]$
2. $y_{1}[n]=x[4-n]$
3. $y_{2}[n]=x[2 n-3]$
4. $y_{3}[n]=x\left[n^{2}-2 n+1\right]$

Ex. 10 - The power in a signal $\{x[n]\}$ id defined as

$$
P=\sum_{n=-\infty}^{\infty} x[n] \cdot x[n]^{*}
$$

Show that if $x(n)$ is a real signal, $x_{e}$ and $x_{o}$ are the even and odd parts of $x, P, P_{e}$ and $P_{o}$ are the powers in $x, x_{e}$ and $x_{o}$ then

$$
P=P_{e}+P_{o}
$$

Ex. 11 - Consider the sequence $x[n]=q^{n} u[-n]$ where $q>1$.

1. Find $\sum_{n=-\infty}^{\infty} x[n]$
2. Compute the power in signal $x$
3. Let $y[n]=n \cdot x[n]$. Compute the power in signal $y$.

Ex. 12 - The average power in a signal $x$ is defined as

$$
P=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{k=-N}^{N} x[k] \cdot x[k]^{*}
$$

Calculate the average power of the following series

1. $x[n]=\left(1+\frac{1}{n+1}\right) u[n]$
2. $x[n]= \begin{cases}1: & 2 \mid n \\ 2: & \neg(2 \mid n)\end{cases}$

## 2 Systems

Ex. 13 - Which of the following systems is homogeneous, additive and which are linear:

1. $F_{0}\left((x[n])=e^{x[n]}\right.$
2. $F_{1}((x[n])=x[n+2]+4 x[n+1]$
3. $F_{2}((x[n])=x(n+2)+3 x[n+1]+1$
4. $F_{3}((x[n])=x[n] \sin (\pi n)$
5. $F_{4}((x[n])=\Re(x[n])$
6. $F_{3}\left((x[n])=x[n]+x^{*}[n]\right.$

Ex. 14 - Which of the following linear systems is time invariant?

1. $y(n)=3 x[n-2]$
2. $y(n)=3 x[2 n]$

Ex. 15 - Show that convolution is associative.
Ex. 16 - Let $h[n]=\delta[n]-\delta[n-1]$. Find the convolution $x \star h$ for each of the following sequences

1. $x[n]=\cos (\omega n)$ (express your answers as $A \cos (\omega n+\theta)$ for some A and $\theta$
2. $x[n]=\left(\frac{1}{2}\right)^{n} u[n]$
3. $x[n]=u[n+1]-u[n-3]$

Ex. 17 - Express $S_{k}(\delta) \star S_{l}(\delta)$ in terms of shift of $\delta$.
Ex. 18 - Let

$$
\begin{aligned}
& h_{1}[n]=\delta[n]+\delta[n-1]+\delta[n-2] \\
& h_{2}[n]=\delta[n+1]-\delta[n-1] \\
& h_{3}[n]=\delta[n-3]
\end{aligned}
$$

Simplify the expression $h=\left(h_{1} \star h_{2}\right)+h_{3}$.
Ex. 19 - Let us fix $\alpha \in \mathbb{C}$. Consider the equation $y[n]=\alpha y[n-1]+x[n]$ (this is an example of moving - window average).

1. Suppose that $y[-1]=0$. Calculate $y[k]$ for $k=0 \ldots 5$.
2. Guess the general form of the formula for $y[n]$.
3. Show that if $|\alpha|<1$ then considered system is BIBO.

Ex. 20 - Let us consider the following system $T(x)[n]=\frac{1}{5} \sum_{k=0}^{4} x[n-k]$.

1. Let $h=T(\delta)$. Calculate the function $h$.
2. Calculate $x \star h$
3. Design a Signal Graph Flow for considered system.

Ex. 21 - Consider equation $y[n]=y[n-1]+y[n-2]+x[n]$. Let us assume that $y[n]=0$ for $n \leq 0$ and $y[1]=1$.

