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FOREWORD TO THE ENGLISH EDITION

The ideas and methods of set theory and topology
permeate modern mathematics. It is no wonder then that
the elements of these two mathematical disciplines are now
an indispensable part of basic mathematical training. Con-
cepts such as the union and intersection of sets, count-
ability, closed set, metric space, and homeomorphic
mapping are now classical notions in the whole framework
of mathematics.

The purpose of the present volume is to give an
accessible presentation of the fundamental concepts of
set theory and topology; special emphasis being placed on
presenting the material from the viewpoint of its ap-
plicability to analysis, geometry, and other branches of
mathematics such as probability theory and algebra.
Congequently, results important for set theory and
topology but not having close connections with other
branches of mathematics, are given a minor role or are
omitted entirely. Such topics are, for instance, axiomatic
investigations, the theory of alephs, and the theory of
curves.

The main body of the book is an introduction to set
theory and topology, intended for the beginner. Sections
marked with an asterisk cover either more complicated
topics or points which are frequently omitted in a first
course; this holds also for some exercises which allow
the reader to get acquainted with many applications and
some important results which could not be included
in the text without unduly expanding it. Many new
exercises not contained in the Polish edition have been
included here.

I take great pleasure in thanking Professor J. Jaworow-
ski and Dr. A. Granas for their cooperation in preparing the
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Polish edition and to thank also Professors A. Mostowski
and R. Sikorski, Dr. S. Mréwka, Mr. R. Engelking and
Dr. A. Schinzel for numerous comments which helped
me to improve the original manuscript. Also, my thanks
go to Mr. Leo F. Boron and to Mr. A. H. Robinson for
preparing the present text for English speaking students
of mathematics.

KaziMIERZ KURATOWSKI
Warsaw
September 1960
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INTRODUCTION TO PART 1

The concept of a set is one of the most fundamental
and most frequently used mathematical concepts. In every
domain of mathematics we have to deal with sets such
as the set of positive integers, the set of complex numbers,
the set of points on a circle, the set of continuous functions,
the set of integrable functions, and so forth.

The object of set theory is to investigate the prop-
erties of sets from the most general point of view;
generality is an essential aspect of the theory of sets.
In geometry we consider sets whose elements are points,
in arithmetic we consider sets whose elements are numbers,
in the caleulus of variations we deal with sets of functions
or curves; on the other hand, in the theory of sets we
are concerned with the general properties of sets in-
dependently of the nature of the elements which comprise
these sets. This will made clear by several examples which
we shall give here and by a brief overall view of the
contents of the first part of this volume.

In Chapter II we shall consider operations on sets
which are analogous to arithmetic operations: for every
pair of sets A and B we shall form their union A o B,
understanding by this the set composed of all elements
of the set A4 and all elements of the set B; we shall
also form the intersection A ~ B of the sets A and B,
and we shall understand by this the set of all elements
common to the sets A4 and B. These operations have,
in a certain sense, an algebraic character, e.g. they
have the properties of commutativity, associativity and
distributivity. It is clear that these properties do not
depend on whether these sets consist of numbers, points
or other mathematical objects; they are general properties
of sets and therefore the investigation of these properties
belongs to the realm of set theory.
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In Chapter ITI we consider another type of operation,
called cartesian multiplication. For two given sets X and Y
we denote by X X Y the set of all pairs of elements <{x, ¥
in which the first belongs to the set X and the second
to the set Y. Thus, e. g. if X and Y denote the set of
real numbers then X X Y is the plane (whence the name
“cartesian’® product in honor of the great French ma-
thematician Descartes (1596-1650), who, treating the plane
as a set of pairs of real numbers, initiated a new branch
of mathematics, called analytic geometry). The com-
putational properties of cartesian multiplication in con-
nection with the operations on sets mentioned above are
given in Chapter III.

The concept of cartesian product allows us to define
the concept of a function in a completely general way.
We ghall concern ourselves with the concept of function
in Chapter IV. An especially important role in the theory
of sets is played by the one-to-one functions. These
are functions which map the set X onto the set Y so that
to every two distinct elements of the set X there corre-
spond two distinct elements of the set ¥ (and then the
inverse function with respect to the given function, which
maps the set Y onto the set X, is also one-to-one). If
there exists such a one-to-one mapping of the set X onto
the set ¥ we say that these sets are of equal power.
The equality of powers is the generalization of the idea
of equal number of elements; the significance of this
generalization depends first of all on the fact that it can
be applied to infinite as well as to finite sets. For example,
it is easy to see that the set of all even numbers has the
same power as the set of all odd numbers; on the other
hand, the set of all real numbers does not have the same
power as the set of all natural numbers—a fact which
is not immediately obvious. Hence, we can—in some
sense—classify infinite sets with respect to their power. We
can also, thanks to this, extend the sequence of natural
numbers, introducing numbers which characterize the
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power of infinite sets (called the cardinal numbers);
in particular, to sets having the same power as the set
of all natural numbers (or the countably infinite sets)
we assign the cardinal number a, to the set of all real
numbers we assign the number ¢ (the power of the con-
tinuum). It turns out that there is an infinite number
of infinite cardinal numbers. However, in the applications
of set theory to other branches of mathematics an essential
role is played by only two of them: a and ¢. So we also
limit ourselves above all to the investigation of these
two numbers. This forms the content of Chapter V and VL.

Chapter VII is devoted to ordered sets such as the set
of all natural numbers, the set of all rational numbers, the
set of all real numbers. For each of these sets the less
than” relation determines the ordering; here the order types
of these three sets differ in an essential manner: in the first
of them there exist elements which are immediately
adjacent to one another (n and n+1), in the second there
are no such elements (so we say, the ordering is dense),
however, there exist gaps (in the Dedekind sense), but
in the set of all real numbers there are no gaps.

An especially important kind of ordered sets are the
well ordered sets, i. e. those whose every non-empty subset
has a least element. An example of a well ordered set
is the set of all natural numbers (but the set of all integers
is not well ordered since this set does not have a least
element). Also well ordered—although of a different order
type—is the set consisting of numbers of the form 1—1/n
and numbers of the form 2—1/n, n =1,2,3, ... In Chap-
ter VIII we give the most important theorems con-
cerning well ordering. Among other things, we prove that
of two distinct order types of well ordered sets one is
always an extension of the other (in a sense which we
shall make more precise). From this follows the important
corollary that of two different well ordered sets one is
of power equal to that of a subset of the other; in the
terminology of cardinal numbers this means that for two

2
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distinet cardinal numbers corresponding to well ordered
sets, one is always smaller than the other. In connection
with this theorem, there arises the fundamental conjecture:
does there exist a relation for any set which establishes
its well ordering? We shall prove that this is in fact so,
if we assume the axiom of choice. This theorem is the
final theorem of the first part of this book.

The discussion of set theory given here is based on
a system of axioms. Even though in the introductory
part of set theory, e. g. in the algebra of sets, the concept
of set, with which we have to deal in mathematics (and
hence the concept of a set of numbers, points or curves,
and so on) is such that it does not touch upon logical
difficulties, a subsequent construction of set theory which
is not based on a system of axioms turns out to be
impossible; for there exist questions to which the so-
called “naive” intuitive idea of a set does not give
a unique answer. The lack of the necessary foundations
of set theory in its initial period of development led to
the so-called antinomies, i.e. contradictions, which one
did not know how to interpret on the basis of the ‘“naive”
intuitive idea of set. Only the axiomatic concept of the
theory of sets allowed the removal of these antinomies
(cf. Chapter VI, § 2, Remark 2).

In the present book we do not analyze more closely
the axiomatics of set theory or the logical foundation
of the subject. Although these subjects form at the
present time an important part of mathematics and are
being actively developed, the discussion of them in this
book lies outside the principal goal of the book which is:
the presentation of the most important branches of set
theory and topology from the point of view of their
applications to other branches of mathematics.

In the first part of this book the reader will find
a certain amount of information on mathematical logic.
The notation of mathematical logic is an indispensable
tool of set theory and can be applied with great profit
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far beyond set theory. In Chapters I and ITI we have
given the main facts from this subject concerning the
calculus of propositions, propositional functions and quan-
tifiers. The notation of mathematical logic is not devoid
of general didactical values; by examples for concepts such
as uniform convergence or uniform continuity it is possible
to observe how much the definition of these concepts
gains in precision and lucidity, when they are written in
the symbolism of mathematical logic.

In the first period of its existence, set theory was
practically exclusively the creation of one scholar, G. Can-
tor (1845-1918). In the period preceding the appearance
of the works of Cantor, there were published works
containing concepts which are now included in the
theory of sets (by authors such as Dedekind, Du Bois-
Reymond, Bolzano), but nonetheless the systematic in-
vestigation of the general properties of sets, the establish-
ment of fundamental definitions and theorems and the
creation on their foundation of a new mathematical
discipline is the work of G. Cantor (during the years
1871-1883).

The stimulus to the investigations from which the
theory of sets grew, was given by problems of analysis,
the establishing of the foundations of the theory of ir-
rational numbers, the theory of trigonometric series, etec.
However, the further development of set theory went
initially in an abstract direction, little connected with
other branches of mathematics. This fact, together with
a certain strangeness of the methods of set theory which
were entirely different from those applied up to that
time, caused many mathematicians to regard this new
branch of mathematics initially with a certain degree
of distrust and reluctance. In the course of years, however,
when set theory showed its usefulness in many branches
of mathematics such as the theory of analytic functions or
theory of measure, and when it became an indispensable
basis for new mathematical disciplines (such as topology,
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the theory of functions of a real variable, the foundations
of mathematics), it became an especially important branch
and tool of modern mathematics.

Among the books which may be of aid in the study
of set theory we mention the following (also the books
on Topology mentioned in Part II, Introduction, contain
the basic notions of Set Theory):

P. Bernays, Axiomatic Set Theory, N.-Holland Publ.

Comp., Amsterdam 1958.

N. Bourbaki, Théorie des Ensembles, Paris, Hermann,

NN° 1141, 1212, 1258.

J. Breuer, Introduction to the Theory of Sets, Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1958.

. Fraenkel, Abstract Set Theory, N.-Holland Publ.

Comp., Amsterdam 1953.

. Halmos, Naive Set Theory, Van Nostrand Comp.,

Princeton, N. J., 1960.

Hausdorff, Set Theory, Chelsea, New York 1957.

. Hilbert and P. Bernays, Grundlagen der Mathematik,

2 vol., Berlin 1934-1939.

. Kamke, Theory of Sets, Dover Publications, New
York 1950.

I. P. Natanson, Theory of Functions of a Real Variable,

Ungar, New York 1955, Chapters I and IL. ,
W. Sierpiniski, Algébre des Ensembles, Monografie Ma-

tematyeczne, Warszawa-Wroclaw 1951.

W. Sierpinski, Cardinal and ordinal numbers, Monografie

Matematyczne, Warszawa-Wroclaw 1958.

P. Suppes, Axiomatic Set Theory, Van Nostrand Comp.,

Princeton, N. J., 1960.

A. Tarski, Cardinal Algebras, Oxford Univ. Press, New

York 1949.
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CHAPTER 1

PROPOSITIONAL CALCULUS

We apply the propositional calculus to propositions
each of which has one of two logical values, 0 and 1,
where we assign the value 0 to a false proposition and
the value 1 to a true proposition (in particular, all the
propositions in mathematics are of this type, i. e. they
take values either 0 or 1).

§ 1. The disjunction and conjunction of propositions

If a and § are two propositions, then we write ‘“a or g’
in the form of the disjunction a Vv B, and we write the
proposition “‘a and B in the form of the conjunction a A B.

Clearly, the proposition aVv g is true if at least one of
the components is a true proposition and the proposition
anp is true if both factors are true propositions. The
above can be put in the form of the following table:

1) ovo=0, Ovli=1l, 1v0=1, 1vl=1,
(2) 0A0=0, OAl=0, 1A0=0, 1Al=1.
The equivalence sign used in the above formulas occurs
between propositions; namely, the equivalence a = § holds
if and only if @ and f have the same logical value.
The disjunction and conjunction of propositions (called

also logical sum a-+ f and logical product a-f) are com-
mutative and associative, i. e.

‘avB=pBva, aABf=PAra,
aVv(Bvy) =(avp)Vy, an(Bry)=(anf)ry.
The distributive law
(4) an(By) = (aAB)V(any)
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also holds and more generally we have

(3)  (aVvB)A(yVd) = (any)V(BAY)V(aAd)V(BAI).

We can verify the above laws—as well as all laws
of the propositional calculus—by substituting the values 0
or 1 for the variables and then applying formulas (1)
and (2).

§ 2. Negation

Next we introduce the operation of negation of a pro-
position o which we shall denote by o' (or by ~a). The
negation of a true proposition is a false proposition and,
conversely, the negation of a false proposition is a true
proposition. We therefore have the following table:

(6) 1'=0, 0 =1.
From this we obtain the so-called law of double negation,
(7) ad'=a.

Two fundamental theorems of Aristotelian logic (which
follow easily from formulas (1), (2) and (6)) hold:

(8) ava'=1, apra =0;

they are the law of the excluded middle (principium
tertii exclusi) and the law of contradiction (these ave for-
mulated in classical logic in the following manner: from
two contradictory propositions, one is true; no proposition
can be true simultaneously with its negation).

Further, the important de Morgan laws hold:

(9) (avp) =(a’'Ap),
(10) (anp) =(a’'Vp).

The first of these laws asserts that if it is not true
that one of the propositions a and B is true then both
of these propositions are false (and conversely); i. e. the
negation of the first as well as the negation of the second
are true propositions.
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Similarly, if it is not true that both propositions a
and p are true, then this means that the negation of one
of them is a true proposition, and conversely.

Taking the negation of both members of identity (10)
we obtain, by virtue of formula (7), the identity

(11) aNB = (a'V) .

From this it is clear that conjunction can be defined
with the aid of disjunction and negation (after all, in
a manner similar to the way one could define disjunction
with the aid of conjunction and negation). This allows
the reduction of the number of fundamental operations
to two; however, from the computational-technical view-
point it is more convenient to make use of three operations:
disjunction, conjunction and negation.

§ 3. Implication

We write a=p if the proposition «'Vp is true, i. e.

- (12) (a=p) =(a’Vvp);

a=f is read: the proposition a implies the proposition g,
or: if a then B.
Tables (1) and (6) yield the following table:

(13) (0=0)=1, (0=1)=1, (1=0)=0, (1=1)=1.
We also deduce from this that
(14) if a=f and B=a then a =p.

Clearly, implication has properties analogous to de-
duction. However, the current meaning of the expression
“deduction” is different from the expression ‘“implication”.
To say that a proposition B is deducible from a proposi-
tion a (e.g. from a given theorem) usually means the
possibility of proving proposition f on the basis of pro-
position a; but the implication o = § always holds, provided
that the proposition B is true (even if the proposition
a were falge).
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Let us note further two easily proved laws: the syllogism
law (or the law of transitivity of implication) and the law
of contraposition (on which the proof by “reductio ad
absurdum’ or, the indirect method of proof, depends),

(15) if a=f and B=y then a=y,
(16) if p'=a then a=p8.
Exercises

1. Prove that, if a is a true proposition, then §=-a is also a true
proposition. [Hint: In this and the following exercises apply the
“zero-unit’ tables (1), (2), (6), (13)].

2. If o’ = B for each B, then ais a true proposition. Law of Clausius.

3. If a is a false proposition, then a=-8. Law of Duns Scotus.

4. Prove that aAf=a=>avVvp.

5. If a=p and y=0, then aAy=-fAd and avy=pVi.

6. If a=>p, then aAf =aqa and avf = 8.

7. Prove that av (aAf) =a =aA(avp). Law of absorption.

8. Let (a~p) = [(aAB’) v (a’AB)]. Prove that (avp) = [(a=pB)~
(arB)]. We call a= g the symmetric difference of the propositions a
and f; what is its logical meaning?



CHAPTER IT

ALGEBRA OF SETS. FINITE OPERATIONS

§ 1. Operations on sets

The union (or the set-theoretic sum) of two sets 4
and B is understood to be the set whose elements are
all the elements of the set A and all the elements of the
set B and which does not contain any other elements.
We denote the union of the sets A and B by the symbol
A U B (or by A+ B).

