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Preface

This book has two main themes: the Baire category theorem as a method
for proving existence, and the “duality™ between measure and category.
The category method is illustrated by a variety of typical applications,
and the analogy between measure and category is explored in all of its
ramifications. To this end, the elements of metric topology are reviewed
and the principal properties of Lebesgue measure are derived. It turns
out that Lebesgue integration is not essential for present purposes, the
Riemann integral is sufficient. Concepts of general measure theory and
topology are introduced, but not just for the sake of generality. Needless
to say, the term “category” refers always to Baire category; it has nothing
to do with the term as it is used in homological algebra.

A knowledge of calculus is presupposed, and some familiarity with
the algebra of sets. The questions discussed are ones that lend themselves
naturally to set-theoretical formulation. The book is intended as an
introduction to this kind of analysis. It could be used to supplement a
standard course in real analysis, as the basis for a seminar, or for inde-
pendent study. It is primarily expository, but a few refinements of known
results are included, notably Theorem 15.6 and Proposition 20.4. The
references are not intended to be complete. Frequently a secondary
source is cited, where additional references may be found.

The book is a revised and expanded version of notes originally
prepared for a course of lectures given at Haverford College during the
spring of 1957 under the auspices of the William Pyle Philips Fund.
These in turn were based on the Earle Raymond Hedrick Lectures
presented at the Summer Meeting of the Mathematical Association of
America, at Seattle, Washington, in August, 1956.

Bryn Mawr, April 1971 John C. Oxtoby
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1. Measure and Category on the Line

The notions of measure and category are based on that of countability.
Cantor’s theorem, which says that no interval of real numbers is countable,
provides a natural starting point for the study of both measure and
category. Let us recall that a set is called denumerable if its elements can
be put in one-to-one correspondence with the natural numbers 1,2, ....
A countable set is one that is either finite or denumerable. The set of
rational numbers is denumerable, because for each positive integer k
there are only a finite number (< 2k — 1) of rational numbers p/q in
reduced form (¢ >0, p and ¢ relatively prime) for which |p|+¢g=k. By
numbering those for which k=1, then those for which k=2, and so on,
we obtain a sequence in which each rational number appears once and
only once. Cantor’s theorem reads as follows.

Theorem 1.1 (Cantor). For any sequence {a,} of real numbers and for
any interval I there exists a point p in I such that p % a, for every n.

One proof runs as follows. Let I, be a closed subinterval of I such that
a, ¢1,.Let 1, be aclosed subinterval of I, such that a, ¢ I,. Proceeding
inductively, let I, be a closed subinterval of I,_, such that a,¢1,. The
nested sequence of closed intervals I, has a non-empty intersection. If
pe ()1, thenpeland p + a, for every n.

This proof involves infinitely many unspecified choices. To avoid this
objection the intervals must be chosen according to some definite rule.
One such rule is this: divide I,_, into three subintervals of equal length
and take for I, the first one of these that does not contain a,. If we take
I, to be the closed interval concentric with I and half as long, say, then
all the choices are specified, and we have a well defined function of
(I,a,,a,,...)whose value is a point of I different from all the a,,.

The fact that no interval is countable is an immediate corollary of
Cantor’s theorem.

With only a few changes, the above proof becomes a proof of the
Baire category theorem for the line. Before we can formulate this theorem
we need some definitions. A set A is dense in the interval I if A has a non-
empty intersection with every subinterval of I; it is called dense if it 1s



dense in the line R. A set A is nowhere dense if it is dense in no interval,
that is, if every interval has a subinterval contained in the complement of
A. A nowhere dense set may be characterized as one that is “full of holes.”
The definition can be stated in two other useful ways: 4 is nowhere dense
if and only if its complement A’ contains a dense open set, and if and only
if A (or A™, the closure of A) has no interior points. The class of nowhere
dense sets is closed under certain operations, namely

Theorem 1.2. Any subset of a nowhere dense set is nowhere dense.
The union of two (or any finite number) of nowhere dense sets is nowhere
dense. The closure of a nowhere dense set is nowhere dense.

Proof. The first statement is obvious. To prove the second, note that
if A, and A, are nowhere dense, then for each interval I there is an
interval I, CI — A, and aninterval I,CI, — A, . Hence I, CI — (A, UA,).
This shows that A; UA, is nowhere dense. Finally, any open interval
contained in A’ is also contained in A~'". ]

A denumerable union of nowhere dense sets is not in general nowhere
dense, it may even be dense. For instance, the set of rational numbers is
dense, but it is also a denumerable union of singletons (sets having just
one element), and singletons are nowhere dense in R.

Asetissaid to be of first category if it can be represented as a countable
union of nowhere dense sets. A subset of R that cannot be so represented
is said to be of second category. These definitions were formulated in 1899
by R. Baire [ 18, p. 48], to whom the following theorem is due.

Theorem 1.3 (Baire). The complement of any set of first category
on the line is dense. No interval in R is of first category. The intersection
of any sequence of dense open sets is dense.

Proof. The three statements are essentially equivalent. To prove the
first, let 4=(JA, be a representation of A4 as a countable union of
nowhere dense sets. For any interval I, let I, be a closed subinterval of
I—A,. Let I, be a closed subinterval of I; — 4,, and so on. Then (I,
is a non-empty subset of I — A4, hence A" is dense. To specify all the
choices in advance, it suffices to arrange the (denumerable) class of closed
intervals with rational endpoints into a sequence, take I, =1, and for
n>0 take I, to be the first term of the sequence that is contained in
I,_,—A,.

The second statement is an immediate corollary of the first. The
third statement follows from the first by complementation. []

Evidently Baire’s theorem implies Cantor’s. Its proof is similar,
although a different rule for choosing I, was needed.



Theorem 1.4. Any subset of a set of first category is of first category.
The union of any countable family of first category sets is of first
category.

It is obvious that the class of first category sets has these closure pro-
perties. However, the closure of a set of first category is not in general of
first category. In fact, the closure of a linear set A is of first category if
and only if 4 is nowhere dense.

A class of sets that contains countable unions and arbitrary subsets
of its members is called a g-ideal. The class of sets of first category and
the class of countable sets are two examples of g-ideals of subsets of the
line. Another example is the class of nullsets, which we shall now define.

The length of any interval I is denoted by |I|. A set ACR is called a
nullset (or a set of measure zero) if for each & > 0 there exists a sequence of
intervals I, such that AC { JI,and ¥ |I,| <e.

It is obvious that singletons are nullsets and that any subset of a
nullset is a nullset. Any countable union of nullsets is also a nullset. For
suppose A; is a nullset for i=1,2,.... Then for each i there is a sequence
of intervals I;; (j=1,2,...) such that 4,C | J;I;; and Y ;|I,;| <¢/2'. The
set of all the intervals I;; covers A, and ) ;;|I;;| <e¢, hence 4 is a nullset.
This shows that the class of nullsets is a g-ideal. Like the class of sets of
first category, it includes all countable sets.

Theorem 1.5 (Borel). If a finite or infinite sequence of intervals I,
covers an interval I, then > |I1,] 2 |1|.

Proof. Assume first that I = [a, b] is closed and that all of the intervals
I, are open. Let (a, b,) be the first interval that contains a. If b, <b,
let(a,, b,) be the first interval of the sequence that contains b,. If b,_,; <b,
let(a,, b,) be the first interval that contains b,_,. This procedure must
terminate with some by >b. Otherwise the increasing sequence {b,}
would converge to a limit x <b, and x would belong to I, for some k.
All but a finite number of the intervals (a,, b,) would have to precede I,
in the given sequence, namely, all those for which b,_, €l,. This is
impossible, since no two of these intervals are equal. (Incidentally, this
reasoning reproduces Borel’s own proof of the “Heine-Borel theorem”

[S, p- 228].) We have

b_a<bN_a1:Ezivzz(bi_bi—l)“*’bl“alézlivzl(bi_ai),

and so the theorem is true in this case.

In the general case, for any o > 1 let J be a closed subinterval of I with
|[J|=I|/, and let J, be an open interval containing I, with |J,|=a|l,.
Then J is covered by the sequence {J,}. We have already shown that



S|J|=|J|. Hence a |I,|=>|J,|=|J|=|I|/a. Letting a—1 we obtain
the desired conclusion. []

This theorem implies that no interval is a nullset; it therefore provides
still another proof of Cantor’s theorem.

Every countable set is of first category and of measure zero. Some
uncountable sets also belong to both classes. The simplest example is the
Cantor set C, which consists of all numbers in the interval [0, 1] that
admit a ternary development in which the digit 1 does not appear. It
can be constructed by deleting the open middle third of the interval [0, 1],
then deleting the open middle thirds of each of the intervals [0, 1/3] and
[2/3,1], and so on. If F, denotes the union of the 2" closed intervals of
length 1/3" which remain at the n-th stage, then C = ﬂ F,. Cisclosed, since
it is an intersection of closed sets. C is nowhere dense, since F, (and
therefore C) contains no interval of length greater than 1/3". The sum
of the lengths of the intervals that compose F, is (2/3)", which is less than
¢ if n is taken sufficiently large. Hence C is a nullset. Finally, each number
xin(0,1] hasa unique non-terminating binary development x = .x,x,x3....
If y;=2x,, then .y, y, y5 ... is the ternary development with y; & 1 of some
point y of C. This correspondence between x and y, extended by mapping
0 onto itself, defines a one-to-one map of [0, 1] onto a (proper) subset of C.
It follows that C is uncountable; it has cardinality c¢ (the power of the
continuum). :

The sets of measure zero and the sets of first category constitute two
o-ideals, each of which properly contains the class of countable sets.
Their properties suggest that a set belonging to either class is “small”
in one sense or another. A nowhere dense set is small in the intuitive
geometric sense of being perforated with holes, and a set of first category
can be “approximated” by such a set. A set of first category may or may
not have any holes, but it always has a dense set of gaps. No interval
can be represented as the union of a sequence of such sets. On the other
hand, a nullset is small in the metric sense that it can be covered by a
sequence of intervals of arbitrarily small total length. If a point is chosen
atrandom in an interval in such a way that the probability of its belonging
to any subinterval J is proportional to |J|, then the probability of its
belonging to any given nullset is zero. It is natural to ask whether these
notions of smallness are related. Does either class include the other?
That neither class does, and that in some cases the two notions may be
diametrically opposed, is shown by the following

Theorem 1.6. The line can be decomposed into two complementary sets
A and B such that A is of first category and B is of measure zero.

Proof. Leta,,a,, ... be an enumeration of the set of rational numbers
(or of any countable dense subset of the line). Let I;; be the open interval



with center a; and length 1/2°*/. Let G;=(JZ,I;; (=1,2,...) and
B=()2,G;. Forany &> 0we canchoosejso that 1/2/ <& Then BC | ;1
and Y )1,/ =3,1/2"*/=1/2/ < &. Hence B is a nullset. On the other hand,
G, is a dense open subset of R, since it is the union of a sequence of open
intervals and it includes all rational points. Therefore its complement
Gjis nowhere dense, and A=B'= UjG} 1s of first category. []

Corollary 1.7. Every subset of the line can be represented as the union
of anullset and a set of first category.

There is of course nothing paradoxical in the fact that a set that is
small in one sense may be large in some other sense.



2. Liouville Numbers

Cantor’s theorem, Baire’s theorem, and Borel’s theorem are existence
theorems. If one can show that the set of numbers in an interval that lack
a certain property is either countable, or a nullset, or a set of first category,
then it follows that there exist points of the interval that have the pro-
perty in question, in fact, most points of the interval (in the sense of
cardinal number, or measure, or category, respectively) have the pro-
perty. As a first illustration of this method let us consider the existence
of transcendental numbers.

A complex number z is called algebraic if it satisfies some equation
of the form

ag+a;z+az*+--+a,z"=0

with integer coefficients, not all zero. The degree of an algebraic number z
is the smallest positive integer n such that z satisfies an equation of
degree n. For instance, any rational number is algebraic of degree 1, [/5
is algebraic of degree 2, and ]ﬁ + ]/§ is algebraic of degree 4. Any real
number that is not algebraic is called transcendental. Do there exist
transcendental numbers? In view of Cantor’s theorem, this question is
answered by the following

Theorem 2.1. The set of real algebraic numbers is denumerable.

Proof. Let us define the weight of a polynomial f(x)= Y7 a;x' to be
the number n+ > |a;). There are only a finite number of polynomials
having a given weight. Arrange these in some order, say lexicographically
(first in order of n, then in order of a,, and so on). Every non-constant
polynomial has a weight at least equal to 2. Taking the polynomials of
weight 2 in order, then those of weight 3, and so on, we obtain a sequence
Sf1> f2, f3, ... in which every polynomial of degree 1 or more appears
just once. Each polynomial has at most a finite number of real zeros.
Number the zeros of f; in order, then those of f,, and so on, passing
over any that have already been numbered. In this way we obtain a
definite enumeration of all real algebraic numbers. The sequence is
infinite because it includes all rational numbers. []



This gives perhaps the simplest proof of the existence of transcendental
numbers. It should be noted that it is not an indirect proof; when all the
choices are fixed in advance the construction used to prove Theorem 1.1
defines a specific transcendental number in [0, 1]. It may be laborious
to compute even a few terms of its decimal development, but in principle
the number can be computed to any desired accuracy.

An older and more informative proof of the existence of transcendental
numbers is due to Liouville. His proof is based on the following

Lemma 2.2, For any real algebraic number z of degree n>1 there
exists a positive integer M such that

P I 1
I— >

q Mgq
for all integers p and ¢, g > 0.

Proof. Let f(x) be a polynomial of degree n with integer coefficients
for which f(z)=0. Let M be a positive integer such that |f'(x)| <M
whenever |z — x| < 1. Then, by the mean value theorem,

(1 lf () =[f(z)— f(x) SM|z—x| whenever |z—x|<1.

Now consider any two integers p and ¢, with ¢ > 0. We wish to show that
|z—p/ql > 1/Mgq". This is evidently true in case |z — p/q| > 1, so we may
assume that |z — p/q| < 1. Then, by (1), |/ (p/q)] £ M|z — p/q|, and therefore

) lg"f (p/@)l < Mq"|z — p/q|.

The equation f(x)=0 has no rational root (otherwise = would satisfy
an equation of degree less then n). Moreover, ¢"f(p/q) is an integer.
Hence the left member of (2) is at least 1 and we infer that |z — p/q| = 1/M q".
Equality cannot hold, because z is irrational. []

A real number z is called a Liouville number if z is irrational and has
the property that for each positive integer n there exist integers p and ¢
such that |

qn
For example, z= Y7 1/10¥ is a Liouville number. (Take ¢ = 10™))

and g>1.

:_P\<
q

Theorem 2.3. Every Liouville number is transcendental.

Proof. Suppose some Liouville number z is algebraic, of degree n.
Then n> 1, since z is irrational. By Lemma 2.2 there exists a positive
integer M such that

3) |z —p/gl > 1/Mg"

for all integers p and g with g > 0. Choose a positive integer k such that
2¥>2"M. Because z is a Liouville number there exist integers p and g,



with ¢ > 1, such that
) |lz—p/al < 1/q"*.

From (3)and (4) it follows that 1/¢* > 1/Mq". Hence M > ¢* " =2*""=> M,
a contradiction. [J

Let us examine the set E of Liouville numbers. From the definition
it follows at once that

&) E=Q'n().G,,
where Q denotes the set of rational numbers and

G,=Us=2Up- - olp/a—1/q", p/a + 1/q") .

G, is a union of open intervals. Moreover, G, includes every number of
the form p/q, ¢ = 2, hence G, > Q. Therefore G, is a dense open set, and
so its complement is nowhere dense. Since, by (5), E'=Qu ()2, G,, it
follows that E’ is of first category. Thus Baire’s theorem implies that
Liouville transcendental numbers exist in every interval, they are the
“general case” in the sense of category.

What about the measure of E? From (5) it follows that ECG, for

every n. Let
Gua=U% _wpla—1/q"p/g+1/q") (@=2,3,...).

For any two positive integers m and n we have
En(—m,mCG,n(—m,m)

= U;o=2[Gn,qm(_ mam)] C U;O=2 U';i ~mq(p/q - l/q"’ p/q + l/qn) .
Therefore En(— m, m) can be covered by a sequence of intervals the sum
of whose lengths, for any n> 2, is

2at22 0t mg2/q"=20222ma + 1)(2/q") S 3 0% ,(4mg +q) (1/97)
d dm+1
=@+ T2, /g S@m 1) 7S5 = n_+2 .
It follows that En(—m, m) is a nullset for every m, and therefore E is a
nullset.

Thus E is small in the sense of measure, but large in the sense of
category. The sets E and E’ provide another decomposition of the line
into a set of measure zero and a set of first category (cf. Theorem 1.6).
Moreover, the set E is small in an even stronger sense, as we shall now
show.

If s is a positive real number and E C R, then E is said to have s-dimen-
sional Hausdorff measure zero if for each ¢>0 there is a sequence of
intervals I, such that EC ()21, 3%, | <e, and |I,| <¢ for every n.
The sets of s-dimensional measure zero constitute a g-ideal. For s=1
it coincides with the class of nullsets, and for 0<s<1 it is a proper
subclass. The following theorem therefore strengthens the proposition
that E is a nullset.




Theorem 2.4. The set E of Liouville numbers has s-dimensional
Hausdorff measure zero, for every s > 0.

Proof. It suffices to find, for each ¢ > 0 and for each positive integer m,
a sequence of intervals I, such that

En(—mm)c ), 1, > MF<e, and |I|<e.
For each positive integer n, we have

En(=mm) s, Ure - mp/a—1/9", p/g + 1/q") .
Choose n so as to satisfy simultaneously the following conditions:

rt<g. ps>2, mElZ
ns—2

Then each of the intervals (p/q — 1/q", p/q + 1/q") has length 2/q" < 2/2" <,
and we have
(2mg+1)2°

;C:ZZmi—mq(z/qn)S: ;10:2 qns

ns—1 =

1
S@m+ D2V, e Sme D2 =

_ Cm+ 12
T ns=2



3. Lebesgue Measure in r-Space

By an interval I in Euclidean r-space (r=1,2,...) is meant a rectangular
parallelepiped with edges parallel to the axes. It is the Cartesian product
ofr 1-dimensionalintervals. As in the 1-dimensional case, the r-dimensional
volume of I will be denoted by |I|. Lebesgue measure in r-space is an
extension of the notion of volume to a larger class of sets. Thus Lebesgue
measure has a different meaning in spaces of different dimension.
However, since we shall usually regard the dimension as fixed, there is no
need to indicate r explicitly in our notations.

A sequence of intervals I; is said to cover the set A if its union con-
tains A. The greatest lower bound of the sums Y |Ij, for all sequences
{I;} that cover A, is called the outer measure of A; it is denoted by m*(A).
Thus for any subset A4 of r-space,

m*(A)=inf{S|L]: AC 1} .

When A belongs to a certain class of sets to be defined presently, m*(A4)
will be called the Lebesgue measure of A4, and denoted by m(A).

The edges of the intervals I; may be closed, open, or half-open, and
the sequence of intervals may be finite or infinite. It may happen that the
series Y |I;| diverges for every sequence {I;} that covers A: in this case
m*(A) = co. In all other cases m*(A) is a nonnegative real number.

This definition can be modified in either or both of two respects
without affecting the value of m*(A). In the first place, we may require
that the diameters of the intervals I; should all be less than a given
positive number §. This is clear since each interval can be divided into
subintervals of diameter less than § without affecting the sum of their
volumes. Secondly, we may require that all the intervals be open. For
any covering sequence {I;} and ¢>0 we can find open intervals J; such
that [;CJ; and Y |JJ <3 |I|+¢ Hence the greatest lower bound for
open coverings is the same as for all covering sequences.

We shall now deduce a number of properties of outer measure.

Theorem 3.1. If A C B then m*(A) £ m*(B).

This is obvious, since any sequence {I;} that covers B also covers A.

10



Theorem 3.2. If A= A; then m*(4) <Y m*(A4,).

This property of outer measure is called countable subadditivity. For
any ¢ > 0 there is a sequence of intervals I;;(j =1, 2, ...) that covers 4; such
that 3, |L;| Sm*(A) +¢/2". Then AC|J, ;I and X, ;|| <> m*(4)+e.
Therefore m*(A) <> m*(A;)+e. Letting ¢—0, the required inequality
follows.

Theorem 3.3. For any interval I, m*(I)=|I|.

Proof. The inequality m*(I) <|I| is clear, since I covers itself. To
prove the inverse inequality, let ¢ be an arbitrary positive number and let
{I.} be an open covering of I such that >_|I,| < m*(I) + &. Let J be a closed
subinterval of I such that |J|>|I|—¢&. By the Heine-Borel theorem,
Jc LI for some k. Let K4, ..., K, be an enumeration of the closed
intervals into which I,, ..., T, are divided by all the (» — 1)-dimensional
hyperplanes that contain an (r— 1)-dimensional face of one of the
intervals I, ..., I,,or J,and let J,, ..., J,, be the closed intervals into which
J i1s divided by these same hyperplanes. Then each interval J; is equal
to at least one of the intervals K ;. Consequently,

=300 W S 352 Kl =X i <m*() +e.

Therefore |I|<m*(I) + 2¢. The desired inequality follows by letting
e=0. [

Generalizing the definition given in Chapter 1, any subset of r-space
with outer measure zero is called a nullset, or set of measure zero. A
statement that holds for all points of a set E except a set of measure zero
is said to hold almost everywhere, or for almost all points of E.

We next deduce some results which are included in later theorems.
Accordingly, we designate them as lemmas.

Lemma 34. If F, and F, are disjoint bounded closed sets, then
m*(Fy U Fy)=m*(F) + m*(F,).

Proof. There is a positive number J such that no interval of diameter
less than § meets both F, and F,. For any &> 0 there is a sequence of
intervals I; of diameter less than & such that F, OF,C{ I and Y |
Im*(F,UF,)+e¢ Let Y'|I] denote the sum over those intervals that
meet F,,and let Y "|I ] denote the sum over the remaining intervals (which
cover F,). Then

m*(F)) +m*(F,) = Z’|Ii| + Z”|Ii| = Z’Iil Sm*(F,uF,) te.
Letting ¢ — 0, we conclude that
m*(F,)+m*(F,) Sm*(F, UF),).