1. Use Z transform to calculate

$$
Y(z)=\sum_{n \geq 0} \frac{y[n]}{z^{n}}
$$

2. Deduce from $Y(z)$ a general formula for $y[n]$.

Ex. 22 - The Backer-code of length 11 is the sequence

$$
\mathbf{B}=[1,1,1,-1,-1,-1,1,-1,-1,1,-1] .
$$

1. Design a filter to detect the presence of the code $\mathbf{B}$ in the signal.
2. Write the resulting transformation as a convolution.
3. Test the code detection performance on signals of the following form: $s=x+y$, where

$$
x=\underbrace{[0,0, \ldots, 0]}_{100}\|\mathbf{B}\| \underbrace{[0,0, \ldots, 0]}_{100}
$$

$$
y=\left[y_{1}, \ldots, y_{211}\right]
$$

where $\left(y_{i}\right)$ are independently generated real numbers from Gauss distribution with mean 0 and standard deviation 0.1 (this is so call Gausian noice).
4. Calculate the auto-correlation vector of $\mathbf{B}$.
5. Change the the sign in arbitrary position in Backer-code and calculate the autocorrelation vector of changed sequence.

### 2.1 Convolution and Z transform

Ex. 23 - Compute $z=x \star y$ where

1. $x[n]=\alpha^{n} u[n], y[n]=\beta^{n} u[n]$
2. $x[n]=\alpha^{n} u[n], y[n]=\alpha^{-n} u[-n]$, where $0<\alpha<1$
3. $y[n]=u[n]$ and $x$ is arbitrary

Ex. 24 - Suppose that $\mathcal{L}$ is LTI such that $h=\mathcal{L}(\delta)=\left(\alpha^{n} u[n]\right)_{n}$. Compute $\mathcal{L}(u)$.
Ex. 25 - Compute Z transform of the following sequences

1. $a[n]=\alpha^{n} u[n]$
2. $b[n]=\alpha^{n} u[-n]$
3. $c[n]=n u[n]$
4. $d[n]=n^{2} u[n]$
5. $e=a \star c$
6. $f[n]=\sin (\alpha n) u[n]$
7. $g[n]=\cos (\alpha n) u[n]$

Hint: Try to solve the last two points together

## 3 Discrete Fourier Transform

From this point on, we will denote the imaginary unit by I.
Ex. 26 - Let $\left.x_{k}(n)=\sin \left(\left(\frac{2 \pi}{N} \cdot k\right) \cdot n\right)\right)$ for $n=0, \ldots, N-1$. Use the formula

$$
\sin (t)=\frac{1}{2 I}(\exp (I t)-\exp (-I t))
$$

to compute $\mathcal{F}\left(x_{k}\right)$.
Ex. 27 - Let $N=256$. Compute Fourier transform of the following sequence

$$
\begin{aligned}
& 1 . x_{1}[n]=\delta[n] \\
& 2 . x_{2}[n]=1 \\
& 3 . y[n]=\cos \left(\frac{2 \pi}{N} \cdot I \cdot 50 \cdot n\right) \\
& 4 . z[n]=\sin \left(\frac{2 \pi}{N} \cdot I \cdot 40 \cdot n\right) \\
& 5 . w[n]=3 \cos \left(\frac{2 \pi}{N} \cdot I \cdot 10 \cdot n\right)+7 \sin \left(\frac{2 \pi}{N} \cdot I \cdot 300 \cdot n\right)
\end{aligned}
$$

Notation:

$$
\begin{aligned}
\Omega_{N} & =\frac{1}{\sqrt{N}}\left[e^{-\frac{2 \pi I}{N} i \cdot j}\right]_{i, j=0, \ldots, N-1} \\
\Omega_{N}^{*} & =\frac{1}{\sqrt{N}}\left[e^{\frac{2 \pi I}{N} i \cdot j}\right]_{i, j=0, \ldots, N-1}
\end{aligned}
$$

Ex. 28 - Calculate $\Omega_{N} \cdot \Omega_{N}^{*}$ and $\Omega_{N}^{*} \cdot \Omega_{N}$, where $\cdot$ denotes matrix multiplication
Ex. 29 - Compute $\Omega_{3}$ and use this matrix to calculate $\mathcal{F}(x)$ for $x=[1, I, 0]$.
Ex. 30 - Compute $\Omega_{8}$.
Ex. 31 - Calculate $\mathcal{F}\left(\varepsilon_{N, a}\right)$ for $a=0, \ldots, N-1$, where $\left(\varepsilon_{N, 0}, \varepsilon_{N, 1}, \ldots, \varepsilon_{N, N-1}\right)$ is the standard basis of $\mathbb{C}^{N}$, i.e. $\varepsilon_{N, 0}=[1,0,0, \ldots, 0], \varepsilon_{N, 1}=[0,1,0, \ldots, 0], \ldots, \varepsilon_{N, N-1}=[0,0,0, \ldots, 1]$.