The intersection (or the set-theoretic product) ot two
sets A and B is understood to be the common part of
these sets, i. e. the set containing those and only those
elements which belong simultaneously to A and to B.
We denote the intersection of the sets A and B by the
symbol A ~ B (or by A- B).

Finally, the difference of two sets A and B, i.e. the
set A— B, is the set consisting of those and only those
elements which belong to A but which do not belong
to B (instead of 4A—B the symbols A\B and 4A~B
are also used).

The following examples illustrate the operations on
sets: the union of the set of rational numbers and the
set of irrational numbers is the set of all réal numbers;
the intersection of the set of numbers which are divisible
by 2 and the set of numbers divisible by 3 is the set of
numbers which are divisible by 6; the difference of the
set of natural numbers and the set of even natural num-
bers is the set of odd natural numbers.

Other examples are given in Figs. 1-3, where the sets A
and B are circular disks. From Fig. 2 we see that there
exists no point which belongs to both the sets 4 and B;
but despite this fact, we can consider forming the inter-
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section to be possible in all cases by adopting the fol-
lowing definition.
The null set (or the empty set or the void set) is the set
which contains no elements; we denote it by the symbol §.
Thus, in Fig. 2 we have A ~ B = ¢ and in Fig. 3 we
have B—A =¢.

(BHSO)

Fic. 1 Fic. 2 Fic. 3

The equality A ~ B = ¢ therefore denotes that the
sets A and B do not have common elements. We then
say that these sets are disjoint.

The role of the null set in set theory is analogous to
the role of the number 0 in arithmetic; these concepts
are necessary in order that it be possible to carry out
all operations with no exception.

§ 2. Inter-relationship with the propositional calculus

Operations on sets are closely related to operations
on propositions. Let us write © ¢ A to denote that x is
an element of the set A (as a rule we shall denote elements
with lower case letters and sets with upper case letters);
then we have the following equivalences (which hold
for all x): '

(1) [re(AuB)]=(xeA)V (reB),
(2) [te(An B)]=(xedA) A (xeB),
(3) [re(A—B)]=(red) A(reB).

By virtue of formulas (1)-(3), we can easily deduce
theorems on the calculus of sets from analogous theorems
in propositional calculus.
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In this connection, let us note that

(4) if the equivalence we A =xeB holds for all x,
then A =B
and therefore the proof of the equality A = B reduces

to showing that « belongs to A if and only if it belongs to B.

The operations of union and intersection of sets are
commutative, i. e.

() AUB=BuA, A~AB=BAhA.

These operations also satisfy the associative law:
Av(Bul)y=(AvB)v(l,
AABANC)=(AAB)AC.

The distributive law

(7 ANn(Bul)=(AAB)u(AnC()

also holds, as can easily be verified.

It follows from this that
8) (AuB)n(CuD)

=(A~0)u(BAC)u(AAD)u(BnD),
for, by virtue of formula (7), we have

(AuB)n(CuD)y=[(AuB)AnClu[(4duB)n D]

=(A~NC)U(BAC)LU(AAD)U(BAD).

Therefore, in general, as in arithmetie, in order to
expand the intersection of two unions one must take the
intersection of each term of the first union with each
term of the second union and then form the union of the
intersections obtained in this manner.

The analogy between arithmetic and the theory of sets
is not, however, complete. For example, the following
obvious rules hold in set theory:

9) AuvA=A4,

(10) A~nA=4,

which point out that, in contrast to arithmetic, neither

multiples nor exponents arise in set theory.

(6)
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§ 3. Inclusion

We shall now introduce the important relation of
inclusion between sets. We shall say that the set A is
a subset of the set B (or also that the set A is contained
in B) if every element of the set A4 is an element of the
gset B. We then write A CB (or BD A).

We therefore have the following equivalence:

(11) (A C B) = [the implication (v e A)= (xe B) holds
‘ for all x).
In particular, it follows from this that
(12) ACA,

i. e. that every set is a subset of itself. Because of this

inclusion, we also use the term proper subset for subsets

of a given set which are different from the given set.
Obviously

(13) if ACB and BCA, then A =B,

for the sets A and B consist of the same elements in
this case.

Hence, in order to prove that A = B it suffices to
prove that A CB and BC A; in other words, instead
of the equivalence

(wed)=(veB)

we prove the two implications
rveA=>xeB and xeB=>xeAd

(cf. Chapter I, § 3, (14)).
It can easily be proved that

(14) if ACB and BC C, then ACC,

(15) (AAnB)CAC(AuB), A—BCA,

(16) if ACB and CC D, then (A v C)C(Bu D)
and (A~ C)C(Bn D).
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The following equivalences hold:
) (ACB)=(AuB=B)=(4A~B=A4).

For, let A CB. Combining this inclusion with the
inclusion BC B (cf. (12)), we obtain, by virtue of (16)
and (9)

(AvuB)C(BuUB)=B,

but since (ef. (15)) BC (4 v B), we have A UB =B
(cf. (13)).

Conversely, it follows from the relation A v B = B
that A C B (by virtue of (15)); hence these relations are
equivalent.

Similarly, combining the inclusion A C B with the in-
clusion A C 4 we obtain A C (A ~ B), whence A = A ~ B,
because A ~ BC A by virtue of (15).

Conversely, from the relation A ~ B = A we obtain
the relation A C B because (4 ~ B)C B.

From this we deduce the following formula which is
important in applications:

(18) (AuB)An(AuC)=Au(BnC0).
In fact, by virtue of (8) and (10) we have
(AuB)n(AuC)=(AnA)u(BnA)u(AnC)u(BAO)
=AU(BnAnA)v(AnC)u(BnO),
which yields (B~ 4)C A by (15), and hence by virtue
of (17) that A u (B~ 4A) = A and similarly that 4 o
(4 A~ 0) = A. Formula (18) follows from this.

Let us note further the following formulas, the proof
of which does not present any difficulties:

(19) A~AB=A—(A—B),
(20) Au(B—A4)=AUB,
(21) A—(A~AB)=A—B,

(22) A~(B—0C)=(A~B)—C.
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§ 4. Space. Complement of a set

In the applications of the theory of sets, we assume,
as a rule, that all the sets under consideration are subsets
of some fixed set, called the space. For example, in ana-
lysis, the set of real numbers or the set of complex num-
bers forms a space, and in geometry we have to deal with
the Euclidean space.

Under this assumption, the theorems of the algebra
of sets assume a still simpler form which is closer to the
calculus of propositional functions.

Hence, let 1 denote a given space (this notation is
expedient from the calculational point of view). We there-
fore have A C1 for each of the sets A considered. We
denote by A° (or by ~A) the set of elements of the space
which do not belong to 4, i.e.

A°=1-—-4.

A° is called the complement of the set A (with respect
to the given space 1). We therefore have

(23) wed’=(wed)
or, if we write x ¢ A instead of (v e 4)’, also
rveAl=uwé A.

Formulas (6)-(8) (Chapter I, § 2) yield immediately the
(almost obvious) formulas:

(4

(24) =g, °=1,
(25) A =4,
(26) AUA®=1, A~A=y.

Formulas (3), (23) and (2) imply the formula
(27) ., A—B=AA~B,

which allows us to define subtraction in terms of inter-
section and complementation.
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In fact,
(xeA—B) =(xeA) A (xeB)
=@edA)A (®eB°’)=(wedn B.
Formula (16) (Chapter I, § 3) implies that:
(28) if B°C A®, then ACB.

Finally, formulas (9) and (10) (Chapter I, § 2) yield
the de Morgan laws for sets:

(29) (AuBf=A°~B°,
(30) (A~ABf=A°UB°.
For, we have
ze(AUuBY=[ze(AuB)] =[(xed)V (zeB)]
’ =@eA)\ (@eB)=xe(A°A B).
The proof of formula (30) is analogous.
The obvious formula
(31) A~l1=4
yields by (26), that

(32) A=(A~B)u(4dnB,
inasmuch as
A=An1=A~(BuUuB)=(AnB)u (4~ B).

Formula (17) can be supplemented by the following
equivalence which is frequently applied in praectice:

(33) (ACB)=(4d~B =9).

For, forming the intersection of both sides of the
inclusion 4 C B with B® we obtain (A ~ B°) C (B ~ B°) = §
(by virtue of (26)). But from formula (32) we deduce,
assuming the equality A ~ B°= g, that 4 = A ~ B,
whence, by (17) it follows that A C B.



32 SET THEORY AND TOPOLOGY

§ 5. The axiomatics of the algebra of sets

In the considerations up to this point we used only
some properties of sets. The properties can be taken
a8 a system of axioms, from which all the theorems of set
theory, given above, follow.

We take, namely, as primitive concepts the concept
of set and the relation of an element belonging to a set,
i. e. the relation x e A. We assume the following four
axioms: —

I. UNIQUENESS AXIOM. If the sets A and B have the
same elements then A and B are identical.

I1. UniON AxIOM. For arbitrary sets A and B there
-exists a set whose elements are all the elements of the set A
and all the elements of the set B, and which does not contain
.any other elements.

ITI. DIFFERENCE AXIOM. For arbitrary sets A and B
there exists a set whose elements are those and only those
elements of the set A which are mot elements of the set B.

IV. EXISTENCE AXIOM. There exists at least ome set.

It is not necessary to assume an axiom on the existence
of an intersection because, as we saw (formula (19)), the
intersection can be defined in terms of the difference.
Likewise, the existence of the void set is a consequence
of our system of axioms, for we can define the void set
by means of the formula ¢ = A— A, where 4 is an ar-
bitrary set (the existence of at least one set is guaranteed
by axiom IV).

An important consequence of axiom I is the uniqueness
of the operations, i. e. for given sets A and B there exists
only one set satisfying axiom II (which justifies the use
of the symbol 4 v B to denote this set); the same ap-
plies to the intersection and difference.

As we have already stated, it is possible from the
above axioms to deduce all the theorems of the theory
-of sets considered till now, without referring back to the
dntuitive concept of set.
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§ 6. Boolean algebra [G. Boole (1813-1864)]

We shall now give another method of the axiomatic
concept of the algebra of sets.
Taking, namely, as primitive concepts the set ¢ and

the operations v, ~, —, we assume the following axioms:
(1) AuB=Bud, (2°) A~AB=B~nA,

(3°) : AU(BUC)=(AUE)UC,

(4°) AA(BAC)=(AAB)~C,

(5°) Avg=4,

(6°) AL(A~B) =4,

(1°) AA(BUO) =(4nB)u(dn0),

(8°) An(AUB)=4,

(9°) (A—B)UB=A4UB,

(10°) (A—B)~nB=9.

From these axioms we are able to deduce all the theo-
rems of the algebra of sets in which the relation ¢ does
not appear. Also, if we desire to restrict the domain of the
variables to subsets of a fixed set 1, we assume, in ad-
dition, the axiom

(11°) A~1=A4.

We add that we define inclusion with the aid of the
formula (ct. (17)):

(ACB)=(AuB=B).

The theory based on the above axioms is called Boolean
algebra. The applications of Boolean algebra extend far
beyond the theory of sets; we need not interpret the
variables 4, B, ... as sets. Interpreting them, e. g. as
propositions we obtain the propositional calculus.

This explains the duality between the propositional cal-
culus and the algebra of sets: to the disjunction (or sum) v

3
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of propositions corresponds the union (or sum) v of sets,
to the conjuction (product) A of propositions—the inter-
section (product) ~ of sets, to the negation o' of a pro-
position o —the complement A° of a set A etc. (see also
Chapter IV, § 3).

Other interpretations of Boolean algebra in recent
times permit us to apply it in various branches of
mathematics, and even outside mathematics (for example,
in the theory of electrical networks).

Exercises

1. Prove the following formulas:

(a) Av@AB =4A=A~(ACUB),
(b) (A4vB)-0=(4-0)v (B-0),
() A—(B—C)=(A4-B)v(4~0),
(d) A—(BuwC) =(A4-B)—-C.

2. The set

A+B=(4-B)yw (B-A)

is called the symmetric difference of the sets A and B.
Prove the following formulas:

(a) A=~ (B=-C) = (A4+B)=-C (associativity),
(b) A~n(B=-C)=A~B-4~C (distributivity),
(c) AUB=A-B-AA~B,

(d) A—B=A-4A~B.

3. We say that the operations 4+ y and x +y form a ring if they
satisfy the following conditions:

@) r+y=y+ux,
(i) z+(y+2) = @+y)+2,
(iii) there exists an element 0 such that x4+ 0 = x,

(iv) for every pair x,y there exists an element z (z = z—y)
such that y+2 =@,
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(v) xy=y-x,
(vi) x (y-2)=(xy) %,
(vii) v (y+2)=x-y+w-z.

Prove that sets form a ring with respect to the operations 4+B
and A ~ B, but that they do not form a ring with respect to the
operations 4 v B and 4 ~ B.

4. We define division by means of the formula 4: B= 4 o B°
Compute
A:(B~n0), A: (Bu(), A~ (B:4).

5. Let 4,, 4,, ..., An be fixed subsets of the space 1. Let us
assume that A = 1— 4;, Ai = A;. Every intersection of the form

Ai‘ r\A;z A e A,‘;n, where i,. =0orl,
is called a constituant of the space (with respect to the sets
Ay, Agy vy An).

Prove that the constituants are disjoint and that their union
is equal to 1 (therefore the decomposition into constituants effects
a classification of the elements of the space with respect to their
belonging to sets A4,, 4,, ..., An).

6. Represent the set A— (B— C) as the union of constituants
of the space with respect to the sets 4, B and C.

7. Let us suppose that the set 4 has been obtained from the
finite system of sets 4,, ..., An by joining them in an arbitrary
way with the aid of the symmetric difference. Prove that 4 is the
set of elements belonging to an odd number of sets 4,,..., 45. (Thus
the set 4 is not affected by changing order in which the operations
are performed.) '



CHAPTER III

PROPOSITIONAL FUNCTIONS.
CARTESIAN PRODUCTS

Let a fixed set be given, which in the sequel we shall
consider to be the space. Let ¢(x) be an expression which
becomes a proposition when one substitutes for x an
arbitrary value of x belonging to the considered space.
We call this expression a propositional function (with
bounded domain of the argument; we sometimes consider
propositional functions for which the domain of varia-
tion of the variable x is not restricted to any set.)

For example, if the space is the set of all real numbers,
then the expression “x > 0’ is a propositional function;
it becomes a true proposition if we substitute, say, 1 for x;
it becomes a false proposition if we substitute —1 for .

§ 1. The operation [,

The set of all those values of the variable x for which
@(x) is a true proposition (or, as we say, the set of 2’s
which satisty the propositional function ¢(x)) is denoted
by the symbol

Fzp(2),

or by {r:e(x)}.

For example, in the space of real numbers [',(x > 0)
is the set of all positive numbers, [} (x = x) is the set
of all real numbers, and [ (x+1 = x) is the null set.

It follows from the definition of the operation [’ that
a necessary and sufficient condition, that the element a
should belong to the set [,¢(x), is that the proposition
@(a) be true. Hence, the following equivalence holds:

(1) for every a: [ae [ p(x)] = ¢@(a).
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The following four formulas hold:

(2) E:lo(@) v y(@)] = Fap(@) v Foy(),
(3) Felo@) nyp(@)] = Fap(®) ~ Fap(®),
(4) Fslo@) A {p@)}'] = Fep(@)— Eay(2),
(5) Ezle@)] = [Fzp(@)].

We obtain the proof of the formula (2) from the
formula (1) above and formula (1) of Chapter II, §2:

ae Fale(@) Vy@)] =[pa)Vya)]
=laefp@)]Viae frzp@)]=aec(Fzp@) v Fap(2)],

whence equality (2) follows (cf. Chapter I, § 2, (4)).
Formulas (3)-(5) are proved similarly.

§ 2. Quantifiers

Let us now consider the following two operations on
propositional functions:

Veop(®) and Az (o).

We read the formula \/, ¢(x) as follows: there exists
some x which satisfies the function ¢(x); Az ¢(r) denotes
that every x satisfies this function. (The symbols H,, 2,
and V,, IT,, respectively, are used in the same sense.)

Clearly, the above operations transform propositional
functions into propositions. The symbols of these opera-
tions \/ and A are called the existential and the universal
quantifiers, respectively.