The reverse inequality follows from Theorem 3.2. []

11



Lemma 3.5. If F,,...,F, are disjoint bounded closed sets, then
m*((J1 F) = X} m*(F).
This follows from Lemma 3.4 by induction on n.

Lemma 3.6. For any bounded open set G and ¢ > 0 there exists a closed
set F such that F C G and m*(F) > m*(G) —e.

Proof. G can be represented as the union of a sequence of non-
overlapping intervals I;. By definition, m*(G) £ Y |I|. Determine n so
that > |I;| > m*(G) — ¢/2, and let J; be a closed interval contained in the
interior of I; such that |J}|> |l —&/2n (i=1,2,...,n). Then F=J}J;
i1s a closed subset of G, and by Theorem 3.3 and Lemma 3.5, m*(F)
= YW1 > Sh I —e/2>m*(G)—e. [0

Lemma 3.7. If F is a closed subset of a bounded open set G, then
m*(G — F) = m*(G) — m*(F).

Proof. By Lemma 3.6, for any ¢>0 there is a closed subset F; of
the open set G— F such that m*(F,)>m*(G — F)—e¢ By Lemma 3.4
and Theorem 3.1,

m*(F)+ m*(G— F)<m*(F)+ m*(F))+ e=m*(FUF,)+ e<m*(G) +¢.

Letting ¢ —0, we conclude that
m*(F)+ m*(G — F) <m*(G).

The reverse inequality follows from Theorem 3.2. []

Definition 3.8. A set A is measurable (in the sense of Lebesgue) if for
each ¢ > 0 there exists a closed set F and an open set Gsuchthat FCACG
and m*(G—F)<e.

Lemma 3.9. If A is measurable, then A’ is measurable.

Forif FCACG,then F > A' DG and F " —G' =G F.

Lemma 3.10. If A and B are measurable, then AN B is measurable.

Proof. Let F| and F, be closed sets, and let G, and G, be open sets,
such that F;,CACG,, F,CBCG,, m*(G, — F))<¢/2, m*(G,— F,)<¢/2.
Then F=F,NnF,CAnBCG,nG, =G, say, and

G—-FC(G,—F)u(G,—F,).

Hence m*(G — F)S<m*(G, — F))+ m*(G,— F,)<e. []

Lemma 3.11. 4 bounded set A is measurable if for each &¢>0 there
exists a closed set F C A such that m*(F) > m*(4) —e.
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Proof. For any ¢>0 let F be a closed subset of 4 such that m*(F)
>m*(A) — ¢/2. Since m*(A4) < oo there exists a covering sequence of open
intervals I, of diameter less than 1 such that Y |I| <m*(4)+¢/2. Let G
be the union of those intervals I; that meet A. Then FCAC G G is bounded,
and by Lemma 3.7, m*(G — F) = m*(G) — )< Y L — m*(F) < m*(A)
+¢/2—m*(F)<e¢. Hence A4 is measurable I]

Lemma 3.12. Any interval and any nullset is measurable.

Proof. The first statement follows at once from Lemma 3.11 and
Theorem 3.3. If m*(A4) = 0, then for each ¢ > 0 there is a covering sequence
of open intervals I; such that Y |I{<e¢. Take G= UI,- and F=¢@. Then
F is closed, G is open, FCACG, and m*(G—F)<Y |I|<e Hence 4
is measurable. []

Lemma 3.13. Let {A;} be a disjoint sequence of measurable sets all
contained in some interval 1. If A=|)A,, then A is measurable and

*(A) =S m*(A,).
Proof. For any ¢ >0 there exist closed sets F; C A; such that m*(F))
>m*(4;) —¢/2""'. By countable subadditivity, m*(4) < 3 ¥ m*(4,). De-
termine k so that

SEm*(4) > m*(A) —¢/2,
and put F = ( JX F,. Then, by Lemma 3.5,
=i m*(F) > Yim*(4) — ¢/2 > m*(4) —
Hence 4 is measurable, by Lemma 3.11. For any n we have

Sm*(A) < Shm*(F) + /2 =m*( 1 F) + /2 S m*(4) +¢/2.

Letting n— oo and then letting ¢ — 0 we conclude that > 7 m*(4,) < m*(A).
The reverse inequality follows from countable subadditivity. []

Lemma 3.14. For any disjoint sequence of measurable sets A;, the
set A=) A; is measurable and m*(A) =Y m*(A)).

Proof. Let I, (j=1,2,...) be a sequence of disjoint intervals whose
union is the whole of r-space such that any bounded set is covered by
finitely many. By Lemmas 3.10and 3.12, the sets A;;= A;nI;are measurable.
They are also disjoint. Put B; = U A;;. By Lemma 3.13, B;is a measurable
subset of I;. The sets B; are disjoint, and 4 = UBj. For any &> 0 there
exist closed sets F; and bounded open sets G; such that F;CB;C G; and
m*(G,— F)<¢/2). Let F=|JF; and G=JG,. Then F is closed, since
any convergent sequence contained in F is bounded and therefore
contained in the union of a finite number of the sets F;, which is a closed
subset of F. Also, G is open. We have FCACG and G—F = U(Gj—F)
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C J(G;— F)). Hence m*(G — F) < 3 m*(G;— F)) <e. This shows that 4
is measurable. Since A4;=();A;;, we have m*(4) <> ;m*(4;), and
therefore

ijs
im*(A) Y im* (A ) =2 m*(4;) = 2m*(B),
by Lemma 3.13. Also, for any n,

S1m*(B) < Y im*(F)+ Y m*(G;— F))
<m*(J1F)+e<m*(A)+¢.

Letting n— co and then letting ¢ >0 we conclude that 3 ;m*(B) < m*(A).
Therefore Y m*(A4;) £ m*(A). The reverse inequality again follows from
countable subadditivity. []

We have now established the most important properties of outer
measure. To formulate them conveniently, we need some additional
definitions.

A non-empty class S of subsets of a set X is called a ring of subsets of X
if it contains the union and the difference of any two of its members.
It is called a o-ring if it also contains the union of any sequence of its
members. A ring (or 6-ring) of subsets of X is called an algebra (respectively,
a o-algebra) of subsets of X if X itself is a member of the ring. Evidently
a class of subsets of X is an algebra if and only if it is closed under the
operations of union (or intersection) and complementation; it is a
o-algebra if it is also closed under countable union (or countable inter-
section).

A set function p defined on a ring S of subsets of X is said to be
countably additive if the equation u(A)=> u(A;) holds whenever {4;}
is a disjoint sequence of members of S whose union A4 also belongs to S.
A measure is an extended real valued, non-negative, countably additive
set function y, defined on a o-ring S of subsets of a set X, and such that
1(@) =0. A triple (X, S, u), where S is a o-ring of subsets of X and u is a
measure defined on S, is called a measure space. Sets belonging to S are
called p-measurable. When every subset of a set of u-measure zero belongs
to S (that is, when the sets of u-measure zero constitute a s-ideal), the
measure space is said to be complete.

By Lemmas 3.9, 3.10, 3.12, and 3.14, the class S of measurable sets
is a g-algebra of subsets of r-space, and m* is countably additive on S.
Hence the restriction of m* to S is a measure; it is called (r-dimensional)
Lebesgue measure and is denoted by m. Since S includes all intervals, it
follows that S includes all open sets, all closed sets, all F, sets (countable
unions of closed sets), and all G; sets (countable intersections of open
sets). Moreover,
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Theorem 3.15. A set A is measurable if and only if it can be represented
as an F, set plus a nullset (or as a G4 set minus a nullset).

Proof. If A is measurable, then for each n there exists a closed set
F, and an open set G, such that F,CACG, and m*(G,—F,) <1/n. Put
E=|J)F,and N=A—E. Then E is an F, set. N is a nullset, since N CG,
—F, and m*(N) < 1/n for every n. A is the disjoint union of E and N.
It follows by complementation that A can also be represented as a G;
set minus a nullset. Conversely, any set that can be so represented is
measurable, by Lemma 3.12 and the fact that S is a g-algebra. [J

For any class of subsets of a set X there is a smallest g-algebra of
subsets of X that contains it, namely, the intersection of all such g-algebras.
This is called the o-algebra generated by the class. The members of the
o-algebra of subsets of r-space generated by the class of open sets (or
closed sets, or intervals) are called Borel sets. Hence every Borel subset of
r-space is measurable. By Theorem 3.15, the Borel sets together with the
nullsets generate the class of measurable sets. Summarizing, we have

Theorem 3.16. The class S of measurable sets is the c-algebra of
subsets of r-space X generated by the open sets together with the nullsets.
Lebesque measure m is a measure on S such that m(Iy=|I| for every
interval I. (X, S, m) is a complete measure space.

The following theorem expresses the property of countable additivity
in a form that is often more convenient.

Theorem 3.17. If A; is measurable, and A;C A;, for each i, then the
set A= A; is measurable and m(A)=limm(A,). If A; is measurable and
A;DA;,, for each i, then the set A= (\A; is measurable, and m(A)
= limm(A,) provided m(A;) < > for some i.

Proof. In the first case, put B, =A4, and B;=A;—A;_, for i> 1.
Then {B,} is a disjoint sequence of measurable sets, with A = | ) B;. Hence

m(A)= > m(B;)=lim}1m(B;)=limm(4,),

where the limit may be equal to <.

In the second case, we may assume m(A4,) < c. Put B;=A4, — A4; and
B=A, - A. Then B;CB,,, and | JB;=B. Hence m(A4,)—m(A)=m(B)
= limm(B,) = lim(m(A4,) — m(A4;)) = m(4,) — limm(A;), and so m(A)
= limm(A,), both members being finite. []

The manner in which the set function m* is determined by its values
on closed and open sets is indicated by the following

Theorem 3.18. The outer measure of any set A is expressed by the

Jormula m*(A) = inf{m(G): ACG, G open}.
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If A is measurable, then
m*(A) = sup{m(F): ADF, F bounded and closed} .
Conversely, if this equation holds and m*(A) < oo, then A is measurable.

Proof. The first statement is clear, since the union of any covering
sequence of open intervals is an open superset of A. To prove the second,
let « be any real number less than m(A4), and let 4;,= An(—i,i). By
Theorem 3.17, m(A) = limm(A4;), hence we can choose i so that m(4;) > o.
By measurability, 4; (which is bounded) contains a closed set F with
m(F) > a, and F is also a subset of A. Conversely, if m*(4) < co and F is a
closed subset of A with m(F) > m*(A) — ¢/2, let G be an open superset of 4
such that m(G) <m*(A) +¢/2. Then FCACG and m(G — F)<g, hence
A is measurable. []

It may be noted that Lemmas 3.4 through 3.14 are implicitly included
in Theorems 3.16 and 3.18.

The following theorem expresses the fact that Lebesgue measure is
invariant under translation.

Theorem 3.19. If A is congruent by translation to a measurable set B,
then A is measurable and m(A) = m(B).

This is clear from the definitions and from the fact that congruent
intervals have equal volume. Measurability and measure are also
preserved by rotations and reflections of r-space, but we shall not prove
this.

The definition of measurability, and the fact that any open set is the
union of a sequence of disjoint intervals, implies that any set of finite
measure can be obtained from some finite union of disjoint intervals by
adding and subtracting two sets of arbitrarily small measure. So to speak,
a set of finite measure is approximately equal to a finite union of intervals.
Much deeper is the fact that a measurable set has locally a kind of all
or none structure; at almost all points it is either highly concentrated or
highly rarified. This idea is made precise by a remarkable theorem,
due to Lebesgue, with which we conclude this chapter. We shall consider
only the 1-dimensional case.

A measurable set E C R is said to have density d at x if the

. m(En[x—h, x +h])
it 2h

exists and is equal to d. Let us denote the set of points of R at which E
has density 1 by ¢(E). Then E has density 0 at each point of ¢(R — E).
¢ is called the Lebesgue lower density. Lebesgue’s theorem asserts that
¢(E) is measurable and differs from E by a nullset. This implies that E
has density 1 at almost all points of E, and density 0 at almost all points
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of R — E. Thus it is impossible, for instance, for a set and its complement
each to include exactly half of the (outer) measure of every interval.
(Such a set would be measurable and would have density 1/2 everywhere.)

The symmetric difference of two sets A and B is the set of points that
belong to one but not to both of the sets. It is denoted by A4 A B. Thus
AnrB=(A—B)u(B—A).

Theorem 3.20 (Lebesgue Density Theorem). For any measurable set
ECR, m(E a ¢(E))=0.

Proof. 1t is sufficient to show that E — ¢(E) is a nullset, since ¢(E)
— ECE — ¢(E') and E’ is measurable. We may also assume that E is
bounded. Furthermore, E — ¢(E) = | J,» o A,, where

A =lveE gimint MEC R xHR) L
: h—0 2h

Hence it is sufficient to show that A, is a nullset for every ¢ > 0. Putting
A=A,, we shall obtain a contradiction from the supposition that
m*(A4)>0.

If m*(A) > 0 there exists a bounded open set G containing A such that
m(G) <m*(A)/(1 —¢). Let & denote the class of all closed intervals [
such that 1CG and m(EnI)<(1 —¢)|I|. Observe that (i) & includes
arbitrarily short intervals about each point of 4, and (ii) for any disjoint
sequence {I,} of members of &, we have m*(4 — ( J1,)> 0. Property (ii)
follows from the fact that

AN L) S YmEAL) S(1—8) Y ILI < (1 — &) m(G) < m*(A).

We construct inductively a disjoint sequence I, of members of & as
follows. Choose I, arbitrarily from &. Having chosen I,,...,I,, let &,
be the set of members of & that are disjoint to I, ..., I,. Properties (i)
and (ii) imply that &, is non-empty. Let d, be the least upper bound of
the lengths of members of &,, and choose I, , € &, such that |I , | >d,/2.
Put B=A— )7 I,. By (i), we have m*(B)>0. Hence there exists a
positive integer N such that

(1) 2N L) <m*(B)/3.

For each n> N let J, denote the interval concentric with I, with |J,|
=3|1,|. The inequality (1) implies that the intervals J, (1 > N) do not cover
B, hence there exists a point xe B—(J¥,,J,. Since xe A—(JV1,
it follows from (i) that there exists an interval I € &y with center x. I must
meet some interval I, with n> N. (Otherwise |I| <d, <2|I,.,| for all n,
contrary to Y 7|l £m(G)< o0.) Let k be the least integer such that [
meets I,. Then k> N and |I| <d,_, <2{I|. It follows that the center x
of I belongs to J,, contrary to x¢ (J¥,,J,. 0
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Let us write A ~ B when m(A4 A B)=0. This is an equivalence relation
in the class S of measurable sets. The following theorem says that the
mapping ¢ : S— S may be regarded as a function that selects one member
from each equivalence class. Moreover, it does so in such a way that
the selected sets constitute a class that includes the empty set, the whole
space, and is closed under intersection.

Theorem 3.21. For any measurable set A, let ¢(A) denote the set of
points of R where A has density 1. Then ¢ has the following properties,
where A ~ B means that A A B is a nullset :

1) ¢(A)~ 4,

2) A~ B implies ¢p(A)=¢(B),

3) ¢(@)=0 and ¢(R)=R,

4) ¢(ANB)=(A)N¢(B),

5) ACB implies ¢(A)C ¢(B).

Proof. The first assertion is just the Lebesgue density theorem.
The second and third are immediate consequences of the definition of ¢.
To prove 4), note that for any interval I we have I —(AnB)=(I — A)
u(I — B). Hence m(I)—m(INnAnB)<m(I)—m(InA)+ m(I)—m(lnB).
Therefore

m(InA) + m(l N B) i< m(INnAnB)
1| 1 1|
Taking I =[x—h,x+ h] and letting h—0 it follows that ¢(4)n¢(B)

C ¢(AnB). The opposite inclusion is obvious. Property 5) is a con-
sequence of 4). []
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4. The Property of Baire

The operation of symmetric difference, defined by
AaB=(AuB)—(AnB)=(A— B)u(B— A),

is commutative, associative, and satisfies the distributive law A~ (B a C)
=(AnB)a(AnC). Evidently, AABCAuB and Aa A=0. It is easy to
verify that any class of sets that is closed under A and M is a commutative
ring (in the algebraic sense) when these operations are taken to define
addition and multiplication, respectively. Such a class is also closed
under the operations of union and difference. It is therefore a ring of
subsets of its union, as this term was defined in Chapter 3.

A subset A of r-space (or of any topological space) is said to have the
property of Baire if it can be represented in the form A = G A P, where G
is open and P is of first category.

Theorem 4.1. A set A has the property of Baire if and only if it can be
represented in the form A=F A Q, where F is closed and Q is of first
category.

Proof. If A=G a P, G open and P of first category, then N=G — G
is a nowhere dense closed set, and Q=N A P is of first category. Let
F=G. Then A=GaP=(GaN)aP=Ga(NaP)=FaQ. Con-
versely, if A=F a Q, where F is closed and Q is of first category, let G
be the interior of F. Then N =F — G is nowhere dense, P=N a Q is of
first category, and A=FaQ=(GaAN)AQ=GANAQ)=GaP. []

Theorem 4.2. If A has the property of Baire, then so does its com-
plement.

Proof. For any two sets A and B we have (4 A B) = A" A B. Hence if
A=GaAP, then A"= G A P, and the conclusion follows from Theo-
rem4.1. []

Theorem 4.3. The class of sets having the property of Baire is a
g-algebra. It is the o-algebra generated by the open sets together with
the sets of first category.
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Proof. Let A;=G;a P, (i=1,2,...) be any sequence of sets having
the property of Baire. Put G= ()G, P=(JP, and A=) A4;. Then G
is open, P is of first category, and G—PCACGUP. Hence Ga ACP
is of first category, and A =G A (G & A) has the property of Baire. This
result, together with Theorem 4.2, shows that the class in question is a
o-algebra. It is evidently the smallest o-algebra that includes all open
sets and all sets of first category. [J

Theorem 4.4. A set has the property of Baire if and only if it can be
represented as a G set plus a set of first category (or as an F, set minus
a set of first category).

Proof. Since the closure of any nowhere dense set is nowhere dense,
any set of first category is contained in an F, set of first category. If G
is open and P is of first category, let Q be an F, set of first category that
contains P. Then the set E=G — Q is a G;, and we have

GaP=[(G-Q)a(GnO)]a(PnQ)
=Ea[(GaP)nQ].

The set (G a P)n @ is of first category and disjoint to E. Hence any set
having the property of Baire can be represented as the disjoint union
of a G; set and a set of first category. Conversely, any set that can be so
represented belongs to the g-algebra generated by the open sets and the
sets of first category; it therefore has the property of Baire. The paren-
thetical statement follows by complementation, with the aid of Theorem
42.

A regular open set is a set that is equal to the interior of its closure.
Any set of the form 47" ' is regular open.

Theorem 4.5. Any open set H is of the form H=G— N, where G
is regular open and N is nowhere dense.

Proof. Let G=H"'""and N =G — H. Then G is regular open, N is
nowhere_dense, and H=G - N. We have NCG—H. Th_erefore G-—N
56— (G—H)=GnH=H. Also, H=G—-ND>G—-N. Hence H
=G-N. []

Theorem 4.6. Any set having the property of Baire can be represented
inthe form A = G & P,where G is aregular open set and P is of first category.
This representation is unique in any space in which every non-empty open
set is of second category (that is, not of first category).

Proof. The existence of such a representation follows from Theorem
4.5; in any representation we can always replace the open set by the
interior of its closure. To prove uniqueness, suppose GaP=HaQ,
where G is a regular open set, H is open, and P and Q are of first category.
Then H—GCH A G=P a Q. Hence H — G is an open set of first category,
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therefore empty. We have H C G, and therefore HC G™'~' = G. Thus in the
regular open representation the open set G is maximal. If both G and H
are regular open, then each contains the other. Hence G=H and

P=9. 0
Theorem 4.7. The intersection of any two regular open sets is a regular
open set.

Proof. Let G=G~'~'and H=H " '"". Since GN H is open, it follows

that GAHC(GAH)"~'CG~'~'=G.
Similarly,

GAHC(GAH)""'CH ''=H.
Therefore GNH=(GnH)"'~". [}

All of the foregoing definitions and theorems apply to a space of any
number of dimensions (in fact, the proofs are valid in any topological
space). Comparison of Theorems 4.3 and 3.16 indicates that the class
of sets having the property of Baire is analogous to the class of measurable
sets, the sets of first category playing the role of nullsets. It should be
noted, however, that in Theorems 4.4 and 3.15 the roles of F, and G,
are interchanged. Moreover, Theorem 4.1 has no analogue for measurable
sets; the best one can say is that a measurable set differs from some open
(or closed) set by a set of arbitrarily small measure. However, both
classes include the Borel sets, and each is invariant under translation.
Pursuing the analogy a step further, we have the following theorem,
in which x + 4 denotes the set A translated by x. For simplicity, we
confine attention to the 1-dimensional case.

Theorem 4.8. For any linear set A of second category having the
property of Baire, and for any measurable set A with m(A) >0, there
exists a positive number § such that (x + A)N A = @ whenever |x| <.

Proof. In the first case, let A=Ga P. Since G is non-empty, it
contains an interval I. For any x, we have

(x+A)NnAD[(x+DnI]—-[Pu(x+P)].

If |x| <|I], the right member represents an interval minus a set of first
category; it is therefore non-empty. Hence we may take 6 = |1|.

In the second case, let F be a bounded closed subset of 4 with m(F)>0
(Theorem 3.18). Enclose F in a bounded open set G with m(G) < (4/3) m(F).
G is the union of a sequence of mutually disjoint intervals. For at least one
of these, say I, we must have m(FnI)>(3/4) m(I). Take 6 =m(I)/2.
If |x] <6, then (x + I)ul is an interval of length less than (3/2) m(I) that
contains both F~I and x + (F n1). These sets cannot be disjoint, because
m(x + (Fn1))=m(F~1)> (3/4) m(I). Since (x + A)nAD[x+ (FnI)]
N[FnI], it follows that the left member is non-empty. []
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5. Non-Measurable Sets

Up to now, we have given no indication that the class of measurable sets,
or of sets having the property of Baire, does not include all subsets of the
line. We know that any set obtained as the result of countably many
applications of union, intersection, or complementation, starting from a
countable family of closed, open, or nullsets, will be measurable. It can
also be shown that any analytic set is measurable. (An analytic set is one
that can be represented as the continuous image of a Borel set.) According
to a result of Godel [18, p. 388], the hypothesis that there exists a non-
measurable set that can be represented as the continuous image of the
complement of some analytic set is consistent with the axioms of set
theory, provided these axioms are consistent among themselves. No
actual example of a non-measurable set that admits such a representation
is known (but see [40, p. 17]). Nevertheless, with the aid of the axiom of
choice it is easy to show that non-measurable sets exist. We shall consider
several such constructions.