Ex. 32 - Let $z \in \mathbb{C}^{N}$. Find a formula for $\mathcal{F}(\mathcal{F}(z))$.
Ex. 33 - Use any program or system to show the DFT of a sequence

$$
x[n]=\cos \left(\frac{2 \pi I}{64}(10+\delta) n\right)
$$

for $n=0, \ldots 63$ for various $\delta \in[0,1]$. Your program should display real part, imaginary part and absolute value of obtained sequences. Interpret your observations.

## 4 Matrix representation

Ex. $34-$ Let $A: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ be defined by

$$
A x=3 S_{1}(x)+x
$$

$\left(\right.$ where $\left.\left(S_{k}(x)\right)(n)=x(n-k \bmod 4)\right)$.

1. Show that $A$ is translation invariant.
2. Find matrix of $A$ in the standard basis of $\mathbb{C}^{4}$.
3. Find matrix of $A$ is the Fourier basis of $\mathbb{C}^{4}$.

Ex. 35 - Show that a linear operator $A: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ is translation invariant if and only if $A$ is $S_{1}$ invariant.

Ex. 36 - Find the circulant matrix of the linear operator $A: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ defined by the formula

$$
A x=2 S_{-2}(x)+x+S_{1}(x)
$$

Ex. 37 - Prove that a product of two circulant matrices is circulant.
Ex. 38 - Let $M \in M_{N \times N}(\mathbb{C})$ be an circulant matrix. Show that the linear mapping

$$
A x=M \cdot x^{T}
$$

is translation invariant.
Ex. 39 - Let $b_{1}, b_{2} \in \mathbb{C}^{N}$. Let $C_{b}$ be the convolution operators defined by

$$
C_{b}(x)=b \star x
$$

Show that

$$
C_{b_{1}} \circ C_{b_{2}}=C_{b_{1} \star b_{2}}
$$

Ex. 40 - Suppose that system $H$ be described by equation $H(x)=h \star x$. The frequency respone of system $H$ is defined as

$$
H(\omega)=\sum_{n=-\infty}^{\infty} h[n] e^{I \omega n}
$$

where $\omega \in \mathbb{R}$. Let $x[n]=e^{I \omega n}$. Show that

$$
H(x)=H(\omega) x
$$

Ex. 41 - Let system $H$ be described by equation

$$
H(x)[n]=\frac{1}{3}(\delta[n-1]+\delta[n]+\delta[n+1]) .
$$

1. Represent $H$ as a convolution, i.e. find $h$ such that $H(x)=h \star x$.
2. Calculate system response function $H(\omega)$.
3. Let $x[n]=e^{I(\pi / 3) n}$. Calculate $H(x)$.
4. Let $x[n]=\cos ((\pi / 3) n)$. Calculate $H(x)$.

Ex. 42 - Let system $H$ be described by equation

$$
H(x)[n]=\delta[n]-\delta[n-1] .
$$

1. Represent $H$ as a convolution, i.e. find $h$ such that $H(x)=h \star x)$.
2. Calculate system response function $H(\omega)$.
3. Let $x[n]=e^{I(\pi / 3) n}$. Calculate $H(x)$.
4. Let $x[n]=e^{I(\pi / 2) n}$. Calculate $H(x)$.

Ex. 43 - The function sinc is defined by equation

$$
\operatorname{sinc}(x)= \begin{cases}1 & : x=0 \\ \frac{\sin (x)}{x} & : x \neq 0\end{cases}
$$

1. Draw a diagram of this function.
2. Show that sinc is continuous.
3. Calculate $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (I \omega k) d \omega$.
4. Show that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (I \omega k) \exp (-I \omega n) d \omega= \begin{cases}1: & k=n \\ 0: & k \neq n\end{cases}
$$

to be continued
Good luck,
Jacek Cichoń