For example, in the space of real numbers the pro-
position V(x> 0) is true but the proposition A, (z > 0)
is false.

The variable 2 which appears as the free variable in
the propositional function ¢(z) becomes a bound variable

1

in the proposition \/,¢(x) (like # in [ f(x)dx). It may
0
be noted that
Vep@) =Vyoy).
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Analogous remarks can be made about the universal
quantifier.

The operations \/ and A may be considered as gen-
eralizations of the operations of disjunction and con-
junction. For, if the domain of variation of « is finite,
congisting of the elements a,, as, ..., a,, then

Ve @) =[p(a) Ve(as) V... Vo(a)],
Nz @ (@) =[p(a;) A @(as) A ... Ap(an)].
We now set down the following easily proved formulas:
(1) for every x, we have [Nz9(2)] =9 (%) =[V0(2)],
(8) [(Veo@) VvV Vep(@)] = Valp@) Vvy@)],
(9) Valp@) Ap(@)]=Vep@) A Vay®).
Let us note that in formula (9) we cannot replace
the implication sign by the equivalence sign; in other

words, implication in the opposite direction may not hold.
For example, both of the propositions

(6)

Vs (@ is a positive number)
and \/, (z is a negative number)

are true, and hence a true proposition appears in the right
member of formula (9); but on the left side there appears,
in this example, a false proposition (inasmuch as there
is no number which is simultaneously positive and
negative).

The duals of formulas (8) and (9) are the following
formulas:

(10) [Ae (@) A Nap(@)] = Na[p(@) Ap(@)],
(11) [N #(@) V Nep(@)] = Nz [p(@) V p(2)].

This duality is expressed by the generalized de Mor-
gan formulas (which appear very frequently in appli-
cations):

(12) [Ne@@)] = Vao'(2),
(13) [Vap(@)] = Na¢'(@).
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As in the case of finite operations, the de Morgan
formulas permit the definition of the universal quantifier
in terms of the existential quantifier and negation (and
the existential quantifier in terms of the universal quan-
tifier and negation):

(14) Aso@) =(Vao' @), Veo@) =(A:0'@) .

Remark. Instead of the symbols \/, and A, we often
use the more complicated symbols \/,q and A, Where
w(x) is a given propositional function. We assume that

\/w(x) (@) = Va[p(®) A p(2)],
N 9(%) = Nz [w(2) = (@)].

Similarly, we assume that
Evayp(@) = Falp(@) A p(@)].
§ 3. Ordered pairs

We denote a set consisting of only one element a
by the symbol {a} (let us note that {a} # a). We denote
the set consisting of the two elements a and b by {a, b};
- similarly, {a, b, ¢} denotes the set consisting of the ele-
ments a, b and ec.

Obviously the symbols {a, b} and {b, a} denote the
same set. In the sequel we shall need the concept of an
ordered pair with antecedent a and successor b which we
shall denote by the symbol <a, b>. We consider the pair
{a, by ag distinet from the pair <b,a) (unless a = b);
more generally, the pairs <a,b)> and <{¢,d) are equal
only when a = ¢ and b = d, i. e. when they have identical
antecedents and identical successors:

(15) C[Ka, by =<6, dd] = (a=c) A (b=4d).

The concept of ordered pair can be defined in va-
rious ways; we can, for instance, adopt the following
definition:

(16) <a,b) = {{a}, {a,]}}.
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It is easy to verify that condition (15) is satisfied
by this definition.

§ 4. Cartesian product

The cartesian product of the sets X and Y is the set
of all ordered pairs <r,y> where xe¢ X and ye¢ Y. We
denote this set by X x Y and therefore

a7) K, e XxY)]=(@eX)A(yeY).

Cartesian products appear very irequently in ma-
thematics. For example, the complex number plane is
& x 6, where & is the set of all real numbers (since a com-
plex number is an ordered pair made up of two real num-
bers). A cylinder can be considered as the cartesian product
of the circumference of a circle (base) by a closed interval
(height); the surface of a torus can be treated as the
cartesian product of two circles.

Let us set down several eagily proved formulas con-
cerning the distributivity of cartesian multiplication with
respect to the operations of the algebra of sets:

(18) (X v X)xY=X;xYulX,xY,
whence
(19) (X,vXy)x(Y,uY,)
=X1>< YIUX]_X Yz\./ X2 X YIUX2>< Y2’

(20) (X;— X)) xY=X;xY-X,x Y,
(21) (LA X)X (YY) =X, xY)n(X,xY,).

If the sets X;, X,, Y, and Y, are nonvoid then
(22) [(Xix YY) =(X,x Y,)]= (X, =X,) A (Y, =1,).

All the above formulas can easily be interpreted
geometrically, if we assume that X x Y is the plane with
axes X and Y and that X, C X, X,CX, ¥,CY, ¥,CY.

Similarly, the following two formulas have a clear
geometric interpretation:

(23) AXB=(AxY)n(XxB),
(24) (AxB)’ = (A°x YV u (X x B,
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where A C X, BC Y, A° and B° denote the complements

with respect to X and Y, respectively, and (4 x B)
denotes the complement with respect to X X Y.

Formula (23) follows from (21), and (24) follows
from (23) by virtue of the de Morgan rules since

AXY)A(XXxB)=(A~nX)x(Y~nB)=AXB,
(Ax Y)Y =(A°xY) and (X xB)=(XxB°.

§ 5. Propositional functions of two variables

Let the cartesian product Z = X x Y be given. Let
¢(2) be a propositional function of the variable 2 which
ranges over the set Z. Since 2z = {x, y), the propositional
function ¢(2) can be considered as a function of two
variables x and y; we write ¢(x, y) instead of ¢(<{z, y)).
We also call a propositional funetion of two wvariables
a relation (in the sense of logic).

A propositional function of two variables ranging
over the spaces X and Y is the same as a propositional
function of one variable ranging over the cartesian
product of these spaces.

Instead of [.¢(z) we also write [, ¢(x,y). For
example, [, (x < y) is the half-plane situated above the
line z =y, and [, ,(y = «?) is the parabola which is de-
termined by the equation y = z2

Let ¢(x,y) be a given propositional function of two
variables. Hence \/, ¢(x,y) and A, ¢(x,y) are proposi-
tional functions of one variable, namely of the variable x.

We set down the following easily proved formulas:

(25) VeVyo@,y) = VyVao(@,9),
(26) NeNy @ (@, %) = NyNap(2,Y) .

In both of these formulas we may alternatively write
Vay @(@,y) or V,e(2), and Agy@(®,y) or A ¢(2).

These formulas express the commutativity of the
operation \/ with respect to \/ and similarly of the oper-
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ation A with respect to A. On the other hand, the
sequence of the quantifiers \/ and A is significant. The
following important formula holds:

(27) VaAy @(#,9) = NyVa @(2,9).

The left band member denotes that there exists an
x, such that, for every value of the variable y, ¢ (%, ¥) is
true; and therefore to every y we can assign an « (namely,
x = x,) such that ¢(x, y) is true; and this is exactly what
the right hand member states.

On the other hand, the implication in the opposite
direction does not hold (compare formula (9)). For exam-
ple, in the domain of real numbers it is true that

) NoValy <2),
but it is not true that

Valy(y <2).
Another example is: the assumption that the real

valued function f is bounded can be written in the follow-
ing form:
Ve (If(@)] <)

On the other hand, the proposition A.V,(|f(x)] < ¥)
is true in general (for all real valued functions), for it
suffices to set y = |f(x)|+1.

The obvious formula
(28) Na @(®) =V (@)

(under the assumption that X = ¢) can be replaced, for
functions of two variables, with the additional assumption
that X = Y, by the more general formula

(29) Moy @@,9) = Na@(@,2) = Ve 9@, 2) = Vay ¢, 9).

With this same assumption we can replace formula (9)
by the fo]lowing formula

(30)  Valp@)Ap(@)] = Vay [p(@) Ap(y)]
= \/w(w)/\ Vyp¥) = Vazp@)AVzyp().
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Analogously, (11) can be replaced by the formula

Bl Nze@)V/ep(@)
= Nay [9(2) V9(¥)] = Ae [p(2) V p(2)].

§ 6. Propositional functions of » variables

The above reasoning can easily be generalized to a larger
number of variables than two. For example, Euclidean
three-dimengional space is the set of ordered triples of
real numbers, i.e. & x& X &, which we write more briefly
as &3 More generally, &" denotes #-dimensional Euclidean
space; denoting by J the closed interval 0 <t <1 we
denote the n-dimensional unit cube by J".

Similarly, we may speak about a propositional function
of n variables which run over the same or distinct
spaces. The following examples illustrate the role of the
quantifiers and the meaning of some formulas which are
related to them:

1. The continuity of a function f at a given point z, is
expressed by the following condition (in the Cauchy
formulation):

(32)  AeVeAn(hl < 8) =(If(zo+h)— ()] <),

where the domain of variation of the variables ¢ and ¢ is
the set of positive real numbers.

Therefore the continuity of a function in the interval
under consideration a < x < b is expressed by prefacing
formula (32) with the quantifier A, and replacing the
constant x, by the variable z. Since we can interchange
the order of the quantifiers A, and A., this condition
takes on the following form:

(33)  AeAaVeAnr(Ihl) < 8) =(If(@+h)—f(@)] <é) .

If we interchange the order of the quantifiers Az
and \/s, we obtain a stronger condition, namely the con-
dition for umiform continuity. Since, after this interchange,
the quantifier \/; follows /\., but is still before /\.,
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it is immediately clear that 6 depends on & but that it
does not depend on « (which is exactly what ‘“uniform’’
continuity means).

2. The condition that the sequence a,, a,,... be con-
vergent to the limit b can be written in the form

(34) \/e\/m/\n |Gmin—b] < €.

Therefore the condition that the sequence of functions
f1s f2y ... be convergent to the limit f is

By interchanging the order of A, and /\., we obtain
an equivalent condition. Let us now interchange A,
and \/,,. We then obtain the stronger condition from
which condition (35) follows, namely

(36) NeV /e An fmen(®)—f(2)] < €.

This is the condition for wniform convergence.

§ 7. Remarks on the axiomatics

The four axioms given in Chapter II, § 5, are not
sufficient for the discussions of Chapter ITI. Adding three
further axioms, we obtain a system of axioms which
expresses all those properties of the set concept with
which we shall deal in this volume, and which—gene-
rally speaking—suffice for the applications of the theory
of sets to other branches of mathematics. These are the
new axioms.

V. For every propositional function ¢(x) and for every
set A there exists a set consisting of those and only those
elements of the set A which satisfy this propositional function.

As is known (see § 1), we denote this set by the symbol

Fzp@)A(x e A), or, more briefly, by F.e(z),

where the domain of variation of x is restricted to A.
We had examples of the applications of axiom V
in § 3. The existence of the sets {a}, {a, b}, and so on
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(where a e A, b e A) follows from axiom V, since

{a} = Folx =a)A(x e A),
{a,b} = Ful(x =a)v(e =b)]n(x e 4).

On the other hand, the existence of an ordered pair
requires the use of a further axiom.

VI. For every set A there exists a set whose elements
are all the subsets of the set A.

VII. AXIOM OF CHOICE. For every family R of non-empty
disjoint sets there exists a set which has one and only one
element in common with each of the seis of the family R.

(We shall use the expression ‘“family” to denote the
set whose elements are sets. We shall then write R in-
stead of R.)

We have not applied the axiom of choice yet but we
shall use it in the later chapters.

We point out that if we complete the system of axioms
I-IV by means of the axioms V-VII we can at the same
time omit some of the earlier axioms. In particular,
axiom III follows from the rest, for the set

A—B = [y(x e A)A(x € B),
exists by virtue of axiom V.
Similarly, we can do without axiom II in the formation
of the union of the sets A and B provided that we assume

that both A and B are subsets of a fixed “space’ C (which
is usually the case). For the existence of the set

AUB=F[F(xeAd)V(xeB)]r(xeC)

follows from axiom V.

Axiom IV is also superfluous in applications; for in
its place appears the axiom which asserts that the space
under consideration is a set.

Exercises

1. Prove that none of the implications in formula (29) can be
repla<ced by an equivalence.
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2. Prove that
Vep@ v Aavi@) = Va/\vlp@ vyl = AyValp@veel,
Vep@ A Nov@) = Ve/\y[p@) Ap@)] = AoV alp@) rp@)]-
3. Prove the following equivalences:
Ne{INv @, P]=>p@)} = NaVilp@, y) => @),
Ne (Vv o@, 9] = @)} = Ney 9@, y) = p(@)].
4. Write down the definition of the uniform convergence of

(o]
the improper integral [ f(x, y)dy making use of quantifiers,
a



CHAPTER IV

THE FUNCTION CONCEPT.
INFINITE OPERATIONS

§ 1. The function concept

We usually say in analysis that we are dealing with
a real valued function f of a real variable if to each real
number there is assigned one and only one real number.
It is also known that, from the geometric point of view,
a function can be identified with its graph (in the same
sense that a real number can be identified with a point
on the real line, or a complex number with a point in the
plane). On the basis of the theory of sets we can define
the general concept of function as follows.

Definition. Let X and Y be two given sets. By
a function whose arguments run over the set X (domain)
and whose values belong to the set Y (range) we under-
stand the subset f of the cartesian produet X x ¥ with
the property that for every x e X there exists one and
only one y such that <{x,y)>ef. The set of all these
functions f is denoted by YZX.

We usually write y = f(x) instead of <z, y) ef.

We, therefore, have

f= Feyly =f(@)].

Clearly, in the case where X and Y denote sets of real
numbers the right member of this formula denotes the
graph of the function in the usual sense of the word.
An analogous remark applies to a function of two real
variables (or a function of a complex variable).

We do not assume that the values of the function f
fill the entire set Y. But if this condition is fulfilled,
then we say that the function f is a mapping of the set
X onto the set Y.
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If X is the set of natural numbers then we call the
function f an infinite sequence. Instead of f(n) we then
write f, (or more frequently: a,) and we call the values
of the function the terms of the sequence.

Remark. The concept of function is a particular case
of the concept of relation in the set-theoretic sense. Namely
by a relation in this sense we mean an arbitrary subset
R of the cartesian product X x ¥. Instead of writing
{z,y> e R we usually write ¥Ry (which is read ‘x is in
the relation R to ).

Every propositional function ¢(x, y) of the variables
x and y, having the sets X and Y as domains of variation
respectively (i. e. a relation in the sense of logic), deter-
mines a set B C X X ¥, namely

B = Fzyp(@,9).

§ 2. Generalized operations

We shall now consider the case where the values of
the function are sets. Thus, let F be a function whose
arguments run over the non-empty set 7 and whose
values are subsets of some fixed set X (i. e. they are
elements of the family R of all subsets of the set X).
We shall write #; instead of F(t).

We introduce the following two operations on func-
tions, called gemeralized union and generalized intersection
(which. are analogues of the quantifiers \/; and Aj).

U: F; is the set to which x belongs if and only if it
belongs to at least one of the sets Fy (it is also denoted
by ZgF t)-

(¢ Fy is the set to which x belongs if and only if it
belongs to all the sets F; (it is also denoted by I Fy).

In the notation of logic this means that

(1) (e Ui Fy) = \Vi(xeFy),
(2) (e Fy) = Ni(weFy).
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These operations are indeed generalizations of known
operations of union and intersection of sets (see Chapter IT,
§ 1). For if the set T is the set consisting of the numbers
1,2,..,n, then

UtFi=F,oF,0..0uF,, (WFi=F,nFyn..nF,.

Let us add that in the case where F is an infinite

sequence of sets, i. e. if 7' is the set of natural numbers,
we then use the notation

U, F, instead of \UJ; Fy, [)ne1Fy, instead of [ Fy.

We now set down several formulas which can easily
be proved ((4) is the generalized de Morgan formula):

(3) N: F,CF,C U, Fy,

(4) (Ut F)° =i Fyy (M F) = U Fi,
(5) if F,C A for every t, then | J; F1C A,
(6) if A CFy for every t, then A C (¢ Fy.

As an example, we shall prove formula (5). Hence,
let e |J; F;. By virtue of (1) there exists a #, such that
x e Fy; but by assumption Fy C A. Therefore x ¢ A. This
means that | J; F;C A.