The oldest and simplest construction is due to Vitali (1905) [ 18, p. 59].
Let @ denote the set of rational numbers, considered as a subgroup of
the additive group of real numbers. The cosets of Q constitute a partition
of the line into an uncountable family of disjoint sets, each congruent
to Q under translation. By the axiom of choice, there exists a set V
having one and only one element in common with each of these cosets.
Let us call any such set a Vitali set. The countable family of sets of the
form r + V (r e Q) covers the line. It follows from Theorem 3.19 that V
cannot be a nullset. By Theorem 4.8, if V' is measurable there exists a
number § > Osuch that(x + V)NV & @ whenever |x| < . But if x is rational
and x=+0, then (x+ V)nV =6, a contradiction. Hence V cannot be
measurable.

Exactly similar reasoning shows that no Vitali set V has the property
of Baire. V cannot be of first category, since the sets r + V (r € Q) cover
the line. Then, just as above, Theorem 4.8 implies that V' cannot have the
property of Baire.

Let ¥=AuUB be a partition of a Vitali set V into a set 4 of first
category and a set B of measure zero (Corollary 1.7). Then A is non-
measurable but has the property of Baire, while B is measurable but
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lacks the property of Baire. Thus, neither of these two classes includes the
other.

An entirely different construction leading to a non-measurable set
is due to F. Bernstein (1908) [18, p. 422]. It is based on the possibility
of well ordering a set of power c¢. First we need

Lemma 5.1. Any uncountable G, subset of R contains a nowhere dense
closed set C of measure zero that can be mapped continuously onto [0, 1].

Proof. Let E=(G,, G, open, be an uncountable G, set. Let F denote
the set of all condensation points of E that belong to E, that is, all points x
in E such that every neighborhood of x contains uncountably many
points of E. F is non-empty; otherwise, the family of intervals that have
rational endpoints and contain only countably many points of E would
cover E, and E would be countable. Similar reasoning shows that F has
no isolated points. Let I{0) and I(1) be two disjoint closed intervals of
length at most 1/3 whose interiors meet F and whose union is contained
in G,. Proceeding inductively, if 2" disjoint closed intervals I(i,, ..., ,)
(i, =0 or 1) whose interiors all meet F and whose union is contained in G,
have been defined, let I(i,,...,i,.,;) (i,., =0 or 1) be disjoint closed
intervals of length at most 1/3"*! contained in G, ,nI(i,, ..., i,) whose
interiors meet F. From the fact that F has no isolated points and that
ECG,,, itis clear that such intervals exist. Thus a family of intcrvals
I(i,, ..., i,) having the stated properties can be defined. Let

C=0 U Il .vin).

Then C is a closed nowhere dense subset of E. C has measure zero for
the same reason as the Cantor set. (In fact, C is homeomorphic to the
Cantor set.) For each x in C there is a unique sequence {i }, i,=0 or 1,
such thatxe I(i,, ..., i,) for every n, and every such sequence corresponds
to some point of C. Let f(x) be the real number having the binary
development. i  i,i5.... Then f maps C onto [0, 1]. Hence C has power c.
S 1s continuous because | f(x) — f(x)| < 1/2" when x and x’ both belong
to CnI(iy,....i). [

by

Lemma 5.2. The class of uncountable closed subsets of R has power c.

Proof. Theclass of open intervals with rational endpoints is countable,
and every open set is the union of some subclass. Hence there are at
most ¢ open sets, and therefore (by complementation) at most ¢ closed
sets. On the other hand, there are at least ¢ uncountable closed sets,
since there are that many closed intervals. Hence there are exactly ¢
uncountable closed subsets of the line. []

Theorem 5.3 (F. Bernstein). There exists a set B of real numbers such
that both B and B’ meet every uncountable closed subset of the line.
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By the well ordering principle and Lemma 5.2, the class & of un-
countable closed subsets of the line can be indexed by the ordinal
numbers less than w_, where w, is the first ordinal having ¢ predecessors,
say # = {F,: a < w_,}. We may assume that R, and therefore each member
of #, has been well ordered. Note that each member of # has power c,
by Lemma 5.1, since any closed set is a G;. Let p, and g, be the first two.
members of F,. Let p, and g, be the first two members of F, different from
both p, and ¢,. If 1 <a <w, and if p; and g, have been defined for all
B<ua, let p, and g, be the first two elements of F, — | J;<.{ps, 4;}- This
set is non-empty (it has power c¢) for each «, and so p, and g, are defined
for all a<w,. Put B={p,:a<w.}. Since p,e BnF, and q,€ B NF,
for each a < w,, the set B has the property that both it and its complement
meet every uncountable closed set. Let us call any set with this property
a Bernstein set.

Theorem 5.4. Any Bernstein set B is non-measurable and lacks the
property of Baire. Indeed, every measurable subset of either B or B' is a
nullset, and any subset of B or B’ that has the property of Baire is of first
category.

Proof. Let A be any measurable subset of B. Any closed set F con-
tained in 4 must be countable (since every uncountable closed set
meets B’), hence m(F) = 0. Therefore m(A4) =0, by Theorem 3.18. Similarly,
if A is a subset of B having the property of Baire, then A = EU P, where E
is G;and P is of first category. The set E must be countable, since every
uncountable G, set contains an uncountable closed set, by Lemma 5.1,
and therefore meets B’. Hence A is of first category. The same reasoning
applies to B'. []

Theorem 5.5. Any set with positive outer measure has a non-measurable
subset. Any set of second category has a subset that lacks the property of
Baire.

Proof. If A has positive outer measure and B is a Bernstein set,
Theorem 5.4 shows that the subsets AnB and AN B’ cannot both be
measurable. If A is of second category, these two subsets cannot both
have the property of Baire. []

The fact that every set of positive outer measure has anon-measurable
subset was first proved by Rademacher [30] by an entirely different
method.

The non-measurability of Vitali’s set depended on group-theoretic
properties of Lebesgue measure (invariance under translation), that of
Bernstein’s set depended on topological properties (Theorem 3.18).
However, there is an even more fundamental reason, of a purely set-
theoretic nature, why (under certain hypotheses) a nontrivial measure
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cannot be defined for all subsets of a set X. This is the content of a famous
theorem of Ulam (1930) [39]. This theorem does not refer directly to
measures on the line, but to measures in an abstract set X of restricted
cardinality. In the simplest case, it refers to measures in a set of power ;.
To say that X has power N, means that X can be well ordered in such
a way that each element is preceded by only countably many elements,
that is, the elements of X can be put in one-to-one correspondence with
the ordinal numbers less than the first uncountable ordinal.

Theorem 5.6 (Ulam). A finite measure p defined for all subsets of a
set X of power W, vanishes identically if it is equal to zero for every one-
element subset.

Proof. By hypothesis, there exists a well ordering of X such that
for each y in X the set {x: x < y} is countable. Let f(x, y) be a one-to-one
mapping of this set onto a subset of the positive integers. Then f is an
integer-valued function defined for all pairs (x, y) of elements of X for
which x < y. It has the property

(1) x<x'<y implies f(x,y)=*f(x,y).
For each x in X and each positive integer n, define
Fi={y:x<y f(x,y)=n}.
We may picture these sets as arranged in an array
Fl FL ... F!..
FlL FZ .. F}..

with 8, rows and &, columns. This array has the following properties:
(2) The sets in any row are mutually disjoint.

(3) Theunionofthesetsin any columnisequalto X minusa countable set.

To verify (2), suppose y e FfnF., for some n and some y, x, and x/,
with x £x". Then x<y, x'<y, and f(x,y)= f(x, y)=n. Hence x=x/,
by (1). Therefore, for any fixed n, the sets F7 (x € X) are disjoint.

To verify (3), observe that if x < y, then y belongs to one of the sets
F?, namely, that one for which n= f(x, y). Hence the union of the sets
F!' (n=1,2,...) differs from X by the countable set {y:y < x}.

By (2), in any row there can be at most countably many sets for which
p(F?)> 0 (since p(X) is finite). Therefore there can be at most countably
many such sets in the whole array. Since there are uncountably many
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columns, it follows that there exists an element x in X such that u(F;)=0
for every n. The union of the sets in this column has measure zero, and
the complementary countable set also has measure zero. Therefore
uw(X)=0, and so p is identically zero. []

Ulam established this result not only for sets X of power X,, but also
for some sets of higher cardinality. A limit cardinal is said to be weakly
inaccessible if (i) it is greater than ¥, and (ii) it cannot be represented as a
sum of fewer smaller cardinals. It is called inaccessible if, in addition,
(iii) it exceeds the number of subsets of any set of smaller cardinality.
It is easy to see that c is not inaccessible ((iii) fails). If inaccessible cardinals
exist, even the smallest ones must be very large. By a continuation of the
above reasoning, Ulam showed that in Theorem 5.6 it is sufficient to
assume that no cardinal less than or equal to that of X is weakly in-
accessible. Neither Theorem 5.6 nor this generalization can be applied
to measures on the line unless we make some hypothesis about c. If we
assume the continuum hypothesis (which asserts that ¢ =1,), or at least
if we assume that no cardinal less than or equal to c is weakly inaccessible,
then we can infer the following

Proposition 5.7. A finite measure defined for all subsets of a set of
power c vanishes identically if it is zero for points.

This proposition carries with it a remarkable generalization. In
addition to the results mentioned above, Ulam showed that if a set X
admits a finite measure g such that u(X)>0 and u({x})=0 for each
x € X, and if Proposition 5.7 is true, then X admits a two-valued measure
(taking only the values 0 and 1) having the same properties. According
to a theorem of Hanf and Tarski [32, p. 313], such a measure is possible
only if the cardinal number of X is enormously large, in fact, the cardinal
number of X must be preceded by an equal number of inaccessible
cardinals!

It should be pointed out that the non-measurability of a set does not
mean that no measure can be defined for it. In fact, it can be shown that
any subset of R is included in the domain of some extension of Lebesgue
measure. However, Theorem 5.6 shows that if c =N, , then no extension
of Lebesgue measure can be defined for every member of the array {F"}.
Even more remarkably, Banach [1] has shown that the continuum
hypothesis implies the existence of a countable family of sets that has this
property. But it should not be forgotten that unless we assume the con-
tinuum hypothesis, or make some special hypothesis concerning c,
neither Proposition 5.7 nor the impossibility of extending Lebesgue
measure to all subsets of R has yet been proved.
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6. The Banach-Mazur Game

Around 1928, the Polish mathematician S. Mazur invented the following
mathematical “game.” Player (4) is “dealt™ an arbitrary subset 4 of a
closed interval I,. The complementary set B = I, — A is dealt to player (B).
The game (A, B} is played as follows: (A4) chooses arbitrarily a closed
interval I; C I,; then (B) chooses a closed interval I, C I, ; then (4) chooses
a closed interval I;CI,; and so on, alternately. Together the players
determine a nested sequence of closed intervals I, (4) choosing those
with odd index, (B) those with even index. If the set ﬂ I, has at least one
point in common with A, then (4) wins; otherwise, (B) wins.

The question is: can one of the players, by choosing his intervals
judiciously, insure that he will win no matter how his opponent plays?
Anyone familiar with the proof of the Baire category theorem can hardly
fail to notice that in case the set A4 is of first category, there is a simple
strategy by which (B) can insure that he will win. If 4 = { ) 4,, A, nowhere
dense, (B) has only to choose I,,C I,,_; — A,, for each n. Then no matter
how (A) plays, (B) will win. Mazur conjectured that only when 4 is of
first category can the second player be sure to win. Banach (unpublished)
proved this conjecture to be true [40, p. 23], [9].

To say precisely what it means for one of the players to be sure to win,
we need to understand what is meant by a “strategy.” A strategy for
either player is a rule that specifies what move he will make in every
possible situation. At his n-th move, (B) knows which intervals I, I, ...,
I,,_, have been chosen in the previous moves, and he knows the sets 4
and B, but that is all. From this information, his strategy must tell him
which interval to choose for I,,. Thus, a strategy for (B) is a sequence of
closed-interval-valued functions f,(I,,1,,...,1,,_;). The rules of the
game demand that

(1) fn(105119~-',12n—1)cl2n*1 (n:1525"')'

The function f, must be defined at least for all intervals that satisfy the
conditions

) IL,OLOLY L,
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and
3) L,=fUy,1,....L;,_;) (@(=12,...,n—1).

For this to be a winning strategy for (B), it is necessary and sufficient that
() I, C B for every sequence I, that satisfies (2) and (3) for every n.

Theorem 6.1. There exists a strategy by which (B) can be sure to win
if and only if A is of first category.

Proof. Let f}, f,, ... be a winning strategy for (B). Let I° denote the
interior of any interval I. Given f|, it is possible to define a sequence of
closed intervals J; (i=1, 2, ...) contained in I? such that (i) the intervals
K; = f,(y, J;) are disjoint, and (ii) the union of their interiors is dense in ;.
One way to do this is as follows. Let S be a sequence consisting of all
closed intervals that have rational endpoints and are contained in IJ.
Let J; be the first term of S. Having defined J, ..., J;, let J;, ; be the first
term of S contained in I, — K, — K, — --- — K. It is easy to verify, using
(1), that this construction defines inductively a sequence J; having the
required properties.

Similarly, foreach i,let J;;(j =1, 2, ...) be a sequence of closed intervals
contained in K such that the intervals K;;= f,(I,, J;, K;, J;;) are disjoint
and the union of their interiors is dense in K;. Then the union of all the
intervals KJ is dense in I,.

Proceeding inductively, we can define two families of closed intervals
J;,...and K; _; ,where nand each of the indices i, range over all positive

iy..d

integers, such that the following conditions are satisfied:
“4) Kil...i,.zfn(IO’JipKil!Ji K ’Jil...i,.)’
) i

1822 PXigip> oo

0
1.in+1 C Ki1 vein ®

(6) For each n, the intervals K,
interiors is dense in ;.

;,, are disjoint, and the union of their

.1

Now consider an arbitrary sequence of positive integers i,, and define

(7 L, 1= i L,=K; ; n=12,.).

in

From (4) and (5) it follows that conditions (2) and (3) are satisfied for all n;
hence the nested sequence I, is a possible play of the game consistent with
the given strategy for (B). By hypothesis, the set () I, must be contained
in B.
For each n, define G,= |) K? ,.Let E=()G,. Then for each x
ig...0

in E there is a unique sequence i, i,, ... such that xe K;, _; for every n.
If this sequence is used to define (7), then x e ﬂ I, C B. This shows that
E ¢ B. Consequently,

A=1,—BCl,—E=),(lb—G,).
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Since (6) implies that each of the sets I, — G, is nowhere dense, A must
be of first category. []

This theorem gives new insight into the sense in which a set of first
category is small; it is a set on which even the first player is bound to
lose, unless his opponent fails to take advantage of the situation.

Theorem 6.2. There exists a strategy by which (A) can be sure to win
if and only if I, "B is of first category for some interval I, C I,.

Proof. If such an interval exists, (4) can start by choosing it for I,.
Then, by an obvious strategy, he can insure that () I, is disjoint to B.
Since the intersection is non-empty, this is a winning strategy for (A4).
On the other hand, if (4) has a winning strategy he can always modify
it so as to insure that the intersection of the intervals I, will consist of
just one point of A. (For instance, this will be insured if he always chooses
I,, ., asif I,, had been a subinterval half as long.) This defines a winning
strategy for the second player in the game <I, "B, I, nA). By Theorem
6.1, such a strategy can exist only if I, "B is of first category. []

Theorem 6.3. If the set A has the property of Baire, then (B) or (A)
possesses a winning strategy according as A is of first or second category.

Proof. Let A=G 2 P, where G is open and P is of first category.
If G is empty, then (B) has a winning strategy, by Theorem 6.1. If G is
not empty, (A4) has only to choose I, C G to insure that he will be able to
win. []

A set E is said to be of first category at the point x if there exists a
neighborhood U of x such that UNE is of first category. Otherwise, E
is said to be of second category at the point x. These notions are analogous
to the metric notion of density discussed in Chapter 3. The set G of points
at which A’ is of first category is open. If A has the property of Baire,
G may be regarded as the category analogue of the set ¢(A4) considered
in Theorem 3.21; it is the largest open set that differs from A by a set of
first category. Hence G is the same as the regular open set that appears
in Theorem 4.6. The fact that G differs from A by a set of first category
is analogous to the Lebesgue density theorem.

By Theorems 6.1 and 6.2, one of the players possesses a winning
strategy if and only if A4 is of first category or B is of first category at some
point. By Theorem 6.3, one of these alternatives holds whenever A has
the property of Baire. Is it possible that neither may hold? Yes! Let A be
the intersection of I, with a Bernstein set. Then neither A nor B contains
an uncountable G; set (Lemma 5.1). Consequently, for any interval
I C I,, neither of the sets An I or BN 1 is of first category. (For if one is of
first category, the other is a set of second category having the property
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of Baire. By Theorem 4.4, any such set contains an uncountable G, set.)
Consequently, this game (A4, B) is not determined in favor of either
player.

The possibility of indeterminateness makes the Banach-Mazur game
particulary interesting for the general theory of games. It also raises
some interesting questions. If a game is determined in favor of one of the
players, should it be called a game of “skill™? If neither player can control
the outcome, is the outcome a matter of “chance™? What does “chance™
mean in this connection?

There is another version of the Banach-Mazur game, in which the
players alternately choose successive blocks of digits (of arbitrary finite
length) in the decimal (or binary) development of a number. If the
number so defined belongs to A, (4) wins; otherwise, (B) wins. In effect,
this is the same as the game with intervals, except that now all the intervals
are required to be decimal intervals. Any winning strategy for the
original game can easily be modified so as to satisfy this condition, and
Theorems 6.1, 6.2, and 6.3 remain valid. However, if the blocks are all
required to be of length 1, that is, if (4) and (B) alternately choose
successive digits in the development of a number, then we have an
entirely different game, a game which was first studied by Gale and
Stewart [8]. The conditions under which one of the players now has a
winning strategy are still not completely understood. It is not known, for
instance, whether this game is determined in favor of one or the other
player whenever A is a Borel set. Recent results suggest that the answer
may depend upon what set-theoretic axioms one assumes [22, p. 75].
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7. Functions of First Class

Let f be a real-valued function on R. For any interval I, the quantity
o(I) = sup f(x) — inf f(x)
xel xel

is called the oscillation of f on I. For any fixed x, the function w((x — 4,
X + 0)) decreases with 6 and approaches a limit

w(x) = (lsljré o((x =9, x+9)),

called the oscillation of f at x. w(x) is an extended real-valued function
on R. Evidently, w(x,) =0 if and only if f is continuous at x,. When it is
not zero, w(x,) is a measure of the size of the discontinuity of f at x,.

If w(xy) <e, then w(x)<e for all x in a neighborhood of x,. Hence
the set {x:w(x)<c¢} is open. The set D of all points at which f is dis-
continuous can be represented in the form

D= {x:o(x)z1/n},
hence D is always an F, set. Thus

Theorem 7.1. If f is a real-valued function on R, then the set of points
of discontinuity of f is an F,.

This theorem admits the following converse:

Theorem 7.2. For any F, set E there exists a bounded function f
having E for its set of points of discontinuity.

Proof. Let E=|(JF,,where F,is closed. We may assume that F, C F, , ,
for all n. Let A, denote the set of rational points interior to F,. For any
set A, the function y , defined by

1 when xeAd

1a)= {0 when x¢ A4

is called the indicator function (or characteristic function) of A. The func-

tion f,=yr — Xa,=Xr,- a4, has oscillation equal to 1 at each point of
F,, and equal to O elsewhere. Let {a,} be a sequence of positive numbers
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such that a,> ;. ,a, for every n. (For instance, let a,=1/n!.) Then the
series Y o>, a, f,(x) converges uniformly on R to a bounded function f.
f is continuous at any point where all of the terms are continuous, hence
at each point of R— E. On the other hand, at each point of F,— F, _,
the oscillation of f is at least equal to a,— ;. ,a;. Hence the set of
points of discontinuity of f is exactly E. []

A function f is said to be of the first class (of Baire) if it can be
represented as the limit of an everywhere convergent sequence of con-
tinuous functions. Such a function need not be continuous, as simple
examples show. For instance, the functions f,(x)=max(0, 1 —n|x|) are
continuous and the sequence converges pointwise to the discontinuous
function f(x)=1 or 0 according as x = 0 or x + 0. However, the following
theorem shows that a function of first class cannot be everywhere
discontinuous. It is known as Baire’s theorem on functions of first class.
(More exactly, it is a part of Baire's theorem.) It was in this connection
that Baire originally introduced the notion of category.

Theorem 7.3. If f can be represented as the limit of an everywhere
convergent sequence of continuous functions, then f is continuous except
at a set of points of first category.

This should be compared with the well-known theorem that the
limit of a wuniformly convergent sequence of continuous functions is
everywhere continuous.

Proof. It suffices to show that, for each £ > 0, the set F = {x : w(x) = 5¢}
is nowhere dense. Let f(x) = lim f,(x), f, continuous, and define

E,=(ijealx: i) - fi0) S} (n=1,2,..).

Then E, is closed, E,CE,,,, and  J E, is the whole line. Consider any
closed interval I. Since I = U (E,n1),the sets E,~ I cannot all be nowhere
dense. Hence, for some positive integer n, E,N I contains an open interval
J. Wehave | f,(x) — fi(x)| S efor all xin J;i,j = n. Putting j = n and letting
i— o0, it follows that |f(x)— f,(x)|<e for all x in J. For any x, in J
there is a neighborhood I(x,) CJ such that |f,(x) — f,(x,)| < ¢ for all x
in I(x,). Hence | f(x) — f,(x,)] < 2¢ for all x in I(x,). Therefore w(x,) < 4,
and so no point of J belongs to F. Thus for every closed interval I there
is an open interval J CI — F. This shows that F is nowhere dense. []

The reasoning just given can be used to prove more. With only slight
changes in wording, it applies when f and all of the functions f, are
restricted to an arbitrary perfect set P. In this case the notion of category
must be interpreted relative to P. The Baire category theorem remains
true: if an open interval I meets P, then no countable union of sets
nowhere dense relative to P can be equal to InP. Thus if f is any func-
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tion of first class and P is any perfect set, then the restriction of f to P is
continuous at all points of P except a set of first category relative to P.
Conversely, Baire showed that any such function is of first class. (For
an elementary proof, see [4, Note II].) We shall not prove this, but merely
note that a simple example shows that the converse of Theorem 7.3 is
false. Let f(x)=0 at all points not in the Cantor set C, f(x)=1/2 at the
endpoints of each of the open intervals deleted in the construction of C,
and f(x)=1 at all other points of C. f is continuous except at a set of
points of first category, namely, at every point of C’. But the restriction
of f to C is discontinuous at every point of C, hence f is not of first class.

It is easy enough to formulate a necessary and sufficient condition
for the conclusion of Theorem 7.3, namely,

Theorem 7.4. Let [ be a real-valued function on R. The set of points
of discontinuity of f isof first category if and only if f is continuous at a
dense set of points.

This i1s an immediate consequence of Theorem 7.1 and the fact that an
F, setis of first category if and only if its complement is dense.

Theorem 7.3 is an extremely useful result. To illustrate how it serves
to answer several natural questions, we mention two examples.

It 1s well known that a trigonometric series may converge pointwise
to a discontinuous function. How discontinuous can the sum function
be? Can the sum of an everywhere convergent trigonometric series be
everywhere discontinuous? Theorem 7.3 shows at once that it cannot.

Again, it 1s well known that the derivative of an everywhere differen-
tiable function f need not be everywhere continuous. A famihar example
1s the function

fx)=x%sin(1/x), f(0)=0.

Can the derivative of an everywhere differentiable function be everywhere
discontinuous? Theorem 7.3 answers the question, since

Sx+1/m)—f(x)
1/n

19= lim

1s a function of first class when it is everywhere defined and finite.

Having found conditions under which the set D of points of dis-
continuity of a function is of first category, it is natural to inquire under
what conditions D is a nullset. One answer is provided by the following
well-known

Theorem 7.5. In order that a function f be Riemann-integrable on
every finite interval it is necessary and sufficient that f be bounded on
every finite interval and that its set of points of discontinuity be a nullset.
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For a given function f, bounded on I, let F(I) be the greatest lower
bound of all sums of the form

2i- o)L,
where {I,, ..., 1} is any subdivision of I, that is, any finite set of non-
overlapping closed intervals whose union is I. F(I) is the difference
between the upper and lower integrals of f on I; the equation F(I)=0
expresses the condition that f be Riemann-integrable on I. It is easy to
verify that if {I,, ..., I} is any subdivision of I, then F(I)= Y] F(I). This
property of F is all that is needed to prove the following

Lemma 7.6. If w(x)<¢ for each x in I, then F(I) <¢|l|.

Proof. Suppose the contrary. Then F(I)=¢|l|, and so F(I,)=¢|l|/2
for at least one of the intervals I, obtained by bisecting I. Similarly,
F(1,) Z ¢|1,]/2 for at least one of the intervals I, obtained by bisecting I;.
By repeated bisection we obtain a nested sequence of closed intervals
I, such that F(I,) = ¢|I|/2" (n=1, 2, ...). These intersect in a point x of I.
By hypothesis, w(x) < ¢ and therefore w(J) < ¢ for some open interval J
containing x. Choose nso that I, CJ. Then

F(I) = o(L)|L| = oU)1/2" <e|1)/2" < F(I),
a contradiction. []
Corollary 7.7. Anycontinuous functiononaclosedintervalisintegrable.

It may be noted that the above proof of this fact did not involve the
notion of uniform continuity.

Now, to prove Theorem 7.5, assume first that f is integrable on I.
Then for any positive integer k, I can be divided into intervals I, ..., I

such that "
o) ] < 1/k%.

Let )’ denote the sum over those intervals I; for which w(x) = 1/k at
some interior point. Then

1/k? > 3" (D)L = (1/k) X' || -
Therefore Y '|I| < 1/k. The set
F,={xel:w(x)=1/k}

is entirely covered by these intervals, except perhaps for a finite number of
points (endpoints of intervals of the subdivision). Therefore m(F,) < 1/k.
If D is the set of points of discontinuity of f, then DI is the union of
the increasing sequence F,, and we have

m(Dr\I)=’!i_{ralo m(F)=0.

If f is integrable on every finite interval, it follows that D is a nullset.
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Conversely, suppose D is a nullset and that f is bounded on I, with
upper and lower bounds M and m, respectively. For any ¢ >0, choose k
so that (M —m)+ |I| <ke. Since F, is a bounded closed nullset, it is
possible to cover F, with a finite number of disjoint open intervals the
sum of whose lengths is less than 1/k. The endpoints of these intervals
that belong to I determine a subdivision of I into nonoverlapping
intervals I, and J; such that ) |I| < 1/k and w(x)< 1/k on each of the
intervals J;. Hence, by Lemma 7.6,

F(N=%F(I)+ X FJ) <M —m3 |+ X (1/k)lJ}
<M —m)k+|I/k<ce.

Consequently, f is Riemann-integrable on I.

To round out this discussion of points of discontinuity, one may ask
whether there is a natural class of functions that is characterized by
having only countably many discontinuities. One answer is provided by

Theorem 7.8. The set of points of discontinuity of any monotone
function f is countable. Any countable set is the set of points of dis-
continuity of some monotone function.

Proof. If f is monotone, there can be at most | f(b) — f (a)|/e points
in (a, b) where w(x) = ¢. Hence the set of points of discontinuity of f is
countable. On the other hand, let {x;} be any countable set, and let Y ¢;
be a convergent series of positive real numbers. The function f(x)
=3 ..<x& is @ monotone bounded function. It has the property that
w(x;)=¢; foreach i,and w(x)=0for all x not in the sequence x;. []

This should be compared with the much deeper theorem, due to
Lebesgue, that any monotone function is differentiable (has a finite
derivative) except at a set of points of measure zero [31, p. 5].
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8. The Theorems of Lusin and Egoroff

A real-valued function f on R is called measurable if f~'(U) is
measurable for every open set U in R. f is said to have the property of
Baire if f ~'(U) has the property of Baire for every open set U in R. In
either definition, U may be restricted to some base, or allowed to run
over all Borel sets. The indicator function y. of a set E C R is measurable
if and only if E is measurable; y has the property of Baire if and only
if E does.

If E has the property of Baire, then E=GAP=F a0, where G is
open, F is closed, and P and Q are of first category. The set E—(PuUQ)
=G —(PuQ@)=F —(PuQ)isbothclosed and openrelative toR — (P U Q),
hence the restriction of y; to the complement of PUQ is continuous.
More generally, continuity and the property of Baire are related as
follows [18, p. 306].

Theorem 8.1. A4 real-valued function f on R has the property of Baire
if and only if there exists a set P of first category such that the restriction
of f to R— P is continuous.

Proof. Let U, U,, ... be a countable base for the topology of R,
for example, the open intervals with rational endpoints. If f has the
property of Baire, then f~!(U;) =G, P,, where G, is open and P, is of
first category. Put P = J¥ P.. Then P is of first category. The restriction
g of f to R— P is continuous, since g~ *(U;)= f " Y(U)—P=(G,oP)—P
= G; — P is open relative to R — P for each i, and therefore so is g~ }(U),
for every open set U.

Conversely, if the restriction g of f to the complement of some set P
of first category is continuous, then for any open set U, g~ '{(U)=G— P
for some open set G. Since

g ') f " (U)cg ' (U)uP,
we have

G—PcCf Y (U)ycGuP.

Therefore f~'(U)=Ga Q for some set Q C P. Thus f has the property
of Baire. []
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The relation between continuity and measurability is not quite so
simple. It is expressed by the following, known as Lusin’s theorem.

Theorem 8.2 (Lusin). A real-valued function f on R is measurable if
and only if for each ¢ > 0 there exists a set E with m(E) < ¢ such that the
restriction of f to R — E is continuous.

Proof. Let U,,U,, ... be a countable base for the topology of R.
If f is measurable, then for each i there exists a closed set F; and an open
set G, such that

F,Cf"YU)CG; and m(G,—F)<¢g/2".

Put E= | J7(G;— F,). Then m(E)<e. If g denotes the restriction of f to
R —E, then
g '(U)=f""(U)-E=F—-E=G,—E.

Hence g~ '(U,) is both closed and open relative to R — E, and it follows
that g is continuous.

Conversely, if f has the stated property there is a sequence of sets
E; with m(E;) < 1/i such that the restriction f; of f to R — E; is continuous.
For any open set U there are open sets G; such that f;” '(U)= G, — E;
(i=1,2,...). Putting E= (7 E;, we have

f_l U) E= Ux—l _I(U Ul—l _I(U
Consequently,

U= UNEIUJE (G —E).

All of these sets are measurable, since m(E)=0, and therefore f is a
measurable function. {]

A measurable function need not be continuous on the complement of
a nullset. To see this we construct an example as follows. Let U, U,, ...
be a base for the topology of R. Since every interval contains a nowhere
dense set of positive measure, we can define inductively a disjoint sequence
of nowhere dense closed sets N, such thatm(N,) >0and N,,UN,,_, CU,.
Put A= U °N,,, and let f be the indicator function of A. Since A4
and R — A4 have positive measure in every interval, the restriction of f
to the complement of any nullset is nowhere continuous.

The following result, known as Egoroff's theorem, establishes a
relation between convergence and uniform convergence.

Theorem 8.3. If a sequence of measurable functions f, converges to
[ at each point of a set E of finite measure, then for each ¢ >0 there is a
set F C E with m(F) < ¢ such that f, convergesto f uniformly on E — F.

Proof. For any two positive integers n and k let

E,p=UZu{xeE:|fi()— f(0)| 2 1/k}.
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Then E, . DE,,, ,and ()2, E, =9, for each k. Given &> 0, for each k
there is an integer n(k) such that m(E,, ) <é&/2*. Put F =i Epgx-
Then m(F)<e. For each k we have E—FCE—E,,,. Therefore
| fi(x)— f(x)| < 1/k for all i=n(k) and all xe E—F. Thus f, converges
to f uniformly on E—F. []

It is interesting to note that while Lusin’s theorem has a very satis-
factory category analogue in Theorem 8.1, the corresponding analogue
of Egoroff’s theorem is false. This is shown by the following example.

Let ¢(x) be the piece-wise linear continuous function defined by
¢(x)=2x0n[0,1/2],¢(x)=2—2xo0n[1/2,1],and ¢(x)=00n R — [0, 1].
Then lim, _, , ¢(2"x) = 0for every x in R. Let {r;} be a dense sequence in R,
and define f,(x)=3Y"=,2""¢(2"(x—r;). As the sum of a uniformly
convergent series of continuous functions, f, is continuous on R, and
lim,_, ., f,(x)=0for each x in R. If (a, b) is any open interval, then r; € (a, b)
for some i, and we have sup, ., <, f,(x) = 1/2 for all sufficiently large n.
This shows that f, does not converge uniformly on (g, b). Let E be any
set on which f, does converge uniformly. This means that if we let
o, = Sup, g f,(x), then a,—0. Because f, is continuous, o, is also the
supremum of f, on E. Hence f, converges to O uniformly on E. From
what we have shown, E cannot contain an interval. Therefore any set
on which the sequence { f,} converges uniformly is nowhere dense.
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9. Metric and Topological Spaces

The usefulness of the notion of category only becomes fully apparent
in more general spaces, especially metric spaces. Let us recall the basic
definitions.

A metric space is a set X together with a distance function or metric
o(x, y) defined for all pairs of points of X and satisfying the following
conditions:

(1) o(x,») 20, o(x,x)=0,

() olx, y)=e(y, x),

(3) olx, z) £ o(x, y) + ¢(y, z) (triangle inequality),
(4) o(x, y)=0 implies x = y.

This notion (due to Fréchet) is a natural abstraction of some of the
properties of distance in a Euclidean space of any number of dimensions.
Many theorems in analysis become simpler and more intuitive when
formulated in terms of a suitable metric.

A sequence x;, Xx,, ... of points of a metric space (X, o) is said to
converge to the point x if g(x,, x)—0 as n— co. We then write x, > x. A
sequence is convergent if it converges to some point of X. The set of
points {x:o(x,, x) <r}, r >0, is called the r-neighborhood of x,, or the
ball with center x,, and radius r.

A set G C X is called open if for each x in G, G contains some ball with
center x. Balls are open sets, and arbitrary unions and finite intersections
of open sets are open. Any class  of subsets of a set X such that ¢, X, the
union of any subclass of 7, and the intersection of any finite subclass of
T belongs to 7 is called a topology in X, and the pair (X,.7) is called a
topological space. A subclass 7, C .7 is a base for the topology if each
member of .7 is the union of some subfamily of 7. The open subsets of
any metric space X constitute a topology in X, but not every topology
can be represented in this way.

A metric space is called separable if it has a countable dense subset, or,
equivalently, a countable base. Two metrics in a set X are topologically
equivalent if they determine the same topology. Very often it is the
topological structure of a metric space that is of primary interest, and the
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metric is regarded as auxiliary. Any property that is definable in terms
of open sets alone is a topological property. For instance, convergence is a
topological property, because x,— x if and only if every open set that
contains x contains all but a finite number of terms of the sequence.

The complement of an open set is called closed. In a metric space X,
a set F is closed if and only if {x,} CF, x,— x imply x € F. The smallest
closed set that contains a set A is called the closure of A; it is denoted by
A or A~ . Similarly, the largest open set contained in A is called the
interior of A; it is equal to A’ ~'. A is a neighborhood of x if x belongs to the
interior of A. A set A4 is dense (in X) if A = X, that is, if every non-empty
open set contains at least one point of A. A set A is nowhere dense if the
interior of its closure is empty, that is, if for every non-empty open set
G there is a non-empty open set H contained in G — A. A set is of first
category if it can be represented as a countable union of nowhere dense
sets; otherwise, it is of second category. F, sets, G; sets, Borel sets, and
sets having the property of Baire are defined exactly as before. All of
these are topological properties of sets, and the definitions apply to any
topological space.

A mapping f of a topological space X into a topological space Y
1s continuous at the point x, in X if for every open set V that contains f(x,)
there is a neighborhood U of x, such that f(x)e V for every xe U. A
mapping f: X —Y is continuous if it is continuous at each point of X.
A one-to-one mapping f of X onto Y is called a homeomorphism if
both f and f ! are continuous. When such a mapping exists, X and Y
are said to be homeomorphic or topologically equivalent. Two metrics
¢ and ¢ in a set X are topologically equivalent if and only if the identity
mapping of X onto itself is a homeomorphism of (X, g) onto (X, o).
For this it is necessary and sufficient that g(x,, x)—0 if and only if
a(x,, x)—0.

A sequence of points x, of a metric space (X, g) is called a Cauchy
sequence if for each ¢ > 0 there is a positive integer n such that g(x;, x;) <&
for all i, j=n. Every convergent sequence is Cauchy, but the converse
is not generally true. However, there is an important class of spaces in
which every Cauchy sequence is convergent. Such a metric space is said
to be complete. For instance, the real line is complete with respect to the
usual metric |x — y|.

It is important to realize that completeness is not a topological
property, and that the class of Cauchy sequences (unlike the class of
convergent sequences) is not preserved under homeomorphism. For
instance, the mapping that takes x into arc tan x is a homeomorphism
of the line X onto the open interval Y =(— n/2, n/2). Here X is complete
but Y is not. The sequence y, = arc tann is Cauchy in Y, but the sequence
X, =n is not Cauchy in X.
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A metric space (X, ¢) is topologically complete if it is homeomorphic
to some complete space. If f is a homeomorphism of (X, g) onto a com-
plete space (Y, o), then o(f(x), f(y)) is a metric in X topologically
equivalent to ¢. Thus a metric space is topologically complete if and only
if it can be remetrized (with a topologically equivalent metric) so as to
be complete. An important property of such spaces is that the Baire
category theorem still holds.

Theorem 9.1. If X is a topologically complete metric space, and if A
isof first categoryin X, then X — A isdense in X.

Proof. Let A= U A,, where A, is nowhere dense, let ¢ be a metric
with respect to which X is complete, and let S, be a non-empty open set.
Choose a nested sequence of balls S, of radius r, < 1/nsuch that S, CS,_,
— A, (n=1). This can be done step by step, taking for S, a ball with
center x, in S,_, — A, (which is non-empty because A, is nowhere dense)
and with sufficiently small radius. Then {x,} is a Cauchy sequence, since

Q(xis xj)ég(xi’ xn)+Q(xn’ xj) <2rn for l’Jzn

Hence x,, — x for some x in X. Since x; € §, fori 2 n, it follows that x € () S,
C Sy — A. This shows that X — Aisdensein X. []

A topological space X is called a Baire space if every non-empty open
set in X is of second category, or equivalently, if the complement of
every set of first category is dense. In a Baire space, the complement of
any set of first category is called a residual set.

Theorem 9.2. In a Baire space X, a set E is residual if and only if E
contains a dense G; subset of X.

Proof. Suppose B=()G,, G, open, is a G, subset of E that is dense
in X. Then each G, is dense, and X —ECX —B=|J(X —G,) is of first
category. Conversely, if X — E= | ) 4,, where A, is nowhere dense, let
B= ﬂ(X—Z,,). Then B is a G; set contained in E. Its complement
X-B=) A, is of first category. Since X is a Baire space, it follows that
Bisdensein X. []
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10. Examples of Metric Spaces

Let C, or C[a, b], denote the set of all real-valued continuous functions
f on the interval [a, b], and define

o(f,9) = sup, <, < f(x) —g(x)| .

It is easy to verify that ¢ is a metric in C; in particular, the triangle
inequality follows from the fact that

|f ()= h(x) = f(x x)| + lg(x) — h(x)|
ée(f,g +e g,h)

for all x in [a, b]. Convergence in this metric means uniform convergence
on [a, b]. For this reason, g is called the uniform metric.

Let { f,} be any Cauchy sequence in C, say o(f;, f;) S eforalli,j = n(e).
Then

|fi(x)—fi(x)|<e forall i,j=n(e) and a<x=bh.

Hence, for each x in [a, b], { f,(x)} is a Cauchy sequence of real numbers.
It therefore converges to a limit f(x). Letting j— oo we see that | fi(x)
— f(x)| Z¢ for all i=n(e) and all x in [a, b]. Thus f; converges to f
uniformly on [a, b]. By a well-known theorem, it follows that f is con-
tinuous on [a, b]. Hence f;— f in C. This shows that the space (C, o)
is complete.

Next consider the same set C, but take for metric the function

o(f.9)=[alf(x)—g(x) dx.

Again it is easy to verify that all the axioms are satisfied. To see that this
metric is not topologically equivalent to g, take f,(x) = max(1 —n(x—a),0)
and let f be the zero function. Then o(f,, )= 1/2n for n> 1/(b — a), but

o(f,, f)=1.Thus f,— fin (C, o) but not in (C, g), hence these spaces are
not homeomorphic.

To see that (C, ) is not complete, take [a, b] =[O0, 1], and let

min(1,1/2—n(x—1/2)) on [0,1/2]

Julx)= {max(O, 1/2=n(x—1/2) on [1/2,1].
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From the graph of this function it is clear that

o(for fm) = (1/8)1/n—1/m].

Hence f, is a Cauchy sequence. Suppose a(f,, f)—0 as n— oo for some
S in C. Then

G(f..,f)zfé/z’“z"ll—f( |dx+jl/2+l/2n|f Jdx.

Letting n— oo it follows that

Jo2 1= fOoldx = 51 f() dx=0.

Since f is continuous, we must have f(x)=1 on [0, 1/2] and f(x)=
on [1/2, 1], which is impossible.

Next consider the set R[a, b] of Riemann-integrable functions on
[a, b], with the same metric o. Here we encounter a difficulty: the fourth
axiom is not satisfied. A set X with a distance function that satisfies only
the first three axioms is called a pseudo metric space. Such a space can
always be made into a metric space by identifying points x and y whenever
o(x, y)=0. It is easy to verify that this defines an equivalence relation in
X, and that the value of ¢(x, y) depends only on the equivalence classes
to which x and y belong. If we take these classes as the elements of a set
X, then (X, ) is a metric space. In particular, if we identify any two ele-
ments of R[a, b] that differ by a null function, that is, a function f such
that §b|f )l dx =0, we obtain a metric space (R, 6), called the space of
R-integrable functions on [a, b]. Let f denote the equivalence class to
which f belongs. The mapping f—f of (C,os) into (R, o) is distance-
preserving. Thus (R, ¢) contains a subset isometric to (C, o). It is a proper
subset, for if f is the indicator function of [a, (a + b)/2], then f belongs
to R but no member of f is continuous.

For any positive integer M, let

Ey={f:feR[ab] and |f|<M}.

Since every integrable function is bounded, R = U= 1EM For any
fo€ E,y, with | fo| €M, let g = fo +(2M + 1) x,, where y, is the indicator
function of an interval I of length ¢ contained in [a, b]. Then o (fo, §)

=M+ e If |f|£M then |g— f|=1 on I, and so o(f, §) = e. Hence
no element of the e-neighborhood of § belongs to E,. Since § can be
taken arbitrarily close to fo. this shows that E,, is nowhere dense in R.
Hence R is of first category in itself. It follows that R is not a complete
space. Moreover, no remetrization can make it complete, since category
is a topological property.

As a last example, consider the class S of sets of finite measure in any

measure space, and define

o(E, F)=m(E A F).
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The first two axioms for a metric are obviously satisfied, and the triangle
inequality holds, since

o(E, H)=m(E & Hy=m((E o F)a (F & H))
<m(Ea F)+m(F s Hy=o(E, F)+ o(F, H).