Remark. As in Chapter IT (cf. Remark, § 2) we also
make use of the operations \/,q F; and A ,¢ F:, Where
p(t) is a given propositional function. The meaning of
these operations is defined by formulas (1) and (2), repla-
cing \/¢ by Vyn and A: by A, in them.

§ 3. The function F, = F,o(z,y)

Let ¢(x,y) be a given propositional function of two
variables. For fixed x,, F,®(x,,y) is some subset of the
space Y. Hence, if we put
(7) Fy= Fyp(,9),
we define a function F which assigns to every element
# € X a subset of the space Y. Let us apply the operations

4
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Ve and A, to this function. We obtain the following
formulas which display the duality between generalized
disjunction and conjunction, and quantifiers (compare
Chapter 11T, § 1, (2) and (3)):

(8) Uz Evp(@,y) = EyVzo(2,9),

(9) Ne Evp(®,Y) = Ey Nz p(@,9) .

In fact, by formulas (1), § 2, and (1), Chapter III,
§ 1, we have

Yoe Uz Evo(2,9) = Va [Yo € Fyp(®,9)]
= V2 0(@,¥) =% e EyNVz0(2,9).

Formula (9) is proved analogously.

The set [,V ¢(r,y) has the following interesting
geometric interpretation.

Noting the analogy to analytic geometry, we shall
say that the element <{x,y> of the cartesian product
X x Y has the abscissa x and the ordinate y, and that
X is the axis of abscissae and Y is the axis of ordinates
of the space X x Y. Similarly, if ACX x ¥, then the set
of abscissas of the elements of the set A will be called
the X-projection of the set A and the set of ordinates
will be called the Y -projection of A. Now:

(10)  the set F,\/ o @(x,y) is the Y -projection

of the set Fo,o(x,y).

In fact, y, is an element of the Y -projection of the
set A = F,(x,y) if and only if there exists an x, such
that <{x,, ¥, € 4, i.e. if ¢(zy, y,) holds; in other words,
if Veo(®@,¥), i e. if yoe Fly Vap(z,y).

The universal quantifier does not lead to such a simple’
geometric interpretation.

ExaMpPLE. By the parametric definition of the circle S
with center <0, 0> and radius » the point <{x,y)> belongs
to this circle if there exists a ¢ such that

(11) x=rcost, y=rsint,
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that is
8 = FeyVi(® =rcost)A(y =rsint).

This means that the formulas (11) which give the
parametric definition of the circle § define this circle
as the projection onto a subset of the plane X x Y
(i. e. the XY-projection) of the helix lying in the three-
dimensional space X X ¥ X T and defined (in an explicit
manner) by this same system of equations (11).

§ 4. Images and inverse images determined by a function

Let f be a function with arguments running over
the space X and with values belonging to the space Y.
Suppose 4 C X. We denote the image of the set A4 with
respect to the function f by f(4), i.e. f(4) is the set of
values which the function f assumes when the argument x
runs over the set A; in other words,

(12) [vef(A)] = Va(@e A)A [y =f()),
i. e.

HA) = EyVe(@e A)Aly = f(@) -

We can also formulate this definition in the following
way: Let us denote by f|A the function which we obtain
from the function f by restricting its arguments to the
set A (that is, fl4 is a partial or restricted function).
Then f(A) is the projection of the function f|4A onto
a subset of the Y-axis.

The inverse image of the set B contained in Y is the
set f1(B) consisting of all x such that f(x) e B; thus

(13) @/ B)] =[f(2)eB], ie JB)=Faf(@)eB.
(Note: in order to avoid misunderstanding we assume
that A¢ X and B¢ Y.)
For example, for the function given by the equation

y = a2, the set f~1({1}) consists of two numbers: 1 and —1.
Let us note the following formulas:

(14)  f(4,0 4,) =f(4,) v f(4,)
and more generally f(\;F:) = \U:f(Fy),
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(15) f(Al ) Az) c f1(A) a f(Az)
and more generally f((:F¢)C e f(Fy),
fUBy v By) = f(By) v [YB,)

(10) (U G = U f(Gy)

(1n fUBy ~ By) = fHBy) n [TUB,),
UG =N 4G,

(17a) fY(By— B,) = [Y(By)—[(Bs) ,

(18) fff(B)=B it BCfX),

(19) ACf(4).

We shall prove, say, formula (15). Since ([); F;) C I,
we have f([\: Fy) C f(F;) and (15) follows by (6).
§ 5. The operations S(R) and P(R)

Besides the operations |J and [ on functions we
congider the operations S(R) and P(R) on families of
sets. Namely assuming that R is a non-empty family of
subsets of some fixed set A, we denote by S(R) the union
and by P(R) the intersection of all the sets belonging
to the family R, that is
(20) zeS(R)=Vx(reXeR),

(21) zeP(R) = Ax[(X eR) = (z e X)].

We use the same terminology (‘‘union’ and ‘inter-
section’’) here as in the case where R is a family con-
sisting of a finite number of sets: R = {4,, ..., 4,}; for

S(R)y=4,v4,v..UA4,,
PRY=A,nAsn~ ...\ 4,.
§ 6. Additive and multiplicative families of sets
We say that the family R of sets is additive if
(22) (XeR,YeR)=(Xu YeR),
multiplicative if
(23) (X¢R,YeR)> (X YeR),
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subtractive if
(24) (XeR,YeR)=>(X—-YeR).

An additive and subtractive family of sets is multi-
plicative since X ~ ¥ = X—(X— Y). Clearly, the opera-
tions of union, intersection and subtraction performed on
gets belonging to that family do not take us outside it.

ExampLES. The family of finite subsets of a fixed
set A satisfies (22)-(24). Sets which are the unions of
a finite number of closed intervals form an additive family,
but they do not form a subtractive family.

THEOREM. For every family Z of subsets of a set A
there exists

1. a smallest additive family R, such that Z C R,,

2. a smallest multiplicative family R, such that Z C R,,
and

3. a smallest additive and subtractive family of sets R,
such that ZC R,.

Proof. Let us denote by M the totality of all additive
families R which satisfy the condition Z C R (consisting
of subsets of the set 4). Obviously M +# ¢, for the family
of all subsets of the set A is an element of the totality M.
Let us take

(25) R,= P(M).

We shall show that the family R, is additive and that
ZCR,.

Let X ¢ R, and let Y ¢ R;. Therefore (cf. (21)) X ¢ R
and Y ¢ R for every R ¢ M. Since the families R belonging
to M are additive, we therefore have X v Y ¢ R; but
since this last formula holds for every R e M, hence
(cf. (21)) X U Y € R,.

We shall next prove that £ C R,. By assumption we
have ZCR for every Re M. In other words, if X ¢ Z,
then X ¢ R; and therefore X ¢ R,. This means that
X eZ =X eR,, or that ZC R,.
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Finally, the family R, is the smallest additive family
containing the family R, being the intersection of all the
families with this property.

In order to define the family R,, we denote by N
the totality of all multiplicative families R which satisfy
the condition ZC R and we set

(26) R,=P(N).

The proof of the fact that the family R, satisfies
condition 2. is entirely analogous to the preceding proof.
We define the family R, in a similar manner.

Remark. Denoting by Z the family of all the one-
element subsets of the set A, we obtain as the family R,
the family of all finite subsets of the set A.

From this it follows that a necessary and sufficient
condition that the set A be finite is that the family of
all its non-empty subsets be identical with R,. This
equivalence can serve as the definition of a finite set
(which does not refer to the concept of natural number).

§ 7. Borel families

We say that the family R of sets is countably additive
or countably multiplicative if the conditions X, e R for
n=1,2,.. imply that

(27) Un=1 XneR, or [\a=1X.eR, respectively.

(These concepts play an important role in the theory
of probability.)

We shall encounter a rather large number of examples
of families of this sort in the second part of this book;
e. g. the family of closed subsets of the space of real
numbers is countably multiplicative (a closed set is a set
which contains all its accumulation points); the family
of its complements is countably additive. Note that the
family of closed sets is not only countably multiplicative,
it is absolutely multiplicative, i.e. the intersection of an ar-
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bitrary family of closed sets is closed (see Part II, Chap-
ter XI, § 2).

A family of sets is said to be a Borel family if it is
simultaneously countably additive and countably multi-
plicative.

The operations | Jo—; and [s~; therefore do not take
us outside the Borel family.

The following theorem, analogous to the theorem of
§ 6, holds:

THEOREM. To every family Z of subsets of the set A
there exists

1. a smallest countably additive family R, such that
ZCR,,

2. a smallest countably multiplicative family R; such
that Z C R,

3. a smallest Borel family R; such that Z C R;.

In order to prove 1. let us congider the totality U
of all countably additive families R which satisfy the
condition ZC R (and consisting of subsets of the set A)
and let us set R, = P(A). In exactly the same way that
we proved the theorem of § 6, we show that the family
‘R, satisfies condition 1.

The families R; and R; are defined analogously.

Remarks. We also say that the family R; is the
Borel family generated by the family Z. If Z is the family
of all closed intervals then the sets belonging to R; are
called briefly the Borel subsets of the space of real numbers.
It is worthy remarking that all the sets (contained in the
space of real numbers) with which we have to deal in
practice are Borel sets (cf. also Chapter XI, § 6).

§ 8. Generalized cartesian products

Let A,, 4,, ..., 4,, ... be a given infinite sequence of
sets. By the cartesian product of these sets we understand
the set of all infinit¢ sequences of the form

(28) ay, a3y ..., an,..., wWhere a,e A, for every n.
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We denote this set by the symbol
(29) Py A,

The product (29) when A, = &, i.e. when A4, is the
set of real numbers for all », is especially important
in applications. We denote this product by the sym-
bol &% this is the natural extension of the concept of
n-dimensional Euclidean space to an infinite number of
dimensions.

Similarly, if J denotes the interval 0 <t <1, then
J° called the infinite dimensional cube, is the set of all
infinite sequences with terms belonging to the interval J.

We obtain further generalizations of the concept of
cartesian product by considering, instead of sequences,
sets of arbitrary functions whose values are sets. Let F
be a function whose arguments run over the set 7' (5 f)
and whose values are subsets of a fixed set X. Then
the cartesian product

(30) P.F,
is the set of all functions f such that f(t) € F'; (where teT).

Thus we have

(fe PoFy) = N [f(2) e By

As can be seen, when 7' is the set of all natural numbers,
then the sets (30) and (29) are identical. It can also be
easily shown that if F; = X for each ¢ ¢ T, then P, F; = XT.

Exercises
1. Prove the following formulas:
@ N@EnG) =V Fin 6, Ui@Feoe)y=UFolU a,
(b) (VeFeo [V Gr=NusFewGs) c[ 1 (Fro G,
© Ut@n @y cUks Fr a6 = U Fea U6,

@ UtdoFy=a0(iFy, U4 ~F)=4~ U F.

Prove that the inclusion sign cannot be replaced by the equality
sign in formulas (b) and (c).
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2. Prove that if

A;04,0...040>0... and B;2B;>..5Bpd...
then

(a1 (An v By) = (Mnz1 Ano (=1 Ba.
3. Prove that

(Ui F) x (U @) = U (Fix 65)
(M Fe) x (M G) = MNts (Fe x Gs) .

4, If FocF, for n=1,2,..., then
Fo= (Fo—F) o (Fr—Fy) © (Fy—Fg) oo [ oz Fn.
If FyoF,oF,;>..., then
FrmFp) o Fs—F) o oo v (Voo Fo= Fo— [(Fo— Fy) w (Fy—Fa) u .1
5. If (ne1 An ﬂ:oq Bp =0 and B, =1, then

m:o-l An C U;;“;l Ap (Bn—],—Bn) .

6. We define the least upper bound and the greatest lower bound
of an infinite sequence of sets F,, Fy, ..., Fn, ... a8 follows:

LimsupFy = ﬂ:o.o Uz:o Fnirx, LiminfF, = U:‘lo ﬂz:o Foir.
Prove the following formulas:
(a) LiminfA} = (Limsup4,)°,
(b) Liminf(4s ~ Bp) = Liminf Ay ~ LiminfB,,
(¢) Limsup(4n v Bs) = Limsup A» v Limsup Ba,
(@) (a1 4n c Liminf A, ¢ Limsup 4n ¢ Une1 4a,
(¢) LiminfAd, v LiminfBy ¢ Liminf (4, v By),
(fy) Limsup(4n ~ Bys) c Limsup As ~ Limsup Bay,
(g) A-Liminfdy c Limsup(4-=A4a),
(h) A-Limsupd, c Limsup (4 ~A44).
Show that the inclusion sign cannot be replaced by equality
in the above formulas.
7. If LimsupF, = LiminfF,, then we say that the sequence
By, F,, ... converges to the limit
LimFy = Limsup Fy = LiminfFy .
Prove that/
(a) if F,CF,c.., then Une1 Fn= LimFy,

(b) if F,oF,>..., then [ \ne1 Fn = LimF,.
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8. Define the characteristic function fq4 of the set A by the
conditions
if zed,

1
fatw) = { 0 if wed,
and prove the equivalence
(F = LimFn) = (fr(x) = limfr,(x)) .

9. Prove the formulas:

(a) f(A)—F(4s) cf(d1—4,),

(b) f[A ~fXB)]=/(4)~ B,

(c) if A4, c 4,, then f(4,) c f(4,),
(d) if B, c B,, then f™Y(B;) c f4(B,).

10. Let g = f| A (cf. Chapter IV, § 4). Prove that
gUB)=An~fNB).
11. Use the axiom of choice to prove that
(@) NaVp@,y) = Vilag(z, f(@),
® UsNe Fay c NeUy Fog,

(c) if the conditions = # x, and y # y, imply that
FoynFoy, =0

Uvmz F-‘MI = me‘ll me .

12. R being a family of sets, we denote by R, the family of all
sets of the form Z = X— ¥, where X, ¥ ¢ R. Prove that R, c Ry,
and show by an example that the reverse inclusion can be false.

13. Prove that

then

SR, v R,) =8(R,)v8(R,), SR, AR)cSR)ASR,).
Prove that if the elements of R, v R, are disjoint sets, then
S(R,~R,) = S(R)) ~8(R,) .
14. Prove that if R, ~ R, # 0, then
P(R)~P(R,) cP(R,~R;).



CHAPTER V

THE CONCEPT OF THE POWER OF A SET.
’ COUNTABLE SETS

§ 1. One-to-one functions

A function f is said to be one-to-one if to distinet values
of the argument there correspond distinct values of the
function, i. e. if

1) (@, # @) = [f (@) # f(22)]
or, equivalently, if
(2) [f(®) = f(22)] = (@, = @5) .

For example, the function a® is one-to-one (in the
domain of reals) but the function «? is not one-to-one.

Let X be the set of arguments of the function f and
let Y be the set of its values. Then the function f is one-
to-one if it forms a set of pairs {x,y) such that every
element z ¢ X is the predecessor and every y € Y is the
successor of one and only one of these pairs.

Still another way of stating this is: the function f is
one-to-one if for every y ¢ f(X) the set f~(y) reduces to
one element « (such that y = f(x)). In this case we usually
use the symbol f~Y(y) to denote x (and not the set {x})
and we call the function f~! of the variable y the inverse
function of the given function f; Y is the set of its argu-
ments and X is its set of values (or range).

Obviously

(3) ly=f@)]=[z=/"y)].

THEOREM 1. The inverse of a one-to-one function is
a one-to-one function.

For
(4) (fHr=f.
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Geometrically, the transition to the inverse function
can be interpreted (in the case where X and Y each denote
the set of real numbers) as the reflection of the graph
of the function with respect to the line y = .

THEOREM 2. The composition of two one-to-one func-
tions is a one-to-one function.

In other words, if f is a one-to-one mapping of the
set X onto the set Y and ¢ is a one-to-one mapping of
the set Y onto the set Z, then the function h defined by

the condition h(x) = g(f(w)) is one-to-one also.
For, if h(z,) = h(x,), then ¢(f(2)) = g(f(#,)), whence
it follows that f(x;) = f(x,), and consequently x, = x,.
Under the assumption that the function f is one-

to-one, formulas (15) and (19) (Chapter IV, § 4) may be
simplified: we can replace them namely by the formulas

(6) (41~ 4,) =f(4)) ~f(4,)
and more generally f([ ¢ Fe) = f(Fy),

(6) 4 =f7(4).