The fourth axiom holds when we identify sets that differ by a nullset.
Thereby we obtain a metric space S, o). To show that this space is
complete, let E, be any Cauchy sequence in (S, ¢). Then for each positive
integer i there is an index n; such that ¢(E,, E,) < 1/2' for all n,m=n;,
and we may assume that n;<n;, . Putting F,=E, we have o(F, F))
< 1/2! for all j > i. Define

H,=(\%&F; and E={J2 H;.

J

All of these sets belong to S. E is the set of points that belong to all but
a finite number of the sets Fy, F,, ... . It is easy to verify that both EA H,
and H; A F,, and therefore Ea F;, are contained in the set

(F;aF )U(Fiy aF )V (F 8 Fis)u-.

Consequently,
mEAF)S Y2 m(FaF, )<Y, 1/27=1/2""1.
For any n = n;, we have
m(EAE,)=m(EF)a(E,aE,)
SmEsF)+m(E, aE)<1/271 +1/2"

It follows that E, converges to Ein (S, o).

We remark that when m is taken to be 2-dimensional Lebesgue
measure in the plane, the space (S, o) contains a subset isometric to
(R, 0). For any real-valued function f on [a,b], let ¢(f) denote its
ordinate set, that is, the set

d(f)={(x.y):asx<bh, 0<Sy<f(x) or f(x)Sy=0}.
It is not hard to see that if / and g belong to R[a, b], then

Jalf —gl=m($(F)ad(g)).

Hence ¢ takes equivalent functions into equivalent sets and defines an
isometric embedding of (R, o) in (S, o). It is possible to identify the closure
of ¢(R) in (S, o) with the space L! of Lebesgue integrable functions on
[a, b]. This is hardly the easiest way to introduce Lebesgue integration,
but it provides one motivation for enlarging the class of integrable
functions. Since (R, o) is of first category in itself, it is of first category
in any space that contains it topologically. In particular, R is of first
category in the space of Lebesgue integrable functions [23].
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11. Nowhere Differentiable Functions

Many examples of nowhere differentiable continuous functions are
known, the first having been constructed by Weierstrass. One of the
simplest existence proofs is due to Banach (1931) [18, p. 327]. It is based
on the category method. Banach showed that, in the sense of category,
almost all continuous functions are nowhere differentiable; in fact, it is
exceptional for a continuous function to have a finite one-sided derivative,
or even to have bounded difference quotients on either side, anywhere
in an interval.

In the space C of continuous functions on [0, 1], with the uniform
metric, let E, denote the set of functions f such that for some x in
[0,1—1/n] the inequality | f(x + h) — f(x)| Enhholdsforall0<h<1—x.
To see that E,, is closed, consider any f in the closure of E,, and let { f,}
be a sequence in E, that converges to f. There is a corresponding sequence
of numbers x, such that, for each k,

(1) 0<x<1—1/n
and
(2) | filxe+h)— fulx ) Snh forall O<h<l-x,.

We may assume also that
3) x,—x, forsome 0<x=Z1-1/n,

since this condition will be satisfied if we replace { f,} by a suitably chosen
subsequence. If 0 <h < 1— x, the inequality 0 <h <1 — x, holds for all
sufficiently large k, and then

If(x+h) = f =S (x+h) = fa + )+ f(x+ h) = fulx, + h)l
+ 1 filbac+ B) = Sl + Lfixi) = S (30l + 1 () = f (3]
=+ h) = fOa+hl+e(f, f)+nh+e(fi, /) +1f(x) = f(XI.

Letting k— o0, and using the fact that f is continuous at x and x + h,
it follows that

|f(x+h)— f(x)|<nh forall O<h<l—x.
Therefore f belongs to E,,.
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Any continuous function on [0, 1] can be approximated uniformly
and arbitrarily closely by a piece-wise linear continuous function g.
To show that E, is nowhere dense in C, it suffices to show that for any
such function g, and ¢>0, there is a function h in C— E, such that
o(g, h) <e. Let M be the maximum absolute value of the slopes of the
linear segments that constitute the graph of g, and choose an integer m
such that me>n+ M. Let ¢ denote the “saw-tooth™ function ¢(x)
=min(x—[x],[x]+1—x) (= the distance from x to the nearest
integer), and put h(x)=g(x) +&@(mx). Then at each point of [0, 1) the
function h has a one-sided derivative on the right numerically greater
than n. This is clear, since e¢p(mx) has everywhere in [0, 1) a right derivative
equal to +em, and g has a right derivative with absolute value at most
equal to M. Therefore he C — E,. Since g(g, h) =¢/2, it follows that E,
is nowhere dense in C. Hence the set E = |  E, is of first category in C.
This is the set of all continuous functions that have bounded right
difference quotients at some point of [0, 1). Similarly, the set of functions
that have bounded left difference quotients at some point of (0, 1] is of
first category; indeed, this can be deduced from what we have already
shown by considering the isometry of C induced by the substitution
of 1 —x for x. The union of these two sets includes all functions in C
that have a finite one-sided derivative somewhere in [0, 1].

By similar reasoning, one can show that a residual set of functions
in C have nowhere an infinite two-sided derivative. One may ask whether
it is possible to go even further and find a continuous function that has
nowhere a finite or infinite one-sided derivative. Such a strongly nowhere
differentiable function was first constructed by Besicovitch in 1922.
However, it is a remarkable fact that the existence of such functions
cannot be demonstrated by the category method; Saks (1932) showed
that the set of such functions is only of first category in C ! More precisely,
Saks showed that a residual set of continuous functions have a right
derivative equal to + oo at uncountably many points. (See [18, p. 327]
for references.)

The use of the Baire category theorem to prove that a set is non-
empty amounts to a demonstration of the fact that a member of the set
can be defined as the limit of a suitably constructed sequence. For
example, the above proof implies that a nowhere differentiable function
can be exhibited as the sum of a uniformly convergent series of the form
3> P e,¢(m,x). The advantage of the category method is that it furnishes
a whole class of examples, not just one, and it generally simplifies the
problem, enabling one to concentrate on the essential difficulty. When it
succeeds, an example can always be constructed by successive approxima-
tion, starting anywhere in the space. At least, this is true in principle.
But if the proof of nowhere denseness is indirect, or long and involved,
it may be difficult to obtain an explicit example in this way.
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12. The Theorem of Alexandroff

Any subset of a metric space is itself a metric space, with the same
distance function. It is obvious that any closed subset of a complete
metric space is complete with respect to the same metric. When can a
subspace be remetrized so as to be complete? This question is answered
by the following

Theorem 12.1 (Alexandroff). Any non-empty G; subset of a complete
metric space is topologically complete, that is, the subset can be remetrized
so as to be complete.

Following Kuratowski (1955) we base the proof on the following

Lemma 12.2.[18, p. 316]. Let (X, @) be a metric space, and suppose
that there exists a sequence { f;} of real-valued continuous functions on X
with the property that a Cauchy sequence {x,} is convergent whenever each
of the sequences { f1(x,)}, { f>(x,)}, ... is bounded. Then X can be remetrized
so as to be complete.

Proof. Define a new distance function in X by

a(x,y)=e(x, y)+ 22, (1/2) min(L | fi(x) - fiy)])

To verify the triangle axiom it suffices to observe that it is satisfied by
each term. The other axioms are clearly satisfied.

For any ¢>0 and x € X there is an integer N such that 2~ <¢ and
a positive number J < ¢ such that

o(x,y)<é implies |[fi(x)—fi())<e (i=12,...,N).
If o(x, y) <6, then
olx, y)<e+ X (1/2) | fi(x) = fiy) +1/2" < 3e.

Therefore o(x, x,)—=0 whenever ¢(x, x,)—0. The converse follows from
the inequality o(x, y) < a(x, y). Thus ¢ and ¢ are equivalent metrics.

To show that (X, ¢) is complete, let {x,} be Cauchy relative to ¢.
Then for any positive integer i there is an integer N such that
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o(x,, X,,) < 1/2" for all n,m= N. For all n,m>= N, we have

1>2'6(x,, ) 2 min(1, | i(x,) — fi(xn)]),
and therefore
| fi(x) — filx)l< 1.

Hence the sequence { f;(x,)} is bounded, for each i. Since o(x, y) < a(x, y),
the sequence {x,} is also Cauchy relative to g. Therefore, by hypothesis,
the sequence {x,} is convergent. []

Proof of Theorem 12.1. Let X be a non-empty G, subset of a complete
metric space (Y, g), say X = () G,, G, open in Y. Put F,=Y — G, and let

d(x, F)=inf{o(x,y): ye F} .

We may assume that each of the sets F; is non-empty. Then d(x, F)) is a
real-valued continuous function on Y, positive on X. The functions
filx)=1/d(x,F) (i=1,2,...) satisfy the hypotheses of Lemma 12.2.
For suppose that {x,} is a Cauchy sequence of points of X, and that for
each i the sequence { f;(x,)} is bounded. Then x, converges in Y to some
point y, since Y is complete. The point y cannot belong to F;, because then
Ji(xz) 2 1/0(x,, y) would be unbounded. Hence y € G, for every i; that is,
y€ X. The sequence {x,} is therefore convergent in the subspace X.
Consequently, by Lemma 12.2, X can be remetrized so as to be com-
plete. []

The converse of Alexandroff's theorem is also true, in the following
form.

Theorem 12.3. If a subset X of a metric space (Z, ) is homeomorphic
to a complete metric space (Y, 6), then X is a G, subset of Z.

Proof. Let f be a homeomorphism of X onto Y. For each xe X,
and each n, there is a positive number J(x, n) such that o(f(x), f (x)<1/n
whenever g(x, x') < é(x, n) and x' € X. We may assume that §(x, n) < 1/n.
Let G, be the union of the balls in Z with center x and radius 8(x, n)/2,
the union being taken as x ranges over X. Then G, is open in Z. Let
z€ () G,. For each n there is a point x, € X such that o(z, x,) < d(x,, n)/2.
Since d(x,, n) < 1/n it follows that x,— z. Also, for any m > n, we have

(%> Xm) 2 0(2, Xp) + 0(2, X,u) <O (X, 1)/2+ 8 (X, m)/2 L 8(,1, 1) OF E(,, ) .

Therefore o(f(x,), f(xn)) <1/n for all m>n. The sequence y,= f(x,)
is therefore Cauchy in (Y, 0). Hence it is convergent, say y,—y. Put
x=f7!(y). Then x € X and x,— x, because f~?! is continuous. Since X,
has already been shown to converge to z, it follows that z = x, and there-
fore ze X. This proves that () G, C X. The opposite inclusion is obvious
from the definition of G,. Hence X is a G; subset of Z. []
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13. Transforming Linear Sets into Nullsets

Let F be a nowhere dense closed subset of 1 =[0, 1]. It is an almost
trivial observation that there exists a homeomorphism h of I onto itself
such that h(F) is a nullset. In fact, letting G=1—F, it suffices to take

h(x) = m([0, x] ~ G)/m(G).

This is a strictly increasing continuous map of I onto itself. The intervals
that compose G are mapped onto a sequence of intervals of total length 1.
Hence h(F) is a nullset.

The generalization of this result to a set of first category cannot be
proved in the same way. Nevertheless, the conclusion still holds, as we
shall show by a category argument.

Let H denote the set of all automorphisms of I (that is, homeo-
morphisms of I onto itself) that leave the endpoints fixed, metrized by
the distance function

0(g, h) = max g(x) — h(x)| .

Evidently, (H, ¢) is a subspace of the space C = C[0, 1] of continuous
functions on I, and also of the subspace C, of continuous mappings
of I into R that leave 0 and 1 fixed. The space (C,, ¢) is complete, since
C, is a closed subset of C. However, the space (H, ¢) is not complete.
This may be seen by considering the sequence {f,}, where f, is the
piece-wise linear function whose graph consists of the line segments
joining the point (1/2,1—1/n) to (0, 0) and to (1, 1).

Let H, be the set of all f in C such that f(x) =+ f(y) forall x and yin [
with |x —y|=1/n. If f belongs to H,, then the number

d=min{|f(x)— f(Y):|x—yl=1/n}
is positive. If o(f, g) < 6/2, then
lg(x) =g =1 f ()= S —2e(f,9)26—2e(f,9)>0

whenever |x — y| = 1/n, and so g belongs to H,. This shows that H, is an
open subset of C. Evidently

H=C,n(\H,.
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Hence H is a G, subset of C, and therefore topologically complete, by
Theorem 12.1. (It can be shown that H is complete with respect to the
metric

olg,h)=0(g, h)+olg~ ', h™"),

and that this metric is topologically equivalent to g, but we shall not
make use of this fact.)

Theorem 13.1. For any set A of first category in I=[0,1] there
exists an he H such that h(A) is a nullset; indeed, such automorphisms
constitute a residual set in H.

Proof. Let A= (] A,, A, nowhere dense. Let
E,,={heH:m(h(A,))< 1/k} .

Forany he E,_ ,, the bounded closed set h(4,) can be enclosed in an open
set G in R such that m(G) < 1/k. There exists a number é > 0 such that G
contains the é-neighborhood of each point of h(4,). If o(g, h) <5, then
g(4,) C G, and therefore g belongs to E, ;. This shows that E, , is an open
subset of H, for all n and k.

For any g € H and ¢ > 0, divide I into a finite number of closed sub-
intervals I, ..., Iy of length less than &. In the interior I? of I, choose a
closed interval J,CI? —g(A,) (i=1, ..., N). Let h; be a piece-wise linear
homeomorphism of I; onto itself that leaves the endpoints fixed and maps
J; onto an interval of length greater than |;| — 1/kN. (Three line segments
suffice to define the graph of such a function h;.) Together, these h; define
a mapping h e H such that m(ho g(4,)) < 1/k. Therefore ho g belongs to
E, . Since g(h° g, g) <&, it follows that E, , is dense in H. Consequently,

the set
E = mn,k En,k

is a residual set in H. If he E, then h(A4,) is a nullset for every n. Since
h(4)c | ) h(4,), it follows that h(A) is a nullset. []

The following theorem gives a sufficient condition for the opposite
conclusion.

Theorem 13.2. For any uncountable closed set A contained inI=[0,1],
there exists an h € H such that h(A) has positive measure.

Proof. By Lemma 5.1, there exists a closed set F C 4 and a continuous
map f of F onto [0, 1]. For each x €I, define

h(x) = x/2+ m(f ([0, x]"F))/2 .

Then h is a strictly increasing continuous map of [0, 1] onto itself.
On each of the open intervals that compose (0, 1) — F, we have h'(x) = 1/2.
Hence m(h(I — F))=1/2, and therefore m(h(4))=m(h(F))=1/2. []
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The preceding theorems have an amusing consequence. Let f be a
bounded function on [0, 1], and let D be its set of points of discontinuity.
Let h be an arbitrary automorphism of [0, 1]. Then the composite func-
tion fo h is bounded and has the set h~!(D) for its set of points of dis-
continuity. We know (Theorem 7.1) that D is always an F,. If D is un-
countable, it contains an uncountable closed set. Then, for some h, the
set h~1(D) has positive measure. On the other hand, if D is countable then
h~Y(D) is countable and has measure zero for every h. If D is of first
category, there exists an h such that A~ !(D) is a nullset. On the other hand,
if D is of second category then one of the closed sets of which it is the
union must contain an interval. In this case, h~ (D) also contains an
interval, and is never a nullset. Recalling Theorem 7.5, that a bounded
function is R-integrable if and only if it is continuous almost every-
where, we have the following

Theorem 13.3. Let [ be a bounded function on [0, 1], and let D be its
set of points of discontinuity. Let h be an arbitrary homeomorphism of
[0, 1] onto itself. Then the composite function f-h is Riemann integrable

(@) for all hif and only if D is countable,
(b) for some h if and only if D is of first category,
(c) for the identity mapping h if and only if D is a nullset.

In this theorem each of the o-ideals we have been considering answers
a question concerning the effect of a strictly monotone substitution on
the Riemann integrability of a function!

Another consequence is the following characterization of sets of
first category, in which the notion of a nowhere dense set does not appear.

Theorem 13.4. A linear set A is of first category if and only if there
exists a homeomorphism h of the line onto itself such that h(A) is contained
in an F, nullset.

This theorem characterizes sets of first category as those that are
topologically equivalent to a special kind of nullset.

Proof. Any set A of first category is contained in an F, set B of first
category. Divide the line into non-overlapping intervals I; of unit length.
Let h; be an automorphism of I, that leaves the endpoints fixed and maps
Bn 1, onto a nullset. The mappings h; define an automorphism h of the
line such that h(B) is a nullset. Therefore h(A4) is contained in the F,
nullset h(B).

Conversely, let A be any subset of an F, nullset. Then AC|JF,,
where F, is a closed nullset. Therefore each of the sets F, is nowhere
dense. Consequently A, and its image under any automorphism of the
line, is of first category. []
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14. Fubini’s Theorem

Linear Lebesgue measure is defined by covering sequences of intervals,
and plane measure by covering sequences of rectangles. We shall now
consider how these measures are related to each other. It is clear what
kind of answer we should expect. In elementary calculus we learn to com-
pute the area between the graphs of two functions f < g by the formula

Jalf(x)—g(x)l dx.

Thus the area is computed “by slicing.” The generalization of this formula,
which expresses the measure of any plane measurable set A4 as the
integral of the linear measure of its sections perpendicular to an axis,
is called Fubini's theorem. We shall not formulate the theorem in full
generality, but confine attention to the case in which A is a nullset. Then
the theorem asserts that almost all vertical (or horizontal) sections of A
have measure zero.

Let X and Y be two non-empty sets. For any ACX and BCY, the
product set A x B is defined to be the set of all ordered pairs (x, y), where
x € A and y € B. For instance, in coordinate geometry the plane is repre-
sented as the product of two lines. If EC X x Y and x € X, the set

={y:(x,y) e E}

is called the x-section of E. Note that E, is a subset of Y, not of X x Y.
The operation of sectioning commutes with union, intersection, and
complement. That is,

(EUF),=E,UF,, (EnF),=E.nF_,(E).,=(E,).

Thus the mapping E — E,, for any fixed x € X, is a homomorphism of the
Boolean algebra of subsets of X x Y onto the algebra of subsets of Y.
It is even a homomorphism with respect to arbitrary union and inter-
section; that is,

(UE)=ULE)] and (NE)=LE

A set A is said to be covered infinitely many times by the sequence
{A,} if each point of 4 belongs to infinitely many terms of the sequence.
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It is sometimes convenient to use the following characterization of
nullsets.

Lemma 14.1. A set A has Lebesgue measure zero if and only if it can
be covered infinitely many times by a sequence of intervals I, such that the
series Y |I| is convergent.

Proof. 1If A is a nullset, then it can be covered by a sequence of
intervals the sum of whose measures is less than 1/2, by another with
sum less than 1/4, by another with sum less than 1/8, and so on. Together
these constitute a sequence {I,} that covers A infinitely many times, and

MNLi< 1.

Conversely, if A is covered infinitely many times by a sequence {1},
then it is covered by the subsequence starting with the k-th term. If
3 |I| is convergent, the sum ) °|I| can be made arbitrarily small by
suitable choice of k. Hence 4 is a nullset. []

Theorem 14.2 (Fubini). If E is a plane set of measure zero, then E,
is a linear nullset for all x except a set A of linear measure zero.

Proof. For any ¢>0 let I, x J; be a sequence of rectangles, with I,
and J; half-open on the left, such that

(1) the sequence I; x J; covers E infinitely many times,

and

2 il se.

By further subdividing each interval I; we can insure also that

(3) for each i> 1, I, is contained in a single interval of the subdivision
of the line determined by the endpoints of the intervals I;, I,, ..., I,_ .

Define ¢(x) =0 and
dx)=Y |l (=12 ).

xel;,ign

Then ¢, is a step function, ¢, _,; < ¢;, and

|Ji] for xel

¢i(x)_¢i—1(x)={

0 elsewhere.
Hence, by (2),
(4) [udx =31 (i = i) dx =35 || 1] e
Let

Ai={x:¢;(x)21>¢;_(x)} (=12,..).
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Then A4, is either empty or equal to I, and the intervals A; are disjoint.
Since ¢,(x)= 1 on A, for n=i, we have

S11A4) < [ ¢,dx foreach n,
and therefore, by (4),

(5) 274l =e.

Let A={x:E, is not a nullset}. For each xe 4 we have (x,y)e E
for some y, and therefore (x, y) € I; x J; for infinitely many i. Let {i,} be
the sequence of indices such that xe I, . If y e E,, then y € J,, for infinitely
many k, by (1). Thus, the sequence {J;, } covers E, infinitely many times.
Since E, is not a nullset, the series ) |J; | must diverge. Hence, for each
x € A, we have lim,_, ., ¢,(x) = oo, and therefore x € A; for some i. This
shows that the sequence of intervals 4,, 4,, ... covers the set A. From (5),
it follows that A is a linear nullset. []

Theorem 14.3. If E is a plane measurable set, then E, is linearly
measurable for all x except a set of linear measure zero.

Proof. By Theorem 3.15, E can be represented as the union of an F,
set A and a nullset N. We have E, = A, UN, for all x. Any section of a
closed set is closed, hence A, is an F, for every x. By Fubini’s theorem,
N, is a nullset for almost all x. Since E, is measurable for any such x,
the conclusion follows. []

The converse of Fubini's theorem is true in the sense that if almost
all sections of a plane measurable set E are nullsets, then E is a nullset.
We shall not prove this. (The usual proof depends on properties of the
Lebesgue integral, which we have not developed here.) We remark only
that the conclusion does not follow unless E is assumed to be measurable.
This is shown by the following theorem, due to Sierpinski.

Theorem 14.4. There exists a plane set E such that (a) E meets every
closed set of positive plane measure, and (b) no three points of E are
collinear.

Such a set E cannot be measurable. For if E were measurable, then (a)
and Theorem 3.18 would imply that its complement is a nullset, in which
case (b) would contradict Fubini's theorem. Hence E is not measurable,
and therefore not a nullset, despite the fact that each of its sections has
at most two points.

For Sierpinski’s proof of the above theorem, see Fund. Math. Vol. 1,
p. 112. We shall give here only a simplified version, assuming the con-
tinuum hypothesis.

Let the class of closed sets of positive plane measure be well ordered
in such a way that each member has only countably many predecessors.
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This is possible, assuming the continuum hypothesis, since the class of
closed sets of positive measure has power ¢. Choose a point p; of the
first set F,, then a point p, of the next set F,, with p, % p;. Then choose
ps in F3 not collinear with p; and p,. Assuming points have been selected
from each of the sets preceding F,, choose p, in F, in such a way that p,
is not collinear with any two of the points already chosen. Only countably
many points have indices less than «, so only countably many lines have
to be avoided in choosing p,. The union of these lines has plane measure
zero, and F, has positive plane measure. Hence such a point p, can always
be found. The totality of points p, so chosen defines a set E having
properties (a) and (b).
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15. The Kuratowski-Ulam Theorem

Fubini's theorem has a category analogue. In its general formulation,
this theorem was proved in 1932 by Kuratowski and Ulam [18, p. 222].

Theorem 15.1 (Kuratowski-Ulam). If E is a plane set of first category,
then E is alinear set of first category for all x except a set of first category.
If E is a nowhere dense subset of the plane X x Y, then E, is a nowhere
dense subset of Y for all x except a set of first category in X.

Proof. The two statement are essentially equivalent. For if E= | ) E,,
then E,=|J;(E,),. Hence the first statement follows from the second.
If E is nowhere dense, so is E, and E, is nowhere dense whenever (E), is of
first category. Hence the second statement follows from the first. It is
therefore sufficient to prove the second statement for any nowhere
dense closed set E.

Let {V,} be a countable base for Y, and put G=(X x Y)— E. Then
G is a dense open subset of the plane. For each positive integer n, let G,
be the projection of GN (X x V,)in X, that is,

G,={x:(x,y)e G for some yeV,}.

Let x € G, and y € V, be such that (x, y) e G. Since G is open, there exist
open intervals U and V such that xe U, yeVCV,, and Ux V(CG.
It follows that U C G,. Hence G, is an open subset of X. For any non-
empty open set U, the set GN(U x V,) is non-empty, since G is dense in
the plane. Hence G, contains points of U. Therefore G, is a dense open
subset of X, for each n. Consequently, the set () G, is the complement of
a set of first category in X. For any xe () G,, the section G, contains
points of V, for every n. Hence G, is a dense open subset of Y, and therefore
E, =Y — G, is nowhere dense. This shows that for all x except a set of
first category, E, is nowhere dense. []

The proofs of this and of the next three theorems apply to the Cartesian
product X x Y of any two topological spaces, provided only that Y
has a countable base. In fact, it is sufficient to assume that there is a
sequence of non-empty open sets in Y such that every non-empty open
set contains a member of the sequence.
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Theorem 15.2. If E is a subset of X x Y with the property of Baire,
then E_ has the property of Baire for all x except a set of first category
in X.

Proof. Let E=G a P, where G is open and P is of first category.
Then E, = G, a P,, for all x. Every section of an open set is open, hence
E, has the property of Baire whenever P, is of first category. By Theorem
15.1, this is the case for all x except a set of first category. []

Theorem 15.3. A product set A x B is of first category in X x Y if
and only if at least one of the sets A or Bisof first category.

Proof. If G is a dense open subset of X, then G x Y is a dense open
subset of X x Y. Hence 4 x B is nowhere dense in X x Y whenever 4
is nowhere dense in X. Since (| ) 4;) x B={J(4; x B), it follows that
A x Bis of first category whenever A4 is of first category. Similar reasoning
applies to B.

Conversely, if A x B is of first category and A is not, then by Theorem
15.1 there exists a point x in 4 such that (4 x B), is of first category.
Since (4 x B), = Bfor all x in A, it follows that B is of first category. []

The following theorem is a partial converse of Theorem 15.1.

Theorem 15.4. If E is a subset of X x Y that has the property of
Baire, and if E_isof first category for all x except a set of first category,
then E is of first category.

Proof. Suppose the contrary. Then E=G a P, where P is of first
category and G is an open set of second category. There exist open sets U
and V such that U x VCG and U x V is of second category. (This is
clearin the case of the plane. In general it follows from the Banach category
theorem, which will be discussed in the next chapter.) By Theorem 15.3,
both U and V are of second category. For all x in U, E,.DV — P,. By
Theorem 15.1, P, is of first category for all x except a set of first category.
Therefore E, is of second category for all x in U except a set of first
category. This implies that E_ is of second category for all x in a set of
second category, contrary to hypothesis. []

That Theorem 15.4 is not true without the first hypothesis is shown
by the following analogue of Theorem 14.4.

Theorem 15.5. There exists a plane set E of second category such that
no three points of E are collinear.

Proof. The class of plane G; sets of second category has power c.
Let {E,:a<w_,} be a well ordering of this class, where w, is the first
ordinal preceded by c ordinals. Suppose points p,, with no three collinear
and with py € Fy, have been chosen for all g <a. Since the set of all lines
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joining pairs of points p, with f <« has power less than ¢, we can find
a direction not parallel to any of these lines. By Theorem 15.4, some line
in this direction meets E, in a set of second category, and therefore, by
Lemma 5.1, in a set of power c. We can therefore choose p, in E, in such
a way that p, is not collinear with any two points p; with f <a. The set
of all points p, so chosen contains no three collinear points. It is of
second category because its complement contains no G; set of second
category. []

The analogy between the statements of the Fubini and Kuratowski-
Ulam theorems poses an interesting question: Can either statement be
reduced to the other? We shall show that, in a sense, the Kuratowski-
Ulam theorem can be reduced to Fubini’s. The reduction is limited to the
case of plane sets, and it does not lead to any simplification. The interest
of the question lies in the technical problem it poses: to find a transforma-
tion of the plane that will reduce any given instance of the Kuratowski-
Ulam theorem to a case of Fubini’s. No similar reduction of Fubini's
theorem to that of Kuratowski-Ulam appears possible.

In Chapter 13 it was shown that any linear set of first category can
be transformed into a nullset by an automorphism of the line. Similarly,
it can be shown that any set of first category in r-space can be transformed
into one of measure zero by an automorphism of the space [27]. This
was first proved in 1919 (for subsets of the square) by L. E. J. Brouwer [6].
However, this result is inadequate for our present purpose, because such
a transformation need not take sections into sections. What is needed is a
stronger version of Brouwer’s theorem, asserting that the automorphism
can be taken to be a product transformation f x g, that is, one of the form
x" = f(x), ¥ =g(y). We shall establish the existence of such an automor-
phism by a category argument similar to the one we gave in the 1-dimen-
sional case.

Let m, and m denote 2-dimensional and linear Lebesgue measure,
respectively.

Theorem 15.6. For any plane set E of first category contained in the
unit square, there exists a product homeomorphism h of the unit square
onto itself such that m,(h(E))=0.

Proof. Asin Chapter 13, let (H, g) denote the space of automorphisms
of the unit interval that leave the endpoints fixed. Let H? denote the set
of all automorphisms of the unit square of the form f x g, where f and g
belong to H. H*> may be identified with the Cartesian product H x H.
Ifh,=f, xg, and h, = f, X g,, define

U(hl’h2)=9(f1,f2)+Q(gl’gz)-
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It is easy to verify that (H2, g) is a metric space, and that it is topologically
complete. (Any remetrization of H determines a corresponding remetriza-
tion of H2))

Let F be anowhere dense closed subset of the square. For each positive
integer k, define

E.={he H? :my(h(F)) < 1/k} .

By the same reasoning as in the proof of Theorem 13.1, we see that E,
is an open subset of H2. To show that it is dense, let ¢ be any positive
number, choose n > 2/¢, and divide the unit interval into n equal closed
subintervals

=[(i—1/mi/m] (=12,...,n).
Let F;;= Fn(l; x I;), and let T;; denote the translation
X=x—(@{—-1)/m, y=y—(-1n.

Then the finite union | J; ; T;(F;)) is a nowhere dense subset of I, x I.
Choose closed intervals J and K 1nterior to 1, such that

JxKc(, xI)— U
Then
[((—D+JIx[(—DH+K]c(U;xI)—F.

In each of the squares I; x I;, F has a similarly situated hole. Here is an
illustration of the case n=3.

%3 0 0 O
%2 0 0 L
% <0 0 O

—

1
1
J

Let f, be a piece-wise linear automorphism of I, leaving the endpoints

fixed, such that
m(f,(J))> l/ L —1/km(l,).
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(Three linear pieces suffice.) Similarly, let g, be a piece-wise linear
automorphism of I,, leaving the endpoints fixed, such that

m(g,(K)) > )/ 1-1/km(l,).
Define

i— i~

filx)=

1+f1(x— 1) for xel;,

n
and

i—1 j—1
g;(y)= J—n- + 4, (y— T) for yel;.

The transformations f; (i=1, ..., n) together define a piecewise linear
transformation fe H. Similarly, the transformations g; define a trans-
formation g e H. The product transformation f X g maps each square
I; x I; onto itself, hence its o-distance from the identity is less than e.
Moreover, m,(h(F))<1/k, since the part of F contained in I; x I; is
mapped onto a set of measure less than 1/kn?. Thus, for any nowhere
dense closed set F, the e-neighborhood of the identity in H? contains
points of E,. When this result is applied to the set ¢(F), for any given
¢ € H%, we obtain an element he H? such that m,(h- ¢(F)) < 1/k and
o(h° ¢, d) <e. This shows that E, is dense in H2, in addition to being
open.

If E is any set of first category in the unit square, then E C | ) F;, where
F; is closed and nowhere dense. For any two positive integers i and k let

E;={he H? :m,(h(F)) < 1/k} .

We have shown that E;, is a dense open subset of the topologically
complete space H2. Hence there exists an element he (); , E;,. For any
such automorphism h, we have m,(h(E))=0. []

Theorem 15.7. For any set E of first category in the plane, there exists
a product homeomorphism h of the plane onto itself such that m,(h(E))=0.

Proof. Let f(x)=tann(x—1/2) (0<x<1). Then f is a homeomor-
phism of (0, 1) onto the line. The product homeomorphism g= f x f
maps the interior of the unit square onto the plane. Since f” is continuous
and positive, both g and g~ ' map nullsets onto nullsets. If E is of first
category in the plane, then g~ !(E) is a set of first category in the square.
By Theorem 15.6, there exist an automorphism h € H? such that ho g~ !(E)
is a nullset. Then g- h- g~ ! is a product automorphism of the plane that
maps E onto a nullset. []

It is now an easy matter to reduce any instance of the Kuratowski-
Ulam theorem to Fubini’s theorem. Let E be a nowhere dense closed
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subset of the plane. Then each section E, is either nowhere dense or it
contains an interval. Let V;, V,, ... be an enumeration of all open intervals
with rational endpoints. Put F;= {x: E, D V;}. F; is a closed subset of the
line, since each horizontal section E’= {x:(x,y)e E} of E is closed,
and F;= (),.y,E’. The F, set A= F, is the set of all points x for which
E, is not of first category.

Let h= f x g be a product homeomorphism of the plane onto itself
such that m,(h(E))=0 (Theorem 15.7). For each x in A, the section E,
contains some interval V;. The section (h(E));,, contains the interval
g(V), and so is not a nullset. Therefore f(4)C B, where

B={x:(h(E)), is not a nullset} .

By Fubini's theorem, m(B)=0. Thus f(A4) is an F, set of measure zero.
Hence f(A), and therefore A, is of first category, by Theorem 13.4.
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16. The Banach Category Theorem

In a topological space that has a countable base, it is obvious that
the union of any family of open sets of first category is of first category.
One need only take the union of those members of the base that are
contained in at least one member of the given family. The same reasoning
shows that the union of any family of open sets of measure zero has
measure zero (for any measure defined for all open sets). It is remarkable
that the first statement remains valid whether the space has a countable
base or not. The second statement, however, needs to be qualified.

Theorem 16.1 (Banach Category Theorem). In a topological space X,
the union of any family of open sets of first categoryisof first category.

Proof. Let G be the union of a family % of non-empty open sets of
first category. Let #={U,:a € A} be a maximal family of disjoint non-
empty open sets with the property that each is contained in some member
of . Then the closed set G — U & is nowhere dense. (Otherwise # would
not be maximal.) Each set U, can be represented as a countable union of
nowhere dense sets, say U, = | J;; N, ,. Put N, = J,c4 N, .. If an open
set U meets N, then it meets some N, , and there exists a non-empty
open set VC(UnU,)—N, ,. Hence VCU — N,, and so N, is nowhere
dense. Therefore

GC(G—UF)0UaenU.=(G-JF)U PN,
is of first category. []

It follows that any topological space is the union of an open (or
closed) Baire subspace and a set of first category. To discuss the analogue
of Theorem 16.1 for open sets of measure zero, we need the following
lemma, which is due to Montgomery [18, p. 265].

Lemma 16.2 (Montgomery). Let {G,:a € A} be a well-ordered family
of open subsets of a metric space X, and for each o.€ A let F, be a closed
subset of

H,=G,— quGﬂ.
Then the set E= | ), 4F, isan F,.
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Proof. For each o € A and each positive integer n, let
F,,={xeF,:dx,X—-G)=1/n}.
Then F, , is a closed set, and F, = Use F, . Ifa B, we have o(x, y) = 1/n
for every xe F, , and y € Fy ,. Hence any convergent sequence contained

in the set F, = Ua“ F, , must, except for a finite number of terms, be
contained in a single set F, . It follows that F, is closed, and that

E:UasAFa:U:):an
isan F,. []

Following Marczewski and Sikorski [20, 21], to whom the following
theorems are due, a cardinal is said to have measure zero if every finite
measure defined for all subsets of a set of that cardinality vanishes
identically if it is zero for points. Evidently any cardinal less than one of
measure zero has measure zero. As already mentioned in Chapter 5,
it is known that every cardinal less than the first weakly inaccessible
cardinal has measure zero, and that (assuming the continuum hypothesis)
only exceedingly large cardinals can fail to have measure zero.

A measure p defined on the class of Borel subsets of a space X is called
a Borel measure. 1t is normalized if u(X)= 1, and nonatomic if it is zero
for points.

Theorem 16.3. Let u be a finite Borel measure in a metric space X.
If G isthe union of a family 4 of open sets of measure zero, and if card 4
has measure zero, then u(G)=0.

Proof. Let {G,: o€ A} be a well ordering of ¢, and put H,=G,
—(Jp<aGj for each a € A. Each of the sets H, is the difference of two
open sets, therefore an F,, say H,= )%, F, ,, where F, , is closed. For
any set EC A we have

UasEHa:UaeEU:LIFa,n: ;:O:I[UaeEFa,n]'

By Montgomery’s lemma (taking F,=@ when ae€ A — E), the set in
brackets is an F,, for each n, and therefore the union is too. Hence the

set function
V(E) = #(UaeE Ha)

is defined for all subsets of 4. It is evidently a finite measure, and non-
atomic. Since card A has measure zero it follows that u(G) = p(| ) e+ H,)
=v(4)=0. []

Theorem 16.4. If X is a metric space with a base whose cardinal has
measure zero, and if uis a finite Borel measure in X, then the union of any
Sfamily of open sets of measure zero has measure zero.

Proof. Let # be a base whose cardinal has measure zero. For any
family ¢ of open sets of measure zero, let %, be the set of all members of
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2 that are contained in some member of 4. Then u(Ug) = ,u(U By)=0,
by Theorem 16.3. []

Surprisingly, Theorem 16.4 can fail for measures in nonmetrizable
spaces. Kemperman and Maharam [17] have shown that in the Cartesian
product X of ¢ copies of the line it is possible to define a normalized
measure p on the o-algebra generated by the elementary open sets, with
the property that X can be covered by a family of open sets of measure
zero. The elementary open sets constitute a base of cardinality ¢, and ¢
has measure zero (assuming the continuum hypothesis) by Ulam’s
Theorem 5.6.

The following theorem is perhaps the ultimate generalization of
Theorem 1.6.

Theorem 16.5. Let X be a metric space with a base whose cardinal has
measure zero. Let u be a nonatomic Borel measure in X such that

(i) every set of infinite measure has a subset with positive finite
measure, and

(ii) every set of measure zero is contained in a G5 set of measure zero.

Then X can be represented as the union of a G4 set of measure zero
and a set of first category.

Proof. By selecting a point from each member of the given base, we
obtain a dense set S of at most the same cardinality. For each positive
integer n, let F, be a maximal subset of S with the property that g(x, y)
> 1/n for any two distinct points of F,. Put D= ( JP F,. Then D is dense
in X, and since every subset of F, is closed, every subset of D is an F,.
Hence u is defined for all subsets of D. Because u is zero for points and
card D has measure zero, it follows that no subset of D has positive
finite measure. Therefore, by (i) and (ii), u(D)=0 and D is contained in
a G, set E with u(E)=0. The complement of E is a set of first category. []

The restriction on cardinality is essential. Because if there exists a
set X whose cardinal does not have measure zero, it can be metrized
by defining g(x, y) =1 for all x % y. Then all subsets of X are open and a
nontrivial finite measure defined for all subsets of X and zero for points
would be a Borel measure that satisfies conditions (i) and (ii) but not
the conclusion.

It is easy to verify that any finite Borel measure in a metric space
satisfies conditions (i) and (ii). (The class of Borel sets that have an F,
subset and a G, superset of equal measure is a g-algebra that includes all
closed sets.) However, these conditions cannot be omitted from Theo-
rem 16.5, as may be seen by considering the Borel measure y in R defined
by putting u(E) = m(E) for every Borel set E of first category, and u(E) = o
for every Borel set of second category.
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17. The Poincaré Recurrence Theorem

In the course of his studies in celestial mechanics, Poincaré discovered a
theorem which is remarkable both for its simplicity and for its far-
reaching consequences. It is noteworthy also for having initiated the
modern study of measure-preserving transformations, known as ergodic
theory. From our point of view, this “recurrence theorem™ has a special
interest, because in proving it Poincaré anticipated the notions of both
measure and category. Publication of his treatise, “Les méthodes nouvelles
de la mécanique céleste” [29], antedated slightly the introduction of
either notion.

Let X be a bounded open region of r-space, and let T be a homeomor-
phism of X onto itself that preserves volume; that is, G and T(G) have
equal volume, for every open set G C X. Under iteration of T, each point
x generates a sequence x, Tx, T?x, ..., T'x, ... called the positive semiorbit
of x. A point x of an open set G is said to be recurrent with respect to G
if T'x belongs to G for infinitely many positive integers i. In effect,
Poincaré proved two theorems, which may be stated togcther as follows.

Theorem 17.1. For any open set G C X, all points of G are recurrent
with respect to G except a set of first category and measure zero.

The category assertion has to be read between the lines of Poincaré’s
discussion. He began by showing that recurrent points are dense in G.
His proof involved the construction of a nested sequence of regions;
it may be interpreted as amounting to a proof of Baire’s theorem for the
case in hand. Since it is a trivial matter to show that the set of points
recurrent with respect to G is a G; set, the category assertion may pro-
perly be ascribed to Poincaré even though he makes no such explicit
statement. This part of Poincaré’s reasoning was subsequently generalized
and extended by G. D. Birkhoff [3, Chapter 7]. The category assertion
was made explicit by Hilmy [14].

The measure assertion of Theorem 17.1 was formulated by Poincaré
in terms of “probability.” In this part of his proof he tacitly assumed the
countable additivity of “probability,” although thishad not been properly
justified at the time he was writing. However, when read against an
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adequate background of measure theory, his argument is perfectly sound.
It was reformulated in modern terms by Carathéodory [7].

Closer analysis of Poincaré’s reasoning reveals that the assumed
preservation of volume is not really essential. In the first part of his
reasoning it is used only to exclude the possibility of an open set whose
images are mutually disjoint, and in the second part it serves only to
exclude the possibility of such a set having positive measure. Moreover,
there is no need to assume that T is one-to-one. When stripped of
inessential features, both parts of Poincaré’s theorem are seen to be
contained in a single abstract recurrence theorem, which we shall now
formulate and prove.

Let X be a set, let S be a o-ring of subsets of X, and let I be a g-ideal
in S. Amapping T of X into X is called S-measurableif T~ E € S whenever
EeS. A set EC X is called a wandering set if the sets E, T~ 'E, T 2E, ...
are mutually disjoint. T is called dissipative if there exists a wandering
set that belongs to S —I; otherwise T is called nondissipative. For any
set E C X, let D(E) denote the set of points x in E such that T x € E for at
most a finite number of positive integers i. T is said to have the recurrence
property if D(E) e I for every E € S.

Theorem 17.2. An S-measurable mapping T of X into X has the
recurrence property if and only if T is nondissipative.

Proof. Suppose T is nondissipative. Consider any Ee€ S, and let
F=E— )Y T *E.Since T is S-measurable and S is a g-ring, F belongs
to S. For any integers 0 < i <j we have

T 'FAT 'FCTJE- U, T *E=90.

This shows that F, and each of the sets T ~*F (k=1, 2, ...), is a wandering
set. Since all of these sets belong to S, and T is nondissipative, it follows
that T *F el for all k=0. Since I is a o-ideal, the union UST*F
belongs to I, and so does the set H=En|( )y T *F. But T *F consists
of all points x such that T*x € E and such that T'x € X — E for all i > k.
Hence H = D(E). Thus we have shown that D(E)e I, for every E€S;
that is, T has the recurrence property.

Conversely, if T is dissipative there exists a wandering set E that
belongs to S — 1. Then D(E)=E, and we have E€ S but D(E)¢ I. This
shows that T lacks the recurrence property. [J

Both parts of Theorem 17.1 are implied by Theorem 17.2. Suppose
first that T is a one-to-one measure-preserving transformation of a
bounded open region X of r-space onto itself. Take S to be the g-algebra
of measurable subsets of X, and I to be the g-ideal of nullsets. Then T is
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S-measurable. Since the measure of X is finite, any measurable wandering
set must be a nullset, therefore T is nondissipative. Consequently, T
has the recurrence property. This means that almost all points of any
measurable set E return to E infinitely often under iteration of T. In
particular, for any open set G C X, all points of G except a set of measure
zero are recurrent with respect to G.

Next suppose that T is a homeomorphism of a metric space X onto
itself, with the property that there is no non-empty open wandering set.
(This will be the case if X is a bounded open subset of r-space and T is
volume-preserving.) Take S to be the o-algebra of subsets of X having the
property of Baire, and let I be the g-ideal of sets of first category in X.
Then T is S-measurable. By the Banach category theorem, there is a
largest open set H of first category. Let Y =X — H. Then any non-
empty open subset of Y is of second category. Evidently H, and therefore
Y, is invariant under T. Let E be any wandering set having the property
of Baire. Then E=G A P, where G is open and P is of first category.
We may assume that G C Y. For any integers 0<i<j we have T'E
N T ~JE =@, which implies that

T iGAT 'G=(T '"PAT G A (T 'GAT IP)a (T 'PAT ’P)
cT PUT JP.