In the case where f is one-to-one, we have besides
the equivalence (13) of Chapter IV, § 4, the symmetric
equivalence

(7) [€e A] =[f(») e f(4)].
§ 2. Sets having the same power

‘Two sets X and Y are said to have the same power
if there exists a one-to-one mapping of the set X onto Y.

If the set X is a finite set: X = (a;,".., a,), then the
set Y has the same power as X if and only if it has the
same number n of elements. The concept of sets having
the same power therefore coincides, in the case of finite
sets, with the elementary concept of having the same
number of elements; this concept can however be applied
also to infinite sets.
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For example, the set of all odd natural numbers has the
same power as the set of all even natural numbers; in fact,
the function f(n) = n+1 establishes a one-to-one mapping
of the set (1,3,5,...) onto the set (2, 4,6, ...). B

Similarly, the set of all natural numbers is of the
‘same power as the set of all even numbers (which shows
that an infinite set can have the same power as a proper
subset of itself!). Here the corresponding function is the
function f(n) = 2n.

Two intervals a <2 < b and ¢ <z < d are of equal
power, as is easily shown using a linear mapping. The
open interval —=n/2 < 2 < +=w/2 has the same power as
the set of all real numbers; the corresponding mapping
is y = tanw.

Next, we shall show that the set of all natural numbers
has not the same power as the set of all real numbers;
it will follow from this that, in the domain of infinite
sets, there exist sets of different powers, and—as we
shall show—there even exists an infinite number of infinite
sets of which no two have the same power.

We write

X=Y
to express the fact that the sets X and Y have the same
power.
This notation is based on the following theorem:

THEOREM 3. The power relation is reflexive, symmetric
and transitive; 1. e.

(8) X=X,
(9) if X=7Y, then Y=X,
(10) if X=Y and Y =17, then X = 7.

Proof. Formula (8) follows from the fact that the
identity, i. e. the function f(x) = @, is a one-to-one mapping
of the set X onto itself. Formulas (9) and (10) follow
from Theorems 1 and 2, respectively.

/Theorem 3 permits the classification of sets with
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respect to their ‘“‘power”. This leads to the extension to
infinite sets of the elementary concept of the number
of elements in a set. Namely, to each set X we assign
a cardinal mumber, or its power, which we denote by
the symbol X, in such a way that the same cardinal
number is assigned to two distinet sets if and only if
these sets have the same power. (Cardinal numbers play
an auxiliary role in the theory of sets, inasmuch as all
the theorems of set theory ecan be formulated without
using them. However, by making use of them many
theorems gain in lucidity and we are able better to dis-
play the analogy with theorems of arithmetic.)

The cardinal number of a finite set is the number
of its elements.

§ 3. Countable sets

A set A is said to be an infinitely countable set if it
has the same power as the set of all natural numbers;
in other words, if its elements can be arranged in an
infinite sequence of distinet terms.

Finite sets are called countable sets as well.

Hence we can say that a nonvoid set is countable if
its elements can be arranged in an infinite sequence (which
may have repetitions). For, if the infinite sequence con-
tains an infinite number of distinet terms, then there
exists a subsequence which contains each of these terms
precisely once.

As we saw above, the set of even natural numbers
(and similarly the set of odd natural numbers) is countable.

THEOREM 1. The set of all real numbers is noncountable.

To prove this theorem it obviously suffices to show
that for every sequence of real numbers a,, @, ..., Gq, ...
we can define a real number ¢ which does not belong
to this sequence.

To this end, we define a sequence of closed intervals
D141 D292y ++vy Pnfny ... Which are such that

G—Pn=1/3", Pn@nC Pn-1Gn-1; Gn¢ Pndn.
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Thus, in the closed interval [0, 1] we determine the
closed interval p,q, which does not contain the point a,
[this will be one of the three intervals (0, 1/3) or (1/3, 2/3)
or (2/3,1)]. Similarly, in the interval p,q, we determine
a closed interval p,q, of length 1,9 which does not contain
' the point a,. In general, in the closed interval p,—;gn-1
we determine a closed interval p,g, of length 1'3" which
does not contain the point a,.

Let ¢ be the common point of all the closed intervals

Pndn:
{0} = ﬂ;‘;l Prln i.e. ¢=Ilim Pn = lim qn .
n—>00 n—>00

Obviously, ¢ # a, for every = since ay, ¢ p,q, Whereas
C€Prn.

We shall now list several important properties of
countable sets.

THEOREM 2. The union A w B of the countable sets A
and B 18 countable.

In fact, under the assumption that the elements of
the set A can be written in the form of an infinite
SeqUeNnce @y, dgy ...y Gy, ..., and the elements of the set B
in the form of a sequence by, b,, ..., by, ..., We consider
the sequence

(11) @y by Aoy Dyy oevy Gy by ..

The terms of this sequence obviously form the set
A o B.

It follows from this that the set of all integers is coun-
table. For the set of all positive integers as well as the
set of all nonpositive integers is countable.

THEOREM 3. The cartesian product of two (or, more
generally, of a finite number) of countable sets is a coun-
table set.

Proof. We shall prove that the set of pairs {(m, n),
where m and n are natural numbers, is countable. Hence
we have to represent this set as a sequence. To this end,
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we adopt the following rule: of two pairs <(m, =) and
{m',n") we consider that one to be the earlier whose
sum of elements is smaller; but if m+n = m’'+n', then
the earlier pair is the one with the smaller antecedent. And
therefore this sequence can be represented as follows:

‘(12) <17 1>’ <1’ 2>7 <2’ 1>7 <17 3>’ <2’ 2>7 <3’ 1>’

From this we already easily deduce, that having given
two arbitrary infinite sequences a,, @y, ..., Gp, ... and
byy byy eevy byy ..., We can write the sequence of all pairs
{@m, byy in the form of an infinite sequence.

The generalization from two to an arbitrary finite
number of countable sets presents no trouble.

If follows from Theorem 3 that the set of all rational
-numbers is countable.

For, every positive rational number can be represented
as a pair of numbers p/q (in the irreducible form), i. e. the
set of positive rational numbers can be represented as
a subsequence of the sequence (12). The set of positive
rational numbers is therefore countable. The same is true
of the set of negative rational numbers together with
the number zero. Therefore, according to Theorem 2, the
.Set of all rational numbers is countable.

From Theorem 3 it also follows that every double
sequence {am,} can be transformed into a simple sequence,
i. e. it is possible to write down the elements of the array

Qryy Aoy eoey Dipy ooe

alzl, (1/22, seey azn’ eee

A3) . )

a'ml’ amg’ seey amn, s

in the form of the infinite sequence

“(14) Ay Gyzy Gopy Gygy oo

From this we deduce the following theorem:
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THEOREM 4. The union 8§ = A, v A, u ... v Ay ... of
a countable sequence of countable sets is countable.

Proof. We write each of the sets 4,, in the form of
a sequence Gmi, Gmay -y bmny --., a0d then we transform
the double sequence {a,,} into the simple sequence (14)
" (perhaps with repetitions). [Here we apply the axiom
of choice (Chapter III, §7), for the set of sequences
consisting of the elements of the set 4, contains more
than one element (and none of them in general can be
distinguished).]
THEOREM 5. The set of all finite sequences with terms
belonging to a given countable set is countable.

For this set can be represented in the form of a union
A, v A4, u.. 0 Ay v ..., where A, is the set of sequences
with m elements. And the countability of the set A,
follows from Theorem 3.

From this we deduce that the set of all polynomials
with rational coefficients is countable.

For every polynomial is determined by its coefficients,
i. e. the polynomial a,+a,x+ ...+ azx™ is determined
by the sequence consisting of m +1 rational numbers
Aoy Oy y eeey Oy

COROLLARY. The set of all algebraic numbers is countable.

In fact, the set of all polynomials with rational coeffi-
cients is countable and hence we can write it in the form
of an infinite sequence w,, ws, ..., Wn, ... Let 4,, denote
the set of roots of the equation w,(x) = 0; this set, as
is known, is finite (the number of its elements does not
exceed the degree of the polynomial w,). By virtue of
Theorem 4, the set 4;, v 4, u...u Ay v ..., 1. e. the set
of all algebraic numbers is therefore countable.

Remark. This last result together with Theorem 1
leads to the result that transcendental (i. e. nonalgebraic)
numbers exist, and even that there is a noncountable
number of them (for the union of two countable sets is
countable). Making use of the methods given here, one
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could even define a transcendental number; namely, to
this end we set down all real algebraic numbers in the
form of an infinite sequence and then apply the method
used in the proof of Theorem 1, which determines a real
number not belonging to this sequence.

We recall that the numbers e and = are proved to be
transcendental numbers—by entirely different means.

Exercises

1. Consider the transformation of the plane into itself given
by the system of equations

r=aut+bv, y=cutdv.

Give the conditions on the coefficients a, b, ¢, d under which
this transformation is one-to-one.

2. Is the homographic transformation of the Gaussian plane (i. e.
the plane of complex numbers together with the point at infinity)

w = (az+ b)/(cz+ d)
one-to-one?

3. Suppose U, Uy, ..., Un, ... I8 2 given sequence of real numbers.
Let

Un = Cno* Cn1Cn2Cns ...

be the decimal expansion of the number u, containing an infinite
number of digits different from 9.

We define the number I = 0-e,6,6;... in the following way:
en=01if ean # 0, en = 1 if eun = 0. Prove that the number I is not
a term of the sequence u,, u,, ..., and deduce from this Theorem 1, § 3.

4. Prove that the set of all intervals (in the set of real numbers)
with both endpoints rational is countable.

5. We say that a function f (with real arguments and values)
has a proper maximum at the point a if there exists an interval be
containing the point a in its interior such that the conditions
b <wx <c and x # a imply the inequality f(x) < f(a). Prove that
the set of proper maxima of the function f is countable.

Hint: Give the points b and ¢ rational values.

6. Prove that every family of disjoint intervals is countable.

Hint: Make use of the countability of the set of rational numbers.

7. Prove that the set of points of discontinuity of a monotonic
function is countable.
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Hint: A monotonic function has at every point a left and right
limit (which are different at points of discontinuity). Then make
use of Exercise 6.

8. Prove that the set of spheres (in 3-dimensional space) which
have both rational radii and rational coordinates of the center
is countable.

9. A relation wgy is called an equivalence relation if it is reflexive,
symmetric and transitive, i. e. if

wez, (wey)=(yew), (wey) A (yeo) = (%e2) .
Let X be a given set and ¢ an equivalence relation whose
variables range over X. Given an element z, of X, the set
FEo(wox,) is called an equivalence set; the family of equivalence

sets is called the quotient X/p. Show that the elements of X/p are
disjoint and that X is their union.



CHAPTER VI

OPERATIONS ON CARDINAL NUMBERS.
THE NUMBERS a AND ¢

We denote the power of the set of natural numbers
by a and the power of the set of real numbers (the power
of the ,,continuum”) by c.

The numbers a and ¢ are the most important of the
infinite cardinal numbers which occur in analysis and
geometry. So far, we know (Chapter V, § 3, Theorem 1) that

(1) a#c.

The operations on arbitrary cardinal numbers which
we shall now define will interest us primarily in relation
to the numbers a and c.

§ 1. Addition and multiplication

The sum m+n of two cardinal numbers m, n is defi-
ned to be the power of the union of two disjoint sets
which have the powers m and n respectively.

We therefore have

(2) X+Y=X0Y, if X~nY=9y.

We note that for every pair of sets X and Y there
exists a pair of disjoint sets X; and ¥, such that X, =X
and Y1 Y. For, denoting any two distinet elements
by a and b, it suffices to set X, = {a} x X and ¥, = {b} X Y.

Keeping this remark in mind, we can assert that for
every two cardinal numbers their sum is defined uniquely
(i. e. independently of the choice of the sets X and Y).

We define the product m-n of m and n to be the power

of the cartesian product of two sets having powers m
and n respectively, i. e.

(3) X.

S
|.<£

=X X
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Thus, the product of cardinal numbers is uniquely
defined.

It can easily be verified that the above definitions,
in the case where m and n denote natural numbers, are
in agreement with the usual definitions of addition and
multiplication in arithmetic. We deduce from Theorems 2
and 3 (Chapter V, § 3) that

(4) a+a=a, aa=a, a+n=a, an=a,
where n is a natural number.

Multiplication and addition satisfy the associative and
commutative laws. The distributive law is also satisfied:
(5) m-(m4+p)=m-nt+m-p.

For, let m=f, n= Y and pzf where Y~ Z = g.
Then (cf. Chapter IIT, § 4 (18) and (21)):

Xx(YuZ)y=XxYuXXZ,
(XXY)A(XXZ)=XX(Y~Z)=9,

and therefore X x (Y u Z) = X x Y+ X X Z, which was
to be proved.
It follows from this (by induction) that

(6) m-a=m-+m+..+m,

where the right member has » terms.
For formula (6) is obvious for » = 1, and by virtue
of (5):
m-(n+l)=m-n+m-l=m-n+m.

Equation (6) asserts that m-» is the power of the
union of n disjoint sets each of which is of power m. This
theorem can be generalized to the sum of an infinite
number of terms as follows.

Let T =n and let F be a function whose arguments run
over the set T and whose values are disjoint sets of power m,
that is,

(7 Fi=m, F,nFp=0 fort+t,
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then
(8) Uz Fy=m-n.
In fact, let ¢, be a fixed element of the set T and let

g: be a one-to-one mapping of ¥y, onto F; (we apply the
axiom of choice here). Let us set

9) f(x,t) =gx), where xeFy, and tel.

The function f is a one-to-one mapping of the cartesian
product Fy; x T onto the union | J; F;. For let
(10) flw,t) =f(@,t'), ie  gx)=ge().

If ¢ # ¢/, then g(x) # gv(@'), since g(x) e Fy, gy(2') e Fy,
and th\Fg'= 0.

Thus ¢t =t'. If x % 2, then g¢x) # gp(x’), because the
function g; is one-to-one.

Therefore, equality (10) implies that ¢ = ¢’ and « = «'.

We have thus proved that the sets Fy, x T and | J; F,
have the same power. This means that formula (8) is
satisfied.

§ 2. Exponentiation
Let X =m and Y =n. The cardinal number n™ is
defined to be the power of the set, which we denoted

by Y%, of all functions whose arguments run over the set
X and whose values belong to the set Y, i. e.

) I
The following formulas, known from the arithmetic
of natural numbers, are valid:

(11) nm+r = ym. e,
(12) (Mn)P =mP-n?,
(13) (Mm)P = nmp,

In fact, let m=f, n=Y and p=i
In order to prove formula (11), we must prove that

(14) Y*T=Y*x¥Y"T oprovided X~T=9.



OPERATIONS ON CARDINAL NUMBERS 71

Hence, let fe Y7, Denoting by f|X the restricted
function which we obtain from f by restricting the varia-
tion of its argument to the set X and giving an analogous
meaning to the symbol f|T (cf. Chapter IV, §4), we
assign to the function f the pair of functions {f| X, f| T).
This correspondence, as can easily be verified, establishes
a one-to-one correspondence between the elements of the
sets YXT and YXx YT, Thus formula (14) is proved.

Formula (12) means that

(15) (X xY)T=xTxY~.

Let fe (X xY)". Hence the values of the function f
are ordered pairs belonging to X X Y; we can therefore
write

f(t) =<g@),h(t)>, where g(t)eX and h(t)eY.

And therefore g e X* and he Y'. We have thus as-
signed to the function f a pair of functions (g, h), i. e. an
element of the set X7 x Y7, It is easy to verify that this
correspondence is one-to-one. This yields equality (15).

In order to prove (13) we have to show that

(16) (YT = Y7,

Hence let f ¢ YX*7. The function f is a function which
assigns to every pair <{z, ¢t the element f(x, t) of the set Y.
For a fixed ¢t we obtain a function g; of the variable x
defined by means of the formula

gt(w) = f(ma t) ’

i. e. g;e Y%, for every value of the variable {. We have
thus defined a function—let us denote it by g—which
assigns to elements of the set 7' elements of the set Y%,
i. e. ge (Y5

To every function f belonging to the set Y= we
have therefore assigned some function g belonging to the
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set (¥Y%)T. It is easy to prove that this correspondence
is one-to-one.

Let us now congider certain particular cases.

It is almost obvious that

as) nt=n

(in this case the set of arguments reduces to a single ele-
ment).
Let m be a natural number. By (11) and (17) we have

nmtHl=nmr.nl=nm.1n.
And therefore (by induction)
(18) m=n-n-..-n,

where the right hand member has m factors.

It also follows from this that the definition of ex-
ponentiation of cardinal numbers which we assumed
coincides with the arithmetic definition when these num-
bers are finite (m = m, n = n). .

Let us now assume that n = 2. Hence let X = m,
and Y = {0,1} (i. e. Y is the set consisting of two num-
bers: 0 and 1). Hence the set Y¥ is the set of functions
defined on the set X and assuming only two values 0
and 1 (or only one of them). We call such functions
characteristic functions (see Chapter IV, exercise 8);
namely, a function satisfying the condition

1 for zed,

(19) ﬂx)z{o for xeX—A

is the characteristic function of the set A.

The set {0,1}F and the set of all subsets of the set X
are of equal power, namely of the power 2", where m = X.

Proof. Assign to the set A C X its characteristic
function f4. This correspondence is one-to-one. For let
A # B and let a e A— B. Hence we have fy(a) =1 but
fe(a) = 0 and therefore f4 +# fg. Here every characteristic
function has been assigned to some subset of the set X.
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We shall now prove the following theorem:

CANTOR THEOREM. 2™ = m; in other words, no set X
has power equal to that of the family of all its subsets.

Proof. It suffices to show that if F is a function
whose arguments run over the set X and whose values
are subsets of the set X, then there exists a set ZC X
which is not a value of this function. (This is the so-called
diagonal theorem.) The Cantor theorem will follow from this
because if the set X were of power equal to that of the
family of all its subsets, then there would exist a (one-
to-one) function F whose arguments would run over
the set X and which would take on as values all the
subsets of the set X.

Define the set Z as follows:

(20) Z = [alz¢ F(x)].
We have to show that Z # F(x) for every « ¢ X. Let

us assume on the contrary that Z = F(x,). Then by
virtue of (20) the following equivalence holds:
(xeZ)=[x¢F(x)].
Setting « = x, in this equivalence, we obtain
(wo € Z) = [@o ¢ F(2)],
and therefore Z = F(x,). We have thus arrived at a con-
tradiction.

Remarks. 1. The diagonal theorem can be illustrated
geometrically as follows. Let X be the closed interval
0 <x<1. We place the set F(x), which by assumption
i§ a subset of this interval, on the vertical line passing
through the point #. In this way we obtain a planar
set M = [,[y eF(x)] contained in the square X x X.
Let P denote the diagonal of this square. Thus, the set Z
is the projection of the set P—M onto the X-axis.

2*, The proof of the Cantor theorem given above
permits us to verify easily that the family of all subsets
of the set X is not of the same power as that of any of
the subsets of this set.
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It follows trom this immediately that there does not
exist a set of all sets (for the family of its subsets would
itself be one of its subsets).

This same conclusion follows, after all, immediately
from the theorem on the diagonal. For, if there existed
a set X whose elements were all sets then the function F
defined by the condition F(x) =« (i. e. the identity)
would obviously assume as values all subsets of the set X
(since these subsets would be elements of the set X).

Let us add that from the (false) assumption that
‘there exist the set of all sets follows the existence of

Z = [aéa).

However, the existence of the set Z leads immediately
‘to a contradiction (so-called Russell antinomy) because
rxeZ =x¢x, and therefore ZeZ =27¢ Z.

The theorem on the non-existence of the set of all
sets was deduced by us from the axioms given in
Chapter ITI, § 7. The assumption, that for a given set A,
the propositional function ¢(x) (with unbounded domain
of variation for x) determines the set F,p(x)A(xeA)
‘plays an essential role in the formulation of axiom V.
Omitting the expression ze¢ A would lead to a contra-
diction. For, taking as ¢(x) the propositional function
“xis a set”’, we should obtain as an immediate consequence
the existence of the set of all sets which—as we saw—
leads to a contradiction.

Let us note that in the period before the axiomatization
of set theory, and hence in the period of ‘“naive’’ set
theory, it was common to assume as obvious the existence
for every propositional function ¢(x) of the set F.¢(x).
This has led to the contradictions which we already
mentioned above (which were then called antinomies of
set theory), and which have necessitated revising the
foundations of set theory. Consequently there arose an
axiomatic theory of sets (in 1904) which eliminated these
.antinomies.
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§ 3. Inequalities for cardinal numbers

Let X =m and ¥ =n. Let us assume that m <n
if the set X has the same power as some subset of the
set Y. Therefore

(XCY)=(X<Y).

If m<n and m # n, then we write m <mn.
By virtue of (1) we have

(21) a<c.
We can state the Cantor theorem (§ 2) in the form
(22) m < 2m,

In fact, m # 2m, and at the same time m < 2m, since
the set X has the same power as the family of all its
one-element subsets.

It is easy to prove the following formulas:

(23) if m<n and n<p then m<p,

(24) if m<n then m+p<n+p,
(25) f m<n then mp<np,

(26) if m<n then mP<n?,

27 if m<n then pm<p~.

We shall now prove the fundamental Cantor- Bernstein
theorem:

28) ¢ m<n and n<m then m=n.

~ Proof. (We shall make use of some simplifications
which were recently given by M. Reichbach in this proof.)
Let X = m. Since n < m, the set X contains a subset ¥
of power n. But since m < n, the set X is of power equal
to that of some subset of the set Y; i.e. there exists
a one-to-one function f defined on X and such that

(29) fX)CYCX.
We have to define a one-to-one mapping of X onto Y.
Let us set

(80) Z=Y—§ZX), S=ZofZ)oifZ)u..
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(see Fig. 4 in which X is the largest rectangle, Y is the
second in size, f(X) is the third, and so on; X— 8 is the
shaded part).
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We define the function g as follows:

for xe8,

x
(31) g(@) = { flx) for xzeX-—S.

We shall first prove that the following equality holds:

(32) g(X)=Y.
Since S C X,
(33) X=8u(X—8).
And therefore
(34) 9(X) =g(8) v g(X-8) =8 v f(X-8)

by virtue of (31). At the same time (because of (30) and
Chapter IV, §4 (14)):

F8)=HZ) v f{(Z) v fff(Z)w...,
and hence applying to (30):
(33) S=Zuf8).
From this and (34) and (33), we obtain the equalities
9X) =S Uf(X—8) =ZUf(8) v f(X—8) =Zu f(X
but taking (30) into consideration we have

Zv f(X)=[Y—-f(X)]v f(X) =
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We have thus proved formula (32).

It remains to show that the function ¢ is one-to-one.
Since this function (according to (31)) is one-to-one on
each of the sets § and X — S8 individually, we ought to
prove that
(36) 9(8) ng(X—8)=0.

Now by (31) we have
(B7) g(8)=8 and ¢g(X—8)=f(X—-8)=FX)—f(8);
at the same time, f(X) = f(X)—Z because f(X)~ Z = ¢,
and hence

H(X)—f(8) =f(X)=[Z v [(8)]=f(X)—~8
because of (35).

Hence, we have 8~ [f(X)—7(S)] =0, whence for-
mula (36) follows by virtue of (37).

We have thus completed the proof of the Cantor-
Bernstein theorem.

Another form of this theorem, which is frequently
convenient for applications, is the tollowing:

(38) i ACBCC and A=C, then A=B=0C.

The following theorem holds for arbitrary functions:
If X is the set of arguments of the function f, then

(39) f(X)<X.

For, let y ¢ f(X) and let g(y) be an arbitrary element
of the set f(y) [we make use of the axiom of choice
(Chapter IIT, § 7) here]. Since the sets f~(y) for various ’s
are disjoint, the function g determines a one-to-one map-
ping of the set f(X) onto a subset of the set X. From
this follows formula (39).

§ 4. Properties of the number ¢

We have defined the number ¢ as the power of the
set & of all real numbers. Let us note that, as stated
in Chapter V, § 2, every open interval a <x <b is of
power c.
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The interval a < « < b (where a < b) is also of power c.
This follows immediately from formula (28) since

Frla<x<bd)C Fra<x<b)C8E,

and hence
c=Fla<w<b)<[{a<aw<b)<&=c.
Further, we also deduce from formula (28) that
(40) c¢=c¢+n=ct+a=ct+c=mn-c
(n being a natural number);
for (cf. (24)) c<c+n<c+a<c+cand c+c<¢ ¢t
being the power of the set
F0<zx<l)u Fol<z<?2),

which is a subset of the set &.
The generalization to n terms is obtained immediately
by induection.

(41) 2% =¢.
In fact, let A denote the set of all infinite sequences

consisting of the numbers 0 and 1. Therefore A4 = 2%
Let B denote the subset of the set A consisting of sequen-
ces with an infinite number of zeros. To the sequence
t = (%, %5, ...) belonging to B we assign the number

fi) =62+ 8/4+. .. +t2"+..., 1le [ft)=(0.t5...),
and if te A—B we let

f(0) =1+6/2+F8/4+ .. +1,/2" + ..., 1. e f(t) = (1.tt5...)2
(in the binary system of calculation).

It is easy to verify that the function f is one-to-one.
At the same time

EFA0<x<1)Cf(4)CE,

and therefore 4 = f = ¢ by virtue of (38).
We deduce from h1s that
(42) a® = ¢ =",

because (cf. (26)) 2° <a® < ¢® = (2" = 2™ = 2°
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Similarly, we have
(43) nt=c¢ for n>=2.

Formula a* = ¢ = n® asserts that the set of all infinite
sequences whose terms are natural numbers (or whose
terms are 1,2, ...,7n) is of power c.

‘We shall now deduce from (42) that

(44) c¢=c-a=c¢-¢c= "= (" (n is a natural number >1).

In fact
(<cra<er <<t =c.

Let us note that ¢2 is the power of the plane, and more
generally: ¢* is the power of n-dimensional Euclidean
space &". Formula (44) asserts that the set of all infinite
sequences whose terms are real numbers (or the infinite
cartesian product & X & X ...) 8 also of power c.

We now give the last formula dealing with the num-
bers a and c:

(45) 2¢ = ¢ = (°.

In fact, ¢ = (2°)° = 2" = 2° for ac = ¢ by (44).

Let us set 2° = f. By virtue of (22), 2°> ¢; f is there-
fore a cardinal number greater than a and ¢. Formula (45)
asserts that f is the power of the family of all subsets
of the real line (or more generally—of the family of all
subsets of the space &"); it is at the same time the power
of the set of all real valued functions of a real variable
(as well as the power of the set of all functions of a real
variable whose values are natural numbers).

Remark. We now give a more direct proof of the
formula ¢ = ¢ because of its fundamental importance.

Let A be the square determined by the conditions
0<z<1 and 0<y<1. Since 4 =¢, our problem
depends on the definition of a one-to-one real valued
function on the square A (it will follow from this that
¢ < ¢; the inequality ¢ < ¢® is obvious).
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Let us develop the numbers «# and y in essentially
infinite decimal expansions (i. e. containing an infinite
number of nonzero digits):

.’L‘=0.a1a2..., y=0.b1b2...,
and let

(46) f(@yy) =0-a,b,85b; ... anby ...

We must prove that if f(x,y) = f(%,¥), then 2 =%
and ¥y = 7.

Now the development (46) contains an infinite number
of digits which are different from zero; at the same time
no number has two different essentially infinite develop-
ments, and therefore the equality

f(w, y) :O.a1b1a2b2 eee :O.alglazl;z ces :f(i, g)
implies that
0 =1, b1=517 ay=1aqy, by=0b,, ceey

i,e.x=2% and y =7.

Exercises

1. Let R be a family of sets each of which has power ¢ and

let R = c. Prove that S(R) = c.
2. Let Ap=c for n =1, 2, ... Prove that

A, x Ay X oo =¢.

3. Let T =n and F; = m for every t ¢ T. Calculate PF.

4. Prove that a necessary and sufficient condition that the
set A be of power equal to that of one of its proper subsets (i.e. to

some subset distinet from 4) is that a < 4.

Hint: In the proof of necessity take into consideration an element
aeA—f(A), then f(a), ff(a), and so on. In the proof of sufficiency
consider the sequence a,, @, ... contained in A and the function f
defined as follows:

fw)=2 for x#an @m=1,2,..) and f(an) = ant:1.



CHAPTER VII

ORDERING RELATIONS

§ 1. Ordering relations

Definition. Let there be given a set A and a relation
amongst its elements, i. e. a propositional function ¢(xz, y)
of two variables, whose domain of variation is the set A.
We say that this relation establishes an ordering (or
a simple ordering) of the set A [and then instead of
@(x,y) we write £ <y which is read: x precedes y], if the
following conditions are satisfied:

1. if a <b, then the relation b <a does not hold;

2. if a<b and b<e¢, then a<c;

3. if a # b, then either a <b or b<a.

For example, the ‘less than” relation z <y (and
gimilarly the relation x> y) establishes an ordering of
the set of real numbers as well as of each of its subsets.

§ 2. Similarity. Order types

We say that the relation < which orders the set A
and the relation <* which orders the set A* establish
similar orderings if there exists a one-to-one mapping f
(called a similarity mapping) of the set A* onto the set A
which satisfies the identity

@<y) = (f(x) <1 (),

i. e. the element = precedes the element y in the set A
if and only if the element f(z) precedes the element
f(y) in the set A*.

For example, the ‘less than’ relation establishes
a gimilarity ordering of the set of natural numbers and
the set of numbers of the form 1—1/n.

6
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In an analogous way to the way in which cardinal
numbers are assigned to sets, we assign order types to
order relations or as we say, to ordered sets. In this
connection, we assign the same order type to two ordered
sets if and only if they are similar. We lean here on the
reflexivity, symmetry and transitivity of the similarity
relation, i. e.

a) every ordered set is similar to itself,

b) if the set A is similar to B, then the set B is si-
milar to A4,

¢) if the set A is similar to B and the set B is similar
to O, then the set A is similar to C.

We omit the simple proofs of these properties.

The following order types are particularly important:
w—rthe type of the set of natural numbers, w*—the type
of the set of negative integers, n—the type of the set
of rational numbers, and A—the type of the set of all
real numbers (all these sets are considered to be ordered
by the relation ‘‘less than”).

The type of a finite set, consisting of n elements, is
denoted by n.

THEOREM. Every countable ordered set A is similar to
some subset of the set R of all rational numbers (ordered
with respect to the relation ‘‘less than’).

Let us arrange the elements of the set A in a sequence
Gy, Qgy uvy Ay, ... consisting of distinet terms (we assume
that A is infinite; for finite sets the theorem is obvious).

We define a similarity mapping f of A onto a subset
of R, in the following way.

Let f(a,) = 0; f(a,) is defined as an (arbitrary) rational
number which is less than f(a,) if a, < a,, but larger than
f(ay) if a;<<a,. The inductive definition of the number
f(@ns1) is the following: if, in the set A4, a,.; precedes
all the elements a,, a,, ..., a,, then f(a,+,) is a rational
number less than all the numbers f(a,), f(a), ..., f(an);
analogously if a,,, follows all the elements a,, @y, ..., Gy,
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then the number f(a,.;) is larger than all the numbers
f(ay), f(ay), ..., f(ay); finally, if none of these cases holds,
then let a; be the last among those elements a,, a,, ..., @y,
which precede a,.; and let a, be the first among those
which follow a,4;; then let us set

f(@ni1) = {f(ar) +f(am)}/2 .

The function f defined in this way is obviously one-
to-one. Moreover, for every n it is a similarity trans-
formation of the set {a,, @, ..., @41} onto the set
{f(ay), f(as), ..., f(@ny1)}. But from this it follows that
the function f is a similarity mapping of the entire set A
onto f(A). For if a;< a; then, denoting by n 41 the larger
of the two numbers ¢ and §, we deduce from the similarity

of the sets {ay, ds, ..., dpy1} and {f(ay), f(as), ..., f(@n+1)}
that f(a;) <f(a).

§ 3. Dense ordering

We say that an ordering of the set A is dense if an
intermediate element can be found between every pair
of its elements, i.e. whenever a <b then there exists
a ¢ such that a<c¢ and ¢<b.

An example of a dense ordering is the ordering of the
rational numbers (with respect to the ‘‘less than’’ rela-
tion). We add that every countable set with dense order-
ing, without a first and last element, is of type 7. (For
a proof, see Hausdorff, Set Theory, Chapter 3, § 11,
Theorem IV.)

§ 4. Continuous ordering

In order to give a more lucid formulation of the
definition of a continuous ordering we shall introduce
the following auxiliary definitions.

A subset B of an ordered set A is said to be an nitial
interval of A if together with each of its elements x ¢ B
it contains all the elements of the set 4 which precede

r, i. e, if
(y<xeB)=(yeB).
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Given a set ZC A, the earliest element a of the set
A which satisfies the condition

(reZ)= (xS a)

(if it exists) is called the least upper bound ot Z.

Now, let us say that an ordering of the set A is
continuous if it is dense, and [if furthermore, for each
of its initial intervals B which is nonvoid and distinct
from A4 exists a least upper bound.

The set & of all real numbers is of continuous type.
The verification of this fact involves only a different
formulation of the known Dedekind axiom of continuity.

On the other hand, the ordering of the set of rational
numbers is not continuous; in order to convince ourselves
of this fact, it suffices to take as the set B the set of

rational numbers less than 1’2. (We also say that 12
determines a ‘“‘cut’” possessing a ‘“‘gap’® in the set of
rational numbers.)

Remark. The following theorem which we give here
without proof contains the most essential part of the
theory of irrational numbers due to Dedekind.

Let A denote the set of all rational numbers and let K
denote the family of all its initial imtervals which are non-
empty, distinct from A, and which do not possess a last
element. Then the inclusion relation (with the exclusion of
equality ) establishes an ordering of the family K of type A.

Hence, real numbers can be defined as the initial
intervals of the set R of all rational numbers which are
non-empty, distinct from R, and which do not possess
a last element.

Exercises

1. Let X and Y be two subsets of the ordered set 4 such that
XuY=4,X~nY=0and @eX)A(y e Y)=(x<y). We say that
the pair X, ¥ is a cut of the set A.

Prove that if X,, ¥, and X,, Y, are cuts of the set 4, then either
X, cX, or X, cX,.
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2. We say that a family of sets R is monotonic if for every pair
of sets X and Y belonging to R it is true that either X ¢ ¥ or ¥ c X.

A natural ordering of this family is the ordering with respect
to the relation X c ¥ = X.

Prove that every ordered set is similar to some monotonic family
of subsets of this set.

3. Let R be a monotonic family of subsets of the set Z. Prove
that the family of all sets S(X) and P(X), where X cR, is also
monotonic.

4. Give an example of an ordered set which is not of type w,
but which despite this fact possesses a first element and which is
such that to every element there exists an element immediately
following and (except to the first) an element immediately pre-
ceding it.

5. A subset G of an ordered set A4 is said to be dense with respect
to A if between every two elements x and y of the set A there lies
an element z of the set G.

Prove that a set A of type A contains a countable part which
is dense with respect to 4.

6. Let us establish an ordering of the set &2, of all complex
numbers, by assuming that of two complex numbers with distinct
imaginary parts that one is earlier whose imaginary part is smaller
and of two numbers with equal imaginary parts that one is earlier
which has the smaller real part.

Prove that in the set &2 there does not exist a countable part
which is dense with respect to &2.

7. We say that a relation which satisfies conditions 1° and 2°, § 1,
establishes a partial ordering.

Prove that:

(a) every family of sets is partially ordered with respect to the
inclusion relation X c ¥ # X,

(b) the family of all infinite sequences with real terms can be
partially ordered in the following way: we consider the sequence
a4, d,, ... to precede the sequence b,, b,, ... if there exists a k¥ such
that an < by for n > %,

(c) a family of real valued functions is partially ordered by
the relation

(F=29) = Nelf(@) < g@IN(G#9).

8. A partially ordered set is said to be a lattice if the greatest
lower bound and the least upper bound exist for every arbitrary
pair of its elements (the definition of the least upper bound was
given in § 4; the definition of the greatest lower bound is analogous).
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Prove that

(a) the family of all subsets of a given set is a lattice with respect
to the inclusion relation X c ¥ # X,

(b) the family of functions considered in Exercise 7 (c) is a lattice,

(c) the family of all linear subsets of the n-dimensional Eucli-
dean space (i. e. of straight lines, planes, and generally, the spaces
with dimension k¥ < n containing the origin of the coordinate sys-
tem) is a lattice with respect to the inclusion relation; what is the
geometric meaning of the least upper bound of two linear sets?



CHAPTER VIII

WELL ORDERING

§ 1. Well ordering

Definition. We say that an ordering of a set A
is a well ordering if every non-empty subset of the set A
has a first element.

We call the order types of well-ordered sets ordinal
numbers.

ExamprLEs. The set of all natural numbers is a well
ordered set (this follows directly from the principle of
finite induction). Therefore » is an ordinal number. On
the other hand, none of the order types o*, %, 4 is an
ordinal number.

It follows from the definition of well ordering that
every subset of a well ordered set is well ordered. It also
follows that for every element a of a well ordered set
(with the exception of the last element, provided the set
contains a last element) there exists an element b which
is its immediate successor. Namely, b is the first element
of the set [la(a<x).

On the other hand, a well ordered set can contain
an element (which is not its first element), for which there
does not exist an element which is an immediate pre-
decessor. For example, the set consisting of the numbers
1—1/n (n=1,2,...) together with the number 1 is well
ordered, but there does not exist an element in this set
which immediately precedes the number 1.

If the set A is well ordered, then for every initial
interval B which is distinet from A there exists one and
only one element b in A such that

B = [i(x<b).
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Namely, b is the first element of the set A —B. It is
therefore the least upper bound of the interval B if B
does not contain a last element; but if B contains a last
element, then b is the element which immediately succeeds
this element. '

Let us set
(1) Pla) = Fo(x<a).

We have thus established a one-to-one correspondence
between the elements of the set A and the family R
of all initial intervals of the set A which are distinet from 4.

This correspondence expresses the similarity of the
set A and the family R (ordered with respect to the
inclusion relation: X C Y, X # Y).

For if a<b, then x<a=x<3b,i.e. P(a)C P(b); at the
same time P(a) %= P(b) for a ¢ P(b) and a ¢ P(a).

§ 2. Theorem on transfinite induction

Let A be a well ordered set and let p(x) be a propositional
function with argument running through the set A and
satisfying the following condition for every x:

(2)  if Ay <[2)=9()] then ().

Then every element of the set A satisfies the propositional
function @(x), i.e. Nzp(x).

Let us assume that this is not the case, i. e. that the
set Z of elements of the set A which do not satisfy the
propositional function ¢(x) is nonvoid. Let x, be the
first element of the set Z. Therefore

Ny [y < @) = (¥)].
But it follows from this by virtue of (2) that the pro-
position ¢(x,) is true. But then x, ¢ Z.
Remark. The principle of finite induction known from
arithmetic is a particular case of the preceding theorem;
namely, the case where A is the set of natural numbers.

§ 3. Theorems on the comparison of ordinal numbers

Let « and B be ordinal numbers; let a be the order
type of the set A and let B be that of the set B. We write
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a < p if the set A is similar to some initial interval of
the set B which is distinet from B.
We assume the above definition of the “less than”
relation in connection with the following theorems.
THEOREM 1. A well ordered set is mot similar to any
of ts imitial intervals which are distinct from the set it-
self, 1. e.

(3) a<a.

Let us assume the contrary. That is, let us assume
that a function f establishes the similarity of the sets A
and P (a) for some a € A. Since f(a) e P(a) we have f(a)<Za.
Therefore the set

Z = [o[f(r) <]

is not empty. Let x, be the first element in this set. Hence

(4) (@) <,

whence—taking into consideration the fact that the func-
tion f establishes the similarity of the sets 4 and P(a)—
we deduce that

(5) U (@)] < f (o) 5

but then—comparing formula (5) with (4)—we see that x,
is not the first element of the set Z.

THEOREM 2. No two initial intervals of a well ordered
set are similar.

This follows directly from the preceding theorem, for
of two distinet initial intervals P(a) and P(b) one is an
initial interval of the other (depending on whether a <b
or b<<a).

Theorem 2 can also be expressed in the following
manner:

(6) of a<p then p<fa.
Since an initial interval of an initial interval of the
set A is an initial interval of this set, we have:

(1) ifa<pB and <y then a<y.
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We shall now prove the following fundamental theorem:

THEOREM 3. If a # f then a< f or f < a. In other
words, if the sets A and B are well ordered, then either the
set A is similar to an initial interval of the set B or the
set B is similar to an initial interval of the set A.

Proof. We shall denote by P4(x) the initial intervals
of the set A and by Pg(y) the initial intervals of the set B.
We shall write M ~ N if the sets M and N are similar.
We set

(8) X = F2Vy [Pal@)~ Pp(y)].

By Theorem 2, for every « e X, there exists only one
element y such that P4(x)~ Pp(y). Hence we can denote
this ¥ by f(x). Therefore the equivalence

(9) [y = f(w)] = [Pa(x) ~ Pp(y)]

holds for every xe X.

We shall prove that the set X is an initial interval
of the set 4. Let 2’2 ¢ X. We must prove that ' ¢ X.
Since x e X, there exists (by virtue of (8)) a function
which is a similarity mapping of the interval P 4(x) into
the interval Pg[f(x)]; but since P 4(2') is an initial interval
of the set P4(x), under this mapping the interval P 4(x')
goes over into an initial interval of Pg[f(x)], and hence
onto an initial interval of the set B. This means that
¥ e X, i.e. that X is an initial interval of the set A.

Analogously, the set f(X) is an initial interval of the
set B. For by virtue of (9), and formula (12) of Chapter IV,
§ 4, we have

(10) f(X) = EyValy =f@)] = FyVa [Paly) = Pa(x)].

Moreover, as we have already proved, the condition
#'<<x implies that the interval Pg[f(2')] is an initial
interval of the interval Pg[f(r)], and hence that f(x')
<f(x). This means that

(11) X ~f(X).
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It remains to prove that either X = 4 or f(X) = B.
Let us assume the contrary, that X £ A and that
f(X) # B. Since the sets X and f(X) are initial intervals
of the sets A4 and B, there exist therefore elements a ¢ A
and b e B such that

X =Pyla) and f(X)=Pgb).

By virtue of (11) we therefore have P 4(a)=~ Pg(b),
whence it follows by virtue of (8) that a ¢ X, i. e. that
a € P4(a), hence a <a. We have thus arrived at a con-
tradiction.

Theorem 3 implies the following corollary:

THEOREM 4. If the sets A and B are well ordered then
their powers satisfy the trichotomy condition, 1. e.

either A==§, or Z<§, or B< 4.
A question of fundamental significance which arises

here naturally is: can every set be well ordered?
We shall consider this question in § 7.

§ 4. Sets of ordinal numbers

We shall use the following notation:
(12) I'(a) = Fo(§ <a).

THEOREM 1. The set I'(a) is well ordered (with respect
to the “less than’ relation) and the order type of this or-
dering s a.

In fact, let A be a well ordered set of type a and
let 7(x) for x € A be the order type of the interval P(x).

The function 7 establishes the similarity of A and I'(a).
For if ', then the set P (') is distinet from P(x) and
is an initial interval of P(x), and hence (cf. Theorem 1,
§3) 7(z') < v(w). At the same time every element & of
the set I'(a) is a value of the function z. For let & € I'(a),
i.e. £ < a; by virtue of the definition of the ‘“less than”
relation for ordinal numbers, a set of type & is similar
to some initial interval P(x') of the set A; and hence
&=1(x').
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THEOREM 2. Every set of ordinal numbers is well ordered
(by the “less than’ relation ).

It suffices to prove that every non-empty set @ of
ordinal numbers contains a least number. Let ae®.
If a is not the least number of the set @ then the set
@~ I'(a) is nonvoid and therefore, being a subset of the well
ordered set I'(a), it contains a least number f. The num-
ber B is the least number of the set @. For if & e [O—I'(a)]
then &> a and hence &> 6.

THEOREM 3. For every set @ of ordinal numbers there
exists an ordinal number which is greater than every number
of this set.

Namely, such & number is a-+1, where a is the order
type of the set

Y=\Je I'(§) where ¢£e¢@,

and a+1 denotes the type of the set ¥u {a} (cf. § 6).
In fact, for every & the set I'(£) is an initial interval
of the set Y. If I'(§) =¥, then & = a (by virtue of
Theorem 1); and in the contrary case & < a. Therefore
for every & we have £ < a+1.
THEOREM 4. There does mot exist the set of all ordinal
numbers.

§ 5. The number Q

Definition. Let us denote by Z the set of all order
types of countable well ordered sets and by £ the order
type of the set =.

By Theorem 2 of § 4, 2 is an ordinal number. |

We shall prove that

(13) E=IQ).

By virtue of Theorem 3 there exists an ordinal num-
ber a greater than every number of the set Z. Therefore
ECTI'(a). At the same time Z is an initial interval of the
set I'(a). For let &' < £ e 5; & is therefore an order type
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of some subset of a countable well ordered set (of type &);
this subset is obviously countable and hence &' e5.

Since £ is an initial interval of I'(a), there exists (cf. (1))
a number y < a such that & = I'(y). In order to prove
formula (13) it remains to show that y = 2. But this
follows immediately from the definition of the number 2
and from Theorem 1, § 4, by virtue of which the set I'(y)
has the type y.

The set I'(2) is noncountable, i. e.
(14) I'2)>a.

In fact, if the set I'(2) were countable, then its order
type would belong to Z, i. e. 2 € 5, whence by (13) we
should have 2 e I'(2), i. e. 2 < Q which is impossible.

Remarks. The cardinal number I'(2) is denoted by
the symbol 8, (‘aleph’ 1). Hence we have x, > a, as well
as ¢ > a (Chapter VI, § 3 (21)). However, as is clear, we
arrive at the number 8, by entirely different reasoning
than that used to arrive at the number c¢. Are these
numbers equal? This is a problem which has not yet
been resolved. The hypothesis asserting that

(15) R =¢

is called the continuum hypothesis.
Let us note that 8, ¢s the number immediately following
the number q, i. e. if m <§; then m < a.

In fact, let A = m. According to our assumption, A
is of power equal to that of some subset B of the set =.
Let f denote the order type of the set B. Therefore the
sets B and I'(f) are similar and hence of equal power,

i e. F(ﬂ) m. It follows from this that §< £, for in the
contrary case we should have 2 < 8, whence I'(Q) C I'(B),

and therefore x, = P(.Q) I’(ﬂ) m contrary to assump-
tion. It follows from the inequality g < 2, by the defi-
nition of 2, that the set B is countable, i. e. m < a.
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§ 6. The arithmetic of ordinal numbers

Let a and § be two ordinal numbers (or more generally,
two order types). Let A and B be two sets with order
types a« and p, respectively; let us assume also that
A ~ B = ¢ (see Chapter VI, § 1, concerning the possibility
of making such an assumption). Let us establish an
ordering of the set A w B by assuming that every element
of the set A precedes every element of the set B and
that in the domain of each of the sets A and B indi-
vidually the ordering does not change.

We denote the order type of the se¢ A v B by a-§p.

‘We shall prove that, under the assumption that a and
are ordinal numbers, a-+f is also an ordinal number.

We have to prove that the set A « B with the above-
established ordering of its elements is well ordered. Hence,
let  # XCAoUB. If X~ A +# (), then—since the set A
is well ordered—the set X ~ A contains an earliest element;
this element is the earliest element of the entire set
X = (X n A) u (X ~ B), inasmuch as it precedes, by the
definition of the ordering of the set A v B, each of the
elements of the set X ~ B.

Now, if X ~ A = ¢, then X C B and therefore there
exists an earliest element in the set X.

EXAMPLES. a+1 > o whereby a +1 follows immediately
after a. The number w + w is the type of the set of numbers
of the form 1—1/n together with the numbers of the
form 2—1/n where n = 1, 2, ... Let us note that 1+ o = w;
and hence addition is not commutative.

We denote by a- f the order type of the cartesian product
A X B ordered as follows:

Kz, 1> <L, w] =y <L)V ((y =o)a(@<L3u)].
Under the assumption that a and B are ordinal numbers,
a-f is also an ordinal nmumber.
For, let 9 # ZC Ax B. Let Y denote the projection
of the set Z onto the B-axis. Hence we have ¢ = Y C B.
Let b be the earliest element of the set B and let
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X = F,[{x, b) € Z]. Finally let a be the first element of
the set X. It is easy to verify that <{a,d) is the first
element of the set Z.

ExXAMPLES. 2. w is the order type of the cartesian
product {1, 2} xJ (where J is the set of natural numbers)
ordered as follows:

1,13, 42,15, 41,25, {2, 25, ...,
and hence 2- v = w.

On the other hand, w-2 = w4+ w is the order type
of the product J x{1,2} (see the example given above).

As we see, multiplication is not commutative.

- w is the type of the set of all numbers of the form
k—1/n where k=1,2,... and n =1,2, ...

Instead of w-w we write w? In general, o®+! = a”- a.

We denote by a» (for a > 1) the least of the numbers
which are larger than any of the numbers a® where
n=1,2,..

More generally, the definition of exponentiation, and
of many other operations, can be introduced with the
aid of the concept of limit. Namely, let 1 be a limit ordinal
(>0), i. e. a number which does not possess an immediately
preceding number; let ¢ be a function which assigns to
every number £ < A a certain ordinal number ¢(&). We
denote by

limg(§)

&<
the least of the numbers which are larger than all the
numbers ¢(§).
We then define the power of (for a > 1) with the aid
of the formulas

1. a®=1,
2. @l =af. q,
3. at =]jma$’

where 1 is a limit ordinal (cf. the theorem on the defini-
tion by transfinite induction, § 7).
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The arithmetic of ordinal numbers forms at present
a well established theory which we shall not consider
any further here. (See e. g. W. Sierpiriski: Legons sur
les nombres transfinis, Paris, 1950, Chapter X; Cardinal and
ordinal numbers, or F. Hausdorff, Set theory, ChapterIIL.)
The facts from this theory, which we gave above, have
mainly as objective to make it easy for the reader to
recognize the types of well ordered countable sets; all these
types can be obtained with the aid of sets of real num-
bers (or even with sets of rational numbers).

§ 7. Theorem on the possibility of well ordering an arbi-
trary set

We shall deduce this theorem, which is of fundamental
importance for the theory of sets (cf. e. g. Theorem 4, § 3),
from the axiom of choice. To this end, we shall prove
first of all, the following theorem which is a generalization
of the axiom of choice.

GENERAL PRINCIPLE OF CHOICE. For ecvery set A there
exists a function e which assigns to every mon-empty subset
of the set A one of its elements, i. e.

(16) e(X)eX for every ¢#XCA.

Proof. Let F(X) = {X}x X, i. e. the set F(X) con-
sists of ordered pairs of the form <(X,x)> where re X.
Let R denote the set of values of this function, i. e. the
family consisting of all the sets F(X), where ¢ # X C A.
This is a family consisting of nonvoid disjoint sets. On the
basis of the axiom of choice (Chapter ITI, § 7), there
exists therefore a set consisting of elements, one chosen
from each of the sets belonging to R; this set is the
desired function e.

ZERMELO THEOREM. For every set A there exists a rela-
tton which establishes its well ordering.

Proof. Let us take into consideration the ordinal
numbers f# with the following properties: there exists
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a function f; whose argument runs over the set I'(8+41)
and which satisfies the equalities

(A7) f4(0) = e(A4), fa(&) = e[A—fo(I"(8))] for &< B;
in particular

(1) = e[A — {e(4)}],

fA2) = e(4 —{e(4), e[A—{e(4)}]}) .

The function f; is one-to-one. For if & < & < B, then
&' e I'(£) and hence fs(&') € fo(I'(€)) but f5(&) e [A—Fs(I"(8))]
by (16) and (17).
It follows from this that the set of values of the
~function fg, i. e. the set f5(I'(8 +1)), is of order type g+1.
Hence, as it is seen, the numbers g form a subset @
of the set of all order types of subsets of the set A which
can be well ordered. By virtue of Theorem 3, § 4, there
exist ordinal numbers which do not belong to the set @.
Let a be the least of them. Therefore, there does not exist
a function f, satisfying conditions (17) (where we replace
f by a), and on the other hand, for every g < a, there
exists a function f; which satisfies these conditions.
We shall prove that the set A can be well ordered,
its order type being o.
To this end, let us first note that if 8’ < 8 and the
function gs- has the set I'(f’+1) for its set of arguments
and satisfies conditions analogous to those of (17), i.e.

(18) gp(0) = e(4), gp(£) = e[A—gp(l'(£)] for &<p,
then for each & < ' the equality

(19) 95(&) = f5(§)
is satisfied (this means that, in the case where g’ = g,
the function f, is uniquely determined and that in the
case where p’ < f, the function f; is an extension of
the function fg).

In.fact, let us denote by ¢(£) the propositional func-
tion (19), taking the set I'(8’ +1) for its set of arguments.
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Let us apply to this function the theorem on trans-
finite induction (see § 2 where we substitute I'(8'+ 1)
for A). Hence let us assume that for given & < g’ the
condition y < & implies that g,,/ = fg(y) and therefore
that gg(I'(£)) = fs(I'(&)), which in turn, by virtue of (18)
and (17), implies (19). By virtue of the theorem on trans-
finite induction, equality (19) holds for every & < p'.

Let us assume that

(20) F(B) = fo(B)
holds for every f < a.

In order to show that the set A admits a well order-
ing of type a, it obviously suffices to prove that the
function f is one-to-one and that its set of values coincides
with 4.

Hence, let g’ < B. As we proved (cf. (19)) fz(&) = fs(&)
for every & < f’, and hence fz/(f’) = fs(p’) in particular.
But since the function f; is one-to-one, we therefore have

fs(B") # fo(B), 1. e. f(B') # [(B).
It remains to prove that f (F(a)) = A. Let us suppose

that A—j(I'(a)) # 6, and define the function f, as follows:
fuB) =F(B) for p<a and fa) =e[A—fo(I'(a))].

As can easily be seen, the function f, so defined satisfies
condition (17) if we replace # by o in it. But this con-
tradicts the definition of the number .

*Remarks. The Zermelo theorem can be deduced
from the following theorem (which could be stated in
a still more general form):

THEOREM ON DEFINITION BY TRANSFINITE INDUCTION.
For every set A, for every number o and for every function h
which assigns to subsets X of the set A elements of the same
set, t.e.

(21) h(X)ed for XCA,
there exists a function f defined for every & < o and satis-
fying the condition

(22) f(&) = n{f(r'(&)) -
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Sketch of the proof. Let the set A and the func-
tion h be given. Let us assume that the theorem is false
and that a is the least number for which there does not
exist a function f satisfying condition (22). Therefore for
every f < athere exists a function f satisfying the condition

(23) fo(8) = h{fs(I'(8))  for &<B.

We can prove—in a manner analogous to the preceding
proof—that the function f; is uniquely determined. The
function f defined by means of the formulas

J(B) =fs(p) for B<a and  f(a) = h{f(I'(a))),

then satisfies the conditions of the theorem—contrary
to our assumption.
Hence, our theorem has been proved.
In order to deduce the Zermelo theorem from it we
substitute
h(X)=e(A—X) for X #A4,

and we denote by h(A4) an arbitrary element of the set A.
We denote by @ the set of numbers g for which there
exists a function f; satisfying condition (23) and the
inequality fs(I'(8)) # A. We assume that a is the least
number which does not belong to the set @. Then
f(I'(a)) = A, whence it easily follows that the set A4
can be well ordered, its order type being a.

Exercises

1. Prove that the conditions a < £ and f < imply that
a+f <2 and a*f < Q.

2. Every ordinal number is of the form 4+ n, where 4 is a limit
ordinal and n is a natural number or zero.

Hint: Make use of the fact that in a well ordered set there does
not exist an infinite sequence of the form a, >a, > a3 & ...

3. Prove the following implications:
(@) (@<p)=@+a<y+h),
(d) (@ <p)=(aty <p+y).
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Does the condition B > 0 imply the inequality y < g+ yt
4. Prove the distributive law:
a*(B+y)=a ftay.

Show by means of an example that the formula (8+y)-a
= f+a+y-a is not true.

5. Prove that if @ > B then there exists one and only one ordinal
number y such that @ = f+y (we call the number y the difference
a—p of the numbers a and f).

6. Prove that for every two ordinal numbers a # 0 and g there
exists a pair of numbers é and ¢ < a such that

f=ad+o.

Here the numbers & (quotient) and @ (remainder) are uniquely
determined.

7. A tramsfinite sequence of type { is a function whose set of
arguments is the set I'(() and whose values are ordinal numbers.
A transfinite sequence ¢ is said to be continuous if for every limit
ordinal y < ¢ the following equality holds:

@(y) = limg(§) .
&<y

Prove that the transfinite sequences ¢ (£) = a+ £ and ¢(&) = a* &
(for a > 0) are increasing and continuous.

8. Prove that every increasing transfinite sequence ¢ satisfies
the inequality & < ¢ (&) for every &.

Hint: Assuming that the theorem is false, denote by a the least
number such that ¢(a) < a.

9. Let ¢ be an increasing continuous transfinite sequence. Let
us form the sequence

o =a, a; = @(a), ey an = @(an—1),

Let » =lim an. Prove that ¢(x) = x (under the assumption
n<w
that the numbers under consideration belong to the domain of

arguments of the function ¢).

10. The number » in Exercise 9 is said to be a critical number
of the sequence @. Find the critical numbers of the sequences

p@) =a+é, @) =at @@ =d.

11. Making use of the generalized principle of choice (see § 7)
prove that every infinite cardinal number m satisfies the inequality
m=a.
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INTRODUCTION TO PART I

Topology is the study of those properties of geometric
configurations which remain invariant when these con-
figurations are subjected to one-to-one bicontinuous trans-
formations, or homeomorphisms (see Chapter XII, § 3).
We call such properties topological invariants. For ex-
ample, the property of a circle to separate the plane into
two regions is a topological invariant; if we transform the
circle into an ellipse or into the perimeter of a triangle,
this property is retained. On the other hand, the property
of a curve to have a tangent line at every point is
not a topological property; the circle has this property
but the perimeter of a triangle does not, although it
may be obtained from the circle by means of a home-
omorphism.

As can already be seen from the above example
topology operates wilh more general concepts than ana-
lysis; differential properties of a given transformation are
nonessential for topology, but bicontinuity is essential.
As a consequence, topology is often suitable for the
solution of problems to which analysis cannot give the
answer.

The generality of topological methods rests not only
on the generality of the assumptions concerning the trans-
formations considered but also on the generality of the
sets considered to which these transformations are applied.
These can be arbitrary point sets on the real line or in
the plane, or in n-dimensional space, or still more general
sets, provided only that they be sets for which—roughly
speaking—it is possible to define the concept of closed
set, i.e. provided that they are topological spaces. This
generality has not only a methodological significance; in
modern mathematics there is a characteristic tendency
to confer upon the set of objects considered in a gi-



104 SET THEORY AND TOPOLOGY

ven investigation (be these functions, sequences or
curves) a topology, and hence—to a geometrization or
rather to a topologization—of the investigation. This
gives rise to numerous applications. Thus, e. g. theorems
on the existence of a solution of certain types of dif-
ferential equations can be expressed as theorems on
the existence of invariant points of a function space
(the space of continuous functions) under continuous
transformations; these theorems can be proved by topolo-
gical methods in a more general form and in a simpler
way than was formerly done without the aid of topo-
logy.

How much more general ought the spaces considered
in topology be in order that they suffice for applications
and yet, because of undue generality, they do not
become too artificial? The answer to this question depends
on the aims which a given topological work is to serve.
Because of the limited scope and elementary character
of this book it seemed appropriate to limit ourselves to
the spaces called metric (whose definition is given in
Chapter IX, §1). Their generality is sufficient for the
majority of important applications; in particular, subsets
of m-dimensional Euclidean space, sequence spaces (of
Hilbert and Fréchet), and the space of continuous func-
tions are metric spaces; at the same time, the very concept
of a metric space is especially simple and geometrically
clear.

In Chapters IX-XII we give the fundamental concepts
with which we must deal in all parts of topology. The
reader knows many of these concepts from analysis, in
relation to the space of real or complex numbers (such
as accumulation point, neighborhood, closed set, and so
on); this refers especially to Chapter XII which contains
theorems on continuous functions. Theorems known from
analysis, e. g. on uniform continuity, uniform convergence,
the Darboux property, are proved here (and in Chapters XV
and XVI) under significantly more general hypotheses.
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This permits us to recognize the proper extent of these
theorems (which also is of didactic significance).

In the further chapters (XIIT-XVIII) we gradually
confine ourselves to more specific spaces: we give the
important properties of separable spaces (still embracing
the majority of spaces arising in applications), complete
spaces (with the Baire theorem and its consequences),
compact spaces (which form the generalization of closed
bounded subsets of Euclidean space), connected spaces
(connectedness is the precise statement of the concept of
the continuity of a set) and locally connected spaces (as
it turns out, curves, surfaces, multi-dimensional varieties
or manifolds, with which we have to deal in differential
geometry are as a rule locally connected continua).

Chapter XIX contains results from dimension theory.
The concept of dimension—even though it dates from
antiquity (it appears already in Euclid’s Elements)—was
properly defined only in recent times and this thanks
to the use of topological methods. The limitations imposed
on the present volume have forced us to refrain from
giving some of the proofs.

We shall concern ourselves in more detail with the
properties of the n-dimensional simplex, which is the
fundamental concept of classical multi-dimensional geo-
metry, in Chapter XX. In particular, we give a proof
of the renowned fixed point theorem, due to L. E. J. Brou-
wer, which has such extensive applications in the theory
of differential equations.

Chapter XXI contains, in a very general outline, an
introduction to homology theory which forms a fundamen-
tal part of algebraic topology (for more details, see the bib-
liography at the end of this Introduction). The latter has
various applications in differential and algebraic geometry,
the calculus of variations, and in other branches of ana-
lysis. This chapter depends on Chapter XX (viz., on the
concept of simplex), in contrast, however, to the other
chapters of this book, use is made here of algebraic con-
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cepts, especially from the theory of groups. This is the
origin of the name algebraic topology in contrast to
set-theoretic topology, in which we make use of the con-
cepts and theorems of set theory. Worthy of remark is
the relation of the individual branches of mathematics
which we observe here: topology, being a powerful tool
for functional analysis and for various branches of classical
analysis, which in its turn is connected, because of its
applications, with technology and the natural sciences,
itself makes use of the methods of algebra and the theory
of sets.

Finally, the last chapter, XXII, conceptually closely
related to geometry, concerns theorems on the separation
of the plane. Here is given a detailed proof of the Jordan
theorem which is a clagsical theorem of analysis.

In its initial stages, set-theoretic and algebraic topology
developed entirely independently and possessed com-
pletely different thematic. Set-theoretical topology, for-
merly called the theory of point sets, and concerning
arbitrary subsets of FEuclidean space, was begun by
G. Cantor, the creator of the theory of sets (circa 1880).
Algebraic topology was created by H. Poincaré in the
last years of the past century; its objects were n-dimensional
polygons and polyhedra. Some reconciliation of these two
theories came rather late, about 35 years ago; this was,
to a large degree, the work of P. S. Aleksandrov. This
period was preceded by the transition from the investiga-
tion of subsets of Euclidean space in set-theoretic topology
to the investigation of arbitrary topological spaces. This
extension of the thematics of topology appeared to a signi-
ficant degree in connection with the new mathematical
investigations concerning the concept of function space
and infinite-dimensional spaces introduced by Hilbert.

In the last thirty years or so there has appeared an
unusually rich flourishing of topology; many fundamental
problems of topology have been solved and new methods
developed. Topology, which until recently was a conglo-
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meration of loosely related theorems, became a systematic

science, and topological methods penetrated into many

other domains of mathematics.
We can recommend the following books to the reader

who wishes to increase his knowledge of topology:

P. 8. Aleksandrov, Combinatorial