Hence T™'GNT ’G is an open subset of Y of first category, therefore
empty. Consequently G is an open wandering set, and therefore empty.
This shows that any wandering set that has the property of Baire is of
first category. Thus T is nondissipative, and so it has the recurrence
property. This means that if E has the property of Baire, then all points
of E except a set of first category return to E infinitely often under
iteration of T. In particular, for any open set G C X, all points of G except
a set of first category are recurrent with respect to G.

Theorem 17.1 is sometimes called the Poincaré recurrence theorem,
but more properly this title belongs to the theorem we are about to
deduce. First we need another definition. A point x is said to be recurrent
under T if is recurrent with respect to every neighborhood of itself.
(Poincaré called such a point “stable & la Poisson.™)

Theorem 17.3 (Poincaré Recurrence Theorem). If T is a measure-
preserving homeomorphism of a bounded open region X of r-space onto
itself, then all points of X except a set of first category and measure zero
are recurrent under T.

Proof. Let U, U,, ... be a countable base for X. Let E, be the set
of points x in U, such that T'x € U, for at most a finite number of positive
integers i. By Theorem 17.1, each of the sets E, is a nullset of first category.
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Hence the set E= | J{ E, is also a nullset of first category. If xe X —E,
and if U is any neighborhood of x, then x € U, C U for some k, and x ¢ E,.
Hence T'xe U for infinitely many positive integers i. Therefore each
point of X — E is recurrent under 7. []

The significance of this theorem for the theory of dynamical systems
rests on the following considerations. In classical mechanics, the con-
figuration of a system is described by a finite set of coordinates g,, g5, ...,
gy- A “state” of the system is specified by the instantaneous values of
these coordinates and of the corresponding momenta p,,p,,..., Py-
These 2N values are represented by a point of a 2N-dimensional space.
These points constitute the phase space of the system. The points of the
phase space represent all possible states of the system. As the state of the
system changes in time, in accordance with the equations of motion that
govern the system, the representative point describes a path in the phase
space. If we follow the motion for unit time, any initial point x in the
phase space moves to a point Tx. Thus the equations of motion, followed
for unit time, determine a transformation T of phase space into itself.
The fundamental existence and uniqueness theorems for solutions of
systems of differential equations imply that T is a homeomorphism,
provided the terms of the equations are sufficiently continuous and
differentiable. Moreover, the Newtonian equations, written in terms of
suitable coordinates and momenta (Hamiltonian form), are such that
the transformation T preserves 2N-dimensional measure. This result
is known as Liouville’s theorem (the same Liouville whom we encountered
in Chapter 2). For a conservative system, the total energy is constant.
Therefore T transforms any surface of constant energy into itself. For
some systems, it can be shown that the part of phase space where the
energy is suitably restricted is a bounded open region of 2 N-space. Then
Theorem 17.3 implies that for almost all initial states (in the sense of
either measure or category) the system will return infinitely often
arbitrarily close to its initial state. Poisson had attempted to establish
this kind of stability in the “restricted problem of three bodies™ by an
inconclusive argument based on the kind of terms that can appear in
certain series expansions. Poincaré established the conclusion rigorously
and by a revolutionary new kind of reasoning. This was one of the first
triumphs of the modern “qualitative™ theory of differential equations, a
theory which Poincaré initiated.

Subsequent work on the theory of measure-preserving transforma-
tions has shown that Poincaré’s theorem can be vastly improved. The
“ergodic theorem™ of G. D. Birkhoff (1931) asserts that under a measure-
preserving transformation of a set of finite measure onto itself, not only
do almost all points of any measurable set E return to E infinitely often,
but they return with a well-defined positive limiting frequency. More
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precisely, if yr denotes the indicator function of E, then the limiting
frequency

: 1 n— i
F ) =lim, ., — 3728 1(T'x)

exists and is positive for almost all x in E. Evidently this result goes far
beyond Theorem 17.1. Curiously, though, this refinement of Poincaré’s
theorem turns out to be generally false in the sense of category; the set
of points where f(x) is defined may be only of first category. The analogy
between category and measure goes a long way here, but eventually it
breaks down.
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18. Transitive Transformations

We have given many illustrations of the category method, but in most
cases it has only served to give a new, sometimes simpler, existence proof
for objects whose existence was already known. Liouville numbers,
nowhere differentiable continuous functions, Brouwer’s transformation
of the square, were known before the category method was applied. It
may therefore be of interest to consider one problem whose solution
was first obtained by the category method.

Problem 18.1. To find a homeomorphism T of the closed unit square
onto itself such that the positive semiorbit x, Tx, T2x, ... of some point
x is dense in the square.

An automorphism T of a topological space X is said to be transitive
if there exists a point x whose orbit {T"x:n=0, &1, -2, ...} is dense
in X. When X is a complete separable metric space without isolated
points, the existence of such a point implies that points whose positive
semiorbit is dense constitute a residual set in X. For if {U,} is a countable
base, let

Gi=UroT"U; (=12..)
and

E=2:G;.

Then x € E if and only if the positive semiorbit of x is dense in X. For any
two positive integers i and j, either T"U;nU;# @ or T"U;nU;+ @ for
some integer n = 0. In the latter case, both x and T™x belong to T"U;nU;
for some x and some m > n, since every non-empty open set contains
infinitely many points of any dense orbit. In either case, U;nG;+#.
Hence G; is a dense open set and E is residual in X. Thus an equivalent
statement of Problem 18.1 is this: To find a transitive automorphism of
the closed unit square.

Some spaces admit a transitive automorphism and some do not.
For example, no automorphism of the unit interval is transitive; but
multiplication by e?™*, « irrational, defines a transitive rotation of the
unit circle in the complex plane. An explicit example of a transitive
automorphism of the plane was given by Besicovitch [2], but it is not
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easy to exhibit one for the closed unit square, let alone one that preserves
area or leaves the boundary points fixed. The existence of such trans-
formations was first established by the category method [24]. Similar
reasoning shows that there exist transitive automorphisms of any region
of Euclidean r-space, r = 2. The category method has also been successfully
used to establish the general existence of automorphisms possessing a
much stronger property of the same kind, called metrical transitivity [28].

Consider the space H of all automorphisms of the unit square X,
with the uniform metric

o(S, T)=sup|Sx—Tx| .

H is topologically complete, for the same reason as in the 1-dimensional
case (Chapter 13). Suppose that T is transitive and that x is a point whose
positive semiorbit is dense. Let ¢ >0 be small enough so that the disk
with radius ¢ and center x is contained in X. Let n be the least positive
integer such that |x — T"x| <¢. Choose an open disk U with center x
and radius less than ¢ such that T"x is interior to U and Tx, T?x, ...,
T !x belong to X — U. Then we can find a closed disk D with center x
such that D and T"(D) are contained in U, and T(D), T*(D), ..., T"~ (D)
are contained in X — U. Let S be an automorphism of X equal to the
identity outside U, and inside U equal to a radial contraction that
maps T"(D) onto a subset of the interior of D. Then S- T is an automor-
phism of X such that (S- T)" maps D onto a subset of its interior. Con-
sequently, S=T is not transitive, and neither is any automorphism
sufficiently close to it in H. But o(S< T, T)<e. This shows that the
transitive automorphisms constitute only a nowhere dense subset of H.
Applied to H, Baire's theorem gives no assurance that such transforma-
tions exist. The category method appears to have failed!

But suppose we make the problem harder and demand in addition
that T preserve measure! Then it is appropriate to consider the space M
of measure-preserving automorphisms of the square, with the same
metric as before. Since M is a closed subset of H, M is topologically
complete.

Let {U,} be an enumeration of all open squares with rational vertices
contained in X. For any two positive integers i and j, let

E ;= {TeM UnT U;+0}.
Itis clear that E;;is open in M. Is it dense? First consider the sets

P;={TeM:T'x=x for all x in U}

P={)i;P;-
Evidently P, is closed in M. If T belongs to P,;, then each point of U;
has a period that divides j. Hence we can find a disk D contained in U,

and
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with arbitrarily small radius, such that for some positive integer k
(a divisor of j), the sets D, T(D), ..., T~ (D) are disjoint and T* is equal
to the identity on D. Let S be a measure-preserving automorphism of X
that rotates some annulus concentric with D through an irrational
multiple of = and is equal to the identity outside D. Then no point of this
annulus is periodic under S-T. Hence S T belongs to M — P;; and
o(S~ T, T) is arbitrarily small. Consequently, P;; is nowhere dense and P
is of first category in M. The set M — P consists of all measure-preserving
automorphisms of the square that have nonperiodic points in every
non-empty open subset of the square.

For any i and j, any Te M — P, and any &> 0, construct a trans-
formation S as follows. Join a point of U; to a point of U; by a line
segment. Choose points p,,p,,...,py+; On this segment such that
p1€U,py+1€Uj and |p,—piiyl <8/2 (k=1, ..., N). Choose a positive
number § < 1min|p, — p, .| such that the §-neighborhoods of p, and py +,
are contained in U; and U, respectively. Choose a nonperiodic point x,
in the -neighborhood of p; that has some point T™x, of its positive
semiorbit in the same neighborhood. This is possible, because the
recurrent points under T constitute a residual set in the square (by
Theorem 17.3), and so do the nonperiodic points, for any T in M — P.
Similarly, for k=2, ..., N+ 1, choose a nonperiodic point x, in the
d-neighborhood of p, such that T"x, lies in this neighborhood for some
n, > 0. Furthermore, let x, be chosen so that it does not belong to the
orbit of any of the points x, ..., X, _ . Then all of the points of the set

F={T"x,:0<n<n,, 1Sk<N+1}
are distinct, and

I T™xy — X4 1| S1T™ X, — Pil + 1P — Prs 1| +Prs 1 — Xs 1
<d+¢2+d<¢

for k=1,2,...,N. Hence there exist disjoint open regions R, ..., Ry,
of diameter less than ¢, such that

RNnF={T"x,,%.+1} (k=1,...,N).

(Each R, may be taken to be a neighborhood of a suitable arc joining
T"x, and x, , ,.) Itis an easy matter to define a transformation S belonging
to M that is equal to the identity outside the regions R, ..., Ry and that
takes T™x, into x,,, (k=1,..., N). Then the automorphism

(SO T)'l1+'lz+"'+'lN

takes x, into xy, . Hence So T belongs to E;;. Since o(S° T, T) <&, it
follows that E;; is dense in M. By the Baire category theorem, the set
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()i.;E:;is a dense G, in M, and therefore non-empty. For any T in (| E;;
we have

Uin Ui  T™4U; %0
for all i and j. Hence the set
Gj=U&, T,

is open and dense in the square. Therefore () G;+ @ (again by the Baire
category theorem!). For any point x in this set, the sequence x, Tx, T?x, ...
is dense in the square. Consequently,any T in () E,;is transitive.
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19. The Sierpinski-Erdos Duality Theorem

The principal use for the notion of category is in the formulation of
existence proofs. This may be termed its telescopic function. Baire's
theorem enables us to bring into focus mathematical objects which
otherwise may be difficult to see! But the study of category serves
another purpose, too. By developing the theories of measure and category
simultaneously, and by calling attention to their points of similarity and
difference, we have tried to show how the two theories illuminate each
other. Because the theory of measure is more extensive and “important™
than that of category, the service is mainly in the direction of measure
theory. This may be termed the stereoscopic function of the study of
category; it adds perspective to measure theory! The suggestion to look
for a category analogue, or a measure analogue, has very often proved
to be a useful guide. In this and the following chapters we shall take a
closer look at the duality we have observed between measure and
category, to see how far it extends in the case of the line and other spaces,
and to discover what underlies it.

Let us recall some of the similarities between the class of nullsets and
the class of sets of first category on the line. Both are o-ideals. Both
include all countable sets. Both include some sets of power c¢. Both
classes have power 2° (unlike the o-ideal of countable sets, which has
power c). Neither class includes an interval; the complement of any set
of either class is dense on the line. Both classes are invariant under
translation. Any member of either class is contained in a Borel member
of the class.

We have also noted some differences. Any nullset is contained in a
G; nullset, whereas any set of first category is contained in an F, set of
first category. Neither class includes the other. The line can be decom-
posed into a pair of complementary sets, one of first category and the
other of measure zero.

Another similarity, which we have not explicitly mentioned, is the
following.

Theorem 19.1. The complement of any linear nullset contains a nullset
of power c. The complement of any linear set of first category contains
a first category set of power c.
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Proof. By Theorem 3.18, the complement of a nullset contains an
uncountable closed set. By Lemma 5.1, this contains a closed nullset
of power c.

The complement of a set of first category contains an uncountable
G;set. By Lemma 5.1, this contains a nowhere dense set of powerc. []

The properties of these two g-ideals suggest that perhaps they are
similar, in the following technical sense of this term. A class K of subsets
of X is said to be similar to a class L of subsets of Y if there exists a
one-to-one mapping f of X onto Y such that f(E)e L if and only if
EeK.

In 1934, Sierpinski [ 34] proved the following

Theorem 19.2 (Sierpinski). Assuming the continuum hypothesis, there
exists a one-to-one mapping f of the line onto itself such that f(E) is a
nullset if and only if Eisof first category.

This theorem explains many of the similarities we have noted. In fact,
it justifies the following principle of duality: Let P be any proposition
involving solely the notion of nullset and notions of pure set theory
(for example, cardinality, disjointness, or any property invariant under
arbitrary one-to-one transformation). Let P* be the proposition obtained
from P by replacing “nullset™ by “set of first category™ throughout. Then
each of the propositions P and P* implies the other, assuming the con-
tinuum hypothesis. It is not known whether Sierpinski’s theorem can be
proved without the continuum hypothesis.

Sierpinski asked whether a stronger theorem may be true: Does
there exist a mapping f that maps each of the two classes onto the other
simultaneously? This question was answered in 1943 by Erdos [10]. By
a relatively small refinement of Sierpinski’'s proof, Erdés proved the
following

Theorem 19.3 (Erdos). Assuming the continuum hypothesis, there exists
a one-to-one mapping f of the line onto itself such that f = f ! and such
that f(E)is anullset if and only if E isof first category. (It follows from
these properties that f(E)is of first category if and only if E is a nullset.)

The interest of this theorem is that it establishes a stronger form of
duality, which may be stated as follows.

Theorem 19.4 (Duality Principle). Let P be any proposition involving
solely the notions of measure zero, first category, and notions of pure set
theory. Let P* be the proposition obtained from P by interchanging the
terms “nullset™ and “set of first category™ wherever they appear. Then
each of the propositions P and P* implies the other, assuming the continuum
hypothesis.
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We shall base our proof of the Sierpinski-Erdos theorem on the follow-
ing purely set-theoretic

Theorem 19.5. Let X be a set of power NX,, and let K be a class of
subsets of X with the following properties:

(@) K is a o-ideal,

(b) the union of K is X,

(c) K has a subclass G of power <N, with the property that each
member of K is contained in some member of G,

(d) the complement of each member of K contains a set of power N,
that belongs to K.

Then X can be decomposed into ¥, disjoint sets X ,, each of power ¥,,
such that a subset E of X belongs to K if and only if E is contained in a
countable union of the sets X ,.

Proof. Let A= {a:0=Za < Q} be the set of ordinals of first or second
class, that is, all ordinals less than the first ordinal, Q, that has uncountably
many predecessors. Then A has power N;, and there exists a mapping
a— G, of A onto G. For each o € A define

Ha= UﬂéﬂGﬁ and Krz=Ha_ Uﬂ<aHﬁ .

Put B={a € A: K, is uncountable}. Properties (a), (c) and (d) imply that
B has no upper bound in 4. Therefore there exists a one-to-one order-
preserving map ¢ of A onto B. For each a in A4, define

X,= Hyw— Uﬁ<aH¢(ﬁ) .

By construction and property (a), the sets X, are disjoint and belong to K.
Since X, D K, €ach of the sets X, has power X, . For any f € A, we have
p < ¢(a) for some a € 4, and therefore

GyCHyCHypy= UvéaXy'

Hence, by (c), each member of K is contained in a countable union of the
sets X,. Using (b), it follows that

X=UKCUsenXs-
Thus {X, : a € A} is a decomposition of X with the required properties. []

Theorem 19.6. Let X be a set of power X,. Let K and L be two classes
of subsets of X each of which has properties (a) to (d) of Theorem 19.5.
Suppose further that X is the union of two complementary sets M and N,
with M e K and N € L. Then there exists a one-to-one mapping f of X
onto itself such that f = f ! and such that f(E)e L if and only if E€ K.
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Proof. Let X, (0 <a < Q) be a decomposition of X corresponding to
K, as constructed in the proof of Theorem 19.5. We may assume that M
belongs to the generating class G, and that G, is taken equal to M. Then
X, =M, because M cannot be countable. Similarly,let Y, 0 Za<Q)bea
decomposition of X corresponding to L, with Y, = N. Then

M=Jo<,<0Y, and N={Jo<,<0X,.

The sets X, and Y,, for 0 <a < Q, constitute a decomposition of X into
sets of power N;. For each 0 <a < Q, let f, be a one-to-one mapping
of X, onto Y,. Define f equal to f, on X, and equal to ! on Y,, for
0<a<Q. Then f is a one-to-one mapping of X onto itself, f is equal
to f',and f(X,)=Y,forall 0 <a <. Since

XO:U0<1<QY1 and YO:UO<1<QX17

we have also f(X,)=Y,. Thus f(X, =Y, for all 0=a < Q. From the
properties of X, and Y, stated in Theorem 19.5 it follows that f(E)e L
ifand only if E€ K. T[]

Theorem 19.3 is an immediate consequence of Theorem 19.6. Take
X to be the line, let K be the class of sets of first category, and let L be the
class of nullsets. K is generated by the class of F, sets of first category,
and L by the class of G; nullsets. Each of these generating classes has
power ¢. Condition (c) is therefore satisfied, on the hypothesis that
¢=¥,. Condition (d) is implied by Theorem 19.1, and conditions (a)
and (b) are obvious. For the sets M and N we may take the sets 4 and B
of Theorem 1.6.
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20. Examples of Duality

In 1934, in his book entitled “Hypothése du continu™ [35], Sierpinski
collected a number of examples of dual propositions (in the restricted
sense, since Erdos’s theorem had not yet been proved). Here we shall
discuss three of these pairs, in some cases modifying the statement
slightly. In each case, the propositions have been proved up to now only
with the aid of the continuum hypothesis. Hence the duals follow without
loss from the duality principle. Because they depend on the continuum
hypothesis, we shall designate them as “propositions™ rather than as
“theorems.”
The first proposition is due to Lusin (1914) [ 35, pp. 36, 81).

Proposition 20.1. Any linear set E of second category has a subset N
of power c such that every uncountable subset of N is of second category.

Proof. Let {X,:a<Q} be the decomposition of X corresponding
to the class K of first category sets in the proof of Theorem 19.5. Let N
be a set obtained by selecting just one point from each non-empty set of
the form EnX,. Since E is of second category, N is uncountable and
therefore of power ¢. No uncountable subset of N can be covered by
countably many of the sets X,. Hence no uncountable subset of N is of
first category. []

An uncountable set with the property that every uncountable subset
is of second category is called a Lusin set. The dual proposition was
proved by Sierpinski in 1924 [35, pp. 80, 82].

Proposition 20.1*. Any linear set E of positive outer measure has a
subset N of power ¢ such that every uncountable subset of N has positive
outer measure.

In Proposition 20.1, with E = R, we can adjoin to N a countable dense
set and thereby insure that N is dense. Then a subset of N is of first
category relative to N if and only if it is of first category in R. Hence these
propositions imply that there are uncountable subspaces of the line in
which the distinction between first and second category, or between
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Lebesgue nullset or not, reduces to the distinction between countable
and uncountable.

Since every subset of the line is the union of a nullset and a set of first
category (Corollary 1.7), a Lusin set must have measure zero and the
set N of Proposition 20.1* must be of first category.

Proposition 20.2. There exists a one-to-one mapping f of the line
onto a subset of itself such that f(E) is of second category whenever E
is uncountable.

Proof. Let f be any one-to-one mapping of the line onto a Lusin
set. [J

Proposition 20.2%. There exists a one-to-one mapping f of the line
onto a subset of itself such that f(E) has positive outer measure whenever
E is uncountable.

Proposition 20.3. Any linear set E of second category contains ¢
disjoint subsets of second category.

Proof. Let f be a one-to-one mapping of R onto a Lusin set con-
tained in E. Then the conclusion follows from the fact that the line and
plane have the same cardinality. []

Proposition 20.3*. Any linear set E of positive outer measure con-
tains ¢ disjoint sets of positive outer measure.

As we showed earlier (Theorem 5.5), any set with positive outer
measure contains a non-measurable subset. Hence Proposition 20.3*
implies that any set E of positive measure contains ¢ disjoint non-
measurable subsets. By Zorn's lemma, this family is contained in a
maximal disjoint class of non-measurable subsets of E. The complement
of the union of such a family must have measure zero. By adjoining
it to one of the members of the family we obtain a decomposition of E
into ¢ disjoint non-measurable subsets. In this connection it is interesting
to note that Lusin and Sierpinski [36] have proved, without assuming
the continuum hypothesis, that the line can be decomposed into ¢
disjoint Bernstein sets, and therefore into ¢ disjoint sets of positive outer
measure. At the same time, this construction establishes the dual pro-
position — that the line can be decomposed into ¢ disjoint sets of second
category. It can be shown that these properties imply that the algebra
of all subsets of the line modulo the ideal of nullsets, or modulo the ideal
of sets of first category, is incomplete. This means that not every subset
of the quotient algebra has a least upper bound [37, footnote 11].

None of the dual propositions we have so far considered has involved
measure and category simultaneously. Let us now consider some
examples of duality in the more general sense. An obvious instance is
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Theorem 1.6: The line can be decomposed into two complementary
sets, one of first category, the other of measure zero. This proposition is
self-dual. A slightly more interesting example is this: A subset of R is a
nullset if its intersection with every set of first category is countable.
The dual reads: A subset of R is of first category if its intersection with
every nullset is countable. Both of these are corollaries of Theorem 1.6;
the continuum hypothesis is not needed.

Let us now consider a nontrivial example. It is a slight generalization
of one of Sierpinski’s propositions [35, p. 130].

Proposition 20.4. For any class K of one-to-one nullset-preserving
transformations of the line, with card K = c, there exists a linear set E
of first category and power ¢ such that TE a E is a countable set, for each
T in K.

Proof. Index the elements of K and R so that
K={T,:a<Q} and R={p,:a<Q}.

Let A be a nullset such that R — A4 is of first category. For 0 <a < Q,
let G, be the group generated by the transformations T, with f < a. Then
G, consists of all products of the form

k k kn
Tyl Ty Tp,

where §; <aand k;= +1(i=1, ..., n),and nis any positive integer. Hence
G, is countable, and each T in G, is nullset-preserving. For each T in
G,, the set TA is a nullset. Hence 4,=(){TA:TeG,} is a nullset.
Let xo=py. Assuming that points x; in R have been defined for all
B<a, put B,={Tx;:Bf<a, TeG,}. Then B, is a countable set, and
A,V B, is a nullset. Let x, be the first element in the well ordering of R
such that x, is not in A,uB,. Put E,={Tx,: TeG,}, and define
E= U0<a<9Ea. Then E, is countable, and E is uncountable. Moreover,
E is a subset of R — A. Hence E is of first category. For any S <a < Q, we
have T,E,=E,. Hence T;E A EC|),<p (E,vT;E,). This shows that
TE A E is countable, foreach T in K. ]

Proposition 20.4*. For any class K of one-to-one category-preserving
transformations of the line, with card K = c, there exists a linear set E of
measure zero and power ¢ such that TE a E is a countable set, for each T
in K.

Sierpinski proved these propositions for the class K of translations.
However, the notion of a translation is not purely set-theoretic, and so
the corresponding propositions are not strictly dual. The class of all
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homeomorphisms of the line onto itself also has power ¢, and we can
deduce from Proposition 20.4* the following

Corollary 20.5. Assuming the continuum hypothesis, there exists an
uncountable linear set E such that the image of E under any automor-
phism of the line is a nullset.

This shows that in Theorem 13.2, the hypothesis that 4 be a closed
set cannot be omitted (though it can be replaced by a weaker hypothesis,
such as that A be a Borel set). Actually, Sierpinski [33, p. 274] has shown
that an even stronger form of the above corollary can be proved without
assuming the continuum hypothesis. But, curiously enough, it has not
been proved that such a set can have power ¢. Assuming the continuum
hypothesis, we have seen that not only does such a set exist, but it can
be chosen in such a way as to differ from its image under any automor-
phism of the line by only a countable set.
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21. The Extended Principle of Duality

We have seen many instances in which the property of Baire has played
a role analogous to measurability. A typical example is the following,
which is a restatement of Theorem S5.5.

Theorem 21.1. If every subset of a linear set E is measurable,then E isa
nullset. If every subset of E has the property of Baire, then E is of first
category.

Can the principle of duality be extended to include measurability
and the property of Baire as dual notions? The possibility of such a
principle was first considered by Szpilrajn [38]. To justify it, we should
like to find a one-to-one mapping f of the line onto itself such that f(E)
is measurable if and only if E has the property of Baire, and such that f(E)
is a nullset if and only if E is of first category. (The second property is a
consequence of the first, by the above theorem and its converse.) However,
as Szpilrajn showed, such a mapping is impossible.

For suppose f is such a mapping. Let I be the unit interval, and let
E = f~!(I). Then E has the property of Baire. Let x,, x,, ... be a countable
dense subset of E, and let I; be an open interval containing x; such that

m(f(I)nI)< 1721
Put G = I,. Then G is an open set and E C G. Hence

EC(GNE)u(G-G).
Therefore

I=f(E)Cf(GNE)Uf(G-GCL/WnITuf(G-G).

Since G — G is nowhere dense, (G — G) is a nullset, and so m(l)
<Y 27i"1=1/2, a contradiction.

The foregoing argument shows, incidentally, that in Theorem 19.2
the mappings f and f~! cannot both be Borel measurable, that is, we
cannot require that f(E) and f ~*(E) be Borel sets whenever E is a Borel
set. (In fact, neither f nor f~! can be Borel measurable. This is because
the inverse of a one-to-one Borel measurable mapping is also Borel
measurable [18, p. 398].)
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To clinch the conclusion that the extended principle of duality is not
valid as a general principle, let us examine an instance in which it breaks
down.

Theorem 21.2. Let E; ; be a double sequence of measurable sets such
that E; ;D E; ;. for all positive integers i and j, and such that N, Ei.

is a nullset for each i. Then there exists a sequence of mappings n,(i) of
the set of positive integers into itself such that (), | ); E; . is a nullset.

i, mc(i

Proof. Let I, =[ —k,k]. For each i and k there is a positive integer
n, (i) such that

m(E; . oyN L)< 1/k2".
Hence
m(\); Ei oy L) < k.

Put E =\, | Ei s For any finite interval I, we have I, for all
sufficiently large k. Then

(EﬁI)C UiEi,,,k(i)mIk .

Hence m(EnI) < 1/k for all sufficiently large k. Thus EnI is a nullset
for every I, and therefore E is a nullset. []

Dual Statement. Let E;; be a double sequence of sets having the
property of Baire such that E; ;DE, ;. for all positive integers i and j,
and such that ﬂjEi,j is of first category for each i. Then there exists a
sequence of mappings n,(i) of the set of positive integers into itself such

that (V\J; Ei n.) is of first category.

This proposition is false. Let r; be an enumeration of all rational
points, and let E; ;=(r;— 1/j, r;+ 1/j). This double sequence satisfies
the hypothesis of the proposition in question. For any mapping n(i)
of the positive integers into positive integers, the set | J; E; ., is a dense
open set. For any sequence of such mappings n,(i), the set (), | J;E
1s residual, contrary to the stated conclusion.

Although the extended principle of duality is not valid as a general
principle, it has a certain heuristic value. Many properties of measure
depend only on properties of the class of measurable sets that are shared
by the class of sets having the property of Baire. In such cases the principle
may suggest (even though it cannot prove) a valid dual. Then one is led
to seek an abstract theorem that includes both. Our discussion of the
Poincaré recurrence theorem provides an illustration.

The Fubini and Kuratowski-Ulam theorems push the analogy a step
further, making the topology of the product space correspond to the
product measure. Here the “duality” becomes still more tenuous.
Although the statements of the two theorems are strikingly similar, the

i, (i)
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proofs bear little resemblance to one another, and we were unable to
find a generalization that would include both. (The connection we
established was of a different nature.)

Can one push the analogy even further, to infinite products? If {X;}
is a sequence of sets, the Cartesian product X =2, is the set of all
sequences {x;} with x;e€ X;, that is, all functions x from the positive
integers to | ) X; such that x; € X; for every i. If the sets X; are topological
or metric spaces, they determine a corresponding topology or metric
in X. If the X; are normalized measure spaces they determine a normalized
“product measure™ in X. We shall not give a general discussion of these
notions here, but confine attention to a particular case.

Let X; consist of the two elements 0 and 1. Then X is the set of all
sequences of zeros and ones. The mapping of X onto the Cantor set
defined by

fx)=37 2x/3
may be taken to define the product topology in X. Similarly, the mapping
g =32, x;/2'

of X onto [0, 1], although not one-to-one, defines a measure p(E)
= m(g(E)) on the class of sets E such that g(E) is measurable. This may be
taken as the definition of the product measure in X.

A subset E of X is called a tail set if whenever x € E and y differs
from x in only a finite number of coordinates, then y € E. Thus, member-
ship in a tail set depends only on the “tail” of a sequence {x;}. The notion
can be expressed more conveniently as follows. Let

X"=#'X, and Y"'=2%2 X,.

Then X = X" x Y" for each n. A set EC X is a tail set if and only if, for
each n, E can be “factored” in the form E = X" x B,, where B, is some
subset of Y".

An important theorem concerning product measure is the zero-one
law of Kolmogoroff. For the product space X that we are considering,
it reads as follows.

Theorem 21.3. If E is a measurable tail set in X, then either u(E)=0
or u(E)=1.

We merely sketch the proof, specializing that of Halmos [12, p. 201].
Let A, be a subset of X", and put F=4, x Y". Let E= X" x B,, where
B,cY" for each n. Then ENnF = A4, x B,. In our case, X" is a finite set.
If A, has k points, then u(F)=k/n and u(A, x B,)= % u(X" x B,). Hence
WENF)=u(E) u(F). Every measurable set can be approximated in the
space of measurable sets (Chapter 10) by a set of the form F, since g(F)
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can be any finite union of dyadic subintervals of [0, 1]. It follows that the
equation u(EnF)=u(E) u(F) holds for every measurable set F. In
particular, it holds when F =E. Hence u(E)=0 or 1.

Does this theorem have a category analogue? If so, it should read
as follows.

Theorem 21.4. If E is a tail set in X having the property of Baire,
then E is either of first category or residual.

This theorem is true! For suppose that E is not residual. Then X — E
is of the form G a P, G open and non-empty, P of first category. G is a
countable union of basic open sets of the form U= 4, x Y" (corre-
sponding to the closed intervals used to define the Cantor set). Hence G
contains a set U of the form U= A4, x Y", where A, is non-empty. By
hypothesis, E can be written in the form E=X"x B,. Hence UnE
= A, x B,. But also,

A, xB,CGC(X—E)uP.
Hence

A, x B,CEA[(X —E)UP]CP.

Therefore A, x B, is of first category. Since A4, is a non-empty subset
of the finite discrete space X", it is of second category. It follows from
Theorem 15.3 that B, is of first category in Y". Hence E = X" x B, is of
first category in X.

Although this proof is limited to the particular product space con-
sidered, the theorem can be shown to hold for the product of any family
of Baire spaces each of which has a countable base [26].

To illustrate Theorem 21.4, let E be the set of sequences {x;} such that
lim,_, L3 x;,=1/2. This is evidently a tail set in X. It is also a Borel
set. It follows that u(E)=0 or u(E)= 1, and that either E or X — E is of
first category. Which is it? It is not hard to show (we omit the proof)
that E is of first category. On the other hand, the Borel strong law of
large numbers implies that u(E)=1. This result may be interpreted to
mean that the category analogue of the strong law of large numbers is
false. Thus it appears that the analogy between measure and category
extends through the zero-one law but not as far as the law of large
numbers. This is reminiscent of the fact that the analogy extends through
the Poincaré recurrence theorem but not as far as the ergodic theorem.
The law of large numbers is, in fact, deducible from the ergodic theorem,
so these two cases in which the analogy breaks down are not unrelated.
Unfortunately, no general criterion for recognizing when a measure
theorem has a valid category analogue is known.
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22. Category Measure Spaces

It was shown in the last chapter that no one-to-one mapping of the line
onto itself can map the nullsets onto the sets of first category and at the
same time map the measurable sets onto the sets having the property of
Baire. More generally, if (X, S, ) is a measure space with 0 < u(X) < oo,
and Y is a separable metric space without isolated points, then no
S-measurable mapping of X into Y can be such that the inverse image
of every set of first category has measure zero. For if f were such a
mapping we could define a finite nonatomic Borel measure v in Y by
setting v(E) = u(f ~'(E)) for every Borel set E. By Theorem 16.5, Y could
be decomposed into a v-nullset and a set of first category. Then v(Y)
would be 0, contrary to u(X)>0.

However, the possibility remains that in more general topological
spaces such a mapping may be possible and no such decomposition
exist. This is indeed the case, but we shall see that such spaces have
unusual topological properties. Here we shall confine attention to
regular spaces, that is, Hausdorff spaces in which every neighborhood of a
point contains a closed neighborhood of the point. Every compact
Hausdorff space is a regular Baire space, and every subspace of a regular
space is regular.

If X is a topological space with a finite measure u defined on the
o-algebra S of sets having the property of Baire, and if u(E) =0 if and only
if E is of first category, then (X, S, p) is called a category measure space
and u is called a category measure in X. In any such space the extended
principle of duality is not only valid, it is a tautology ! Before discussing
the existence of category measures let us determine some of their
properties.

Theorem 22.1. Let u be a category measure in a regular Baire space X.
For any open set G and ¢> 0 there is a closed set F such that F C G and
U(F) > u(G)— ¢, and for every closed set F there is an open set G such that
FCG and n(G)< u(F)+e.

Proof. Let # be a maximal disjoint family of non-empty open sets U
such that U € G. Each member of & has positive measure, hence & is
countable, say #={U;}. Put U=|{) U,. Then U CG. The maximality
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of # implies that G C U. Hence G — U, which is contained in U — U, is
nowhere dense, and so u(G)=) u(U,). Choose n so that > u(U)
> u(G)—e¢. Then F= ()} U, is a closed subset of G, and u(F)> u(G) —e.
This proves the first assertion; the second follows by complementation. []

Theorem 22.2. If X is a regular Baire space and p is a category
measure in X, then every set of first category in X is nowhere dense.

Proof. Let P= () N;, N; nowhere dense, be any set of first category.
Since u(N;) =0, Theorem 22.1 implies that for any two positive integers i
and j there is an open set G;; such that N.C G;; and p(G;) < 1/2*3, Put
H;=|)~,G,;. Then H; is open, PCH,, and u(H)=pu(H)<1/2/. Put
F= ﬂj‘:l H;. Then F is closed and P C F. Since u(F) =0, the interior of F
must be empty. Hence F, and therefore P, is nowhere dense. []

Theorem 22.3. If u is a category measure in a regular Baire space X,
then for any set E having the property of Baire,
H(E)= p(E) = p(E'™)
and
E)— { inf {u(G): ECG, G open}
sup{u(F):EDF, F closed} .

Proof. Let E=G a P, G open and P of first category. Then P is
nowhere dense, and so is P. Since

G—-PCECGuUP,
we have
G—-PCE'CECECGUP.

The first and last of these sets differ by a nowhere dense set, hence all
have equal measure. This proves the first assertion; the second then
follows from Theorem 22.1. []

Theorem 22.2 shows that spaces that admit a category measure are
topologically unusual. Theorem 22.3 shows that category measures are
very tightly fitted to the topology.

We now consider the following problem: Given a finite measure
space (X, S, p), can we define a topology .7 in X with respect to which u
will be a category measure? It is obviously necessary to assume that u
is complete, since the class .4~ of nullsets must be identified with the class
of sets of first category. By Theorem 4.5, any open set is of the form
H — N, where H is regular open and N is nowhere dense. A topology is
therefore determined by its regular open sets and its nowhere dense
closed sets. In a Baire space, any set E belonging to the class S of sets
having the property of Baire has a unique representation in the form
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G A P, where G is regular open and P is of first category (Theorem 4.6).
If we write G=¢(E), then ¢ is a function that selects a representative
element from each equivalence class of S modulo sets of first category.
Theorem 4.7 implies that ¢ satisfies conditions similar to those that
characterize Lebesgue lower density (Theorem 3.21). This suggests the
following program for making a measure space (X, S, u) into a category
measure space. Find a mapping ¢ of S into S that satisfies conditions 1)
to 5) of Theorem 3.21. Then find a suitable subclass of 4" to serve as the
nowhere dense closed sets. We shall show that the class A4 itself can
always be taken for this purpose. We thereby obtain a maximal topology
corresponding to ¢. To be able to apply this method, we need the following
theorem, due to von Neumann and Maharam [19]. Another proof has
been given by A. and C. Ionescu Tulcea [15].

Theorem 22.4. Given a complete finite measure space (X, S, u), there
exists a mapping ¢ of S into S having the following properties, where
A ~ B signifies that A A B belongs to the class A of u-nullsets:

1) ¢(4)~ A4,

2) A~ B implies ¢(A)= ¢(B),

3) ¢@)=9, ¢(X)=1X,

4) $(ANB)=¢(A)NP(B),

5) AC B implies ¢p(A)C ¢(B).

Such a mapping ¢ is called a lower density. We shall not prove this
theorem in general. We are primarily interested in the Lebesgue measure
space, and we have already seen that in this case the Lebesgue density
theorem defines such a mapping (Theorem 3.21). However, it is just as
easy to introduce the corresponding topology in the general case.
Accordingly, let us assume that (X, S, u) is a complete finite measure space
and that we are given a mapping ¢ : S— S that satisfies conditions 1)
to 5). Let A" be the class of u-nullsets, and define

T ={$p(A)—N:AeS,Ne N} .

Theorem 22.5. .7 is a topology in X.

Proof. Since @ e .#, Property 3) implies that X =¢(X)—¢ and
@ = ¢(9) — 0 both belong to 7. By 4) we have

[#(41) = Ni1n[¢(42) — Ny1=¢(A;nAy) — (NyUN,) .

Hence 7 is closed under intersection. To show that 7 is closed under
arbitrary union, let

F={¢p(A,)—N,:ael'}, A,eS,N,e &/,
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be any subfamily of 7. Let b denote the least upper bound of the measures
of finite unions of members of %, and choose a sequence {,} such that
u(Jr A,)=b. Put A=[JT A, . Then A€S, and the definition of b
implies that 4, — A€ A for every a € I'. Since

A,— (A, — A)CA,
it follows from 2) and 5) that

Pp(A,)Cp(A) forevery a.
Putting
No= U1 [N, 0(A,, — d(4,))],

we have N, € A" and

A= NoCUnz1 [9(A4,,) = N 1€ User [0(4,) — N1 Ch(4).

The extremes differ by a nullset, and therefore

Uzef [¢(Az) - Nz] = ¢(A) —-N
for some N € 4, by the completeness of u. [J

This topology has been studied particularly by A. and C. Ionescu
Tulcea [16, Chapter 5].

Theorem 22.6. A set N C X is nowhere dense relative to 7 if and only
if N e A. Every nowhere dense set is closed.

Proof. If Ne /', then X — N =¢(X)— N €7, hence each member
of & is closed. If Ne & and ¢(A4,)— N, CN for some A4, €S and
N, € &, then ¢(A4,)e A and so ¢(A4,)=6, by 2) and 3). Hence ¢(4,)
— N, =9, and therefore N is nowhere dense. Conversely, if F is closed
and nowhere dense, then X — F = ¢(A) — N for some A€ S and Ne .4,
hence F belongs to S. Since

F>¢(F)—[¢(F)-Fle 7,
the nowhere denseness of F implies that ¢(F) C ¢(F) — F. Hence ¢(F) =4,
by 1), 2), and 3). Therefore F ~@, that is, F € A" Thus, A" is identical
with the class of closed nowhere dense sets. Since every nowhere dense
set is contained in a closed nowhere dense set, and every subset of a

member of A" belongs to .4, it follows that every nowhere dense set is
closed. []

Theorem 22.7. A set AC X has the property of Baire if and only if
AeS.

Proof. If A€S, then A=¢(A)a (p(A)a A). Since ¢$(A)e 7, and
P(A)an A€ A", it follows from Theorem 22.6 that A has the property of
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Baire. Conversely, if A has the property of Baire, then 4 =[¢(B)— N]a M
for some Be S, some N € .47, and some set M of first category. By Theo-
rem 22.6, M belongs to 4", and therefore A€S. []

Theorem 22.8. A set G C X is regular open if and only if G=¢(A) for
some A€S.

Proof. If A€ S, then ¢(A) is open, and the closure of ¢(A) is of the
form ¢(A)UN for some N e 4", by Theorem 22.6. Let ¢(4,)— N, be
any open subset of ¢(A)UN. Then

$(A;)— N, Ch(A)=d(@(4,) — N,) CP(@(A)UN) = ¢(4).

Thus ¢(A) is the largest open subset of ¢(4)u N. This shows that ¢(A)
is equal to the interior of its closure, that is, ¢(A) is regular open. Con-
versely, if G is regular open, then G = ¢(4) — N forsome A € Sand N € A",
Since ¢(A) a [¢p(A)— N]is contained in N, we have ¢(A) ~ p(4) - N=G.
Since G and ¢(A) differ by a nowhere dense set, and both are regular
open, it follows that G=¢(4). []

We have now shown that the problem of topologizing a complete
finite measure space (X, S, 1) so as to make it a category measure space
is reducible to that of finding a lower density ¢. In general one can say
little about the regularity of the topology .7; it need not even be Haus-
dorff, since S need not separate points of X. However, in the case of
Lebesgue measure in R, or in any open interval, we can take ¢(A4) to be
the set of points where A has density 1. The corresponding topology 7
is called the density topology. 7 consists of all measurable sets 4 such
that A has density 1 at each of its points. Hence  includes all sets that
are open in the ordinary topology, consequently it is Hausdorff. In fact,
the density topology in R can be shown to be completely regular but not
normal [117]. We shall show only that it is regular.

Theorem 22.9. The density topology in R is regular.

Proof. Let x be a point of a set A €.7. Then 4 has density 1 at x.
For each positive integer n, let F, be an ordinary-closed subset of (x — 1/2n,
x+1/2n)n A such that m(F,)> (1 —1/n)ym[(x—1/2n, x+ 1/2n)nA]. If
F={x}U|JTF,, then F is an ordinary-closed set, and ¢(F)CF C A.
Since A has density 1 at x,

nm[(x —1/2n,x+ 1/2n)nF] Znm(F,)—> 1.

Therefore F has density 1 at x, and so x € ¢(F). Thus ¢(F) is a T-neigh-
borhood of x whose Z-closure is contained in F, and therefore in A. []

Thus Lebesgue measure in any open interval is a category measure
relative to the density topology. Lebesgue measure in R is not finite,
and therefore not a category measure as we have defined the term.
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However, it is easy to define an equivalent finite measure, which is then
a category measure relative to the density topology in R. Relative to the
density topology, the extended principle of duality is valid, and it is no
longer possible to decompose R into a nullset and a set of first category.

The method we have described is not the only way in which category
measure spaces can be obtained. The earliest examples to be recognized
were the Boolean measure spaces, that is, spaces obtained from finite
measure algebras by means of the Stone representation theorem. These
provide examples of compact Hausdorff spaces that admit a category
measure [13]. Among the continuous images of these spaces may be
found still other examples [25]. The study of such spaces belongs more
properly to that of Boolean algebras, and so we shall not discuss them
here.
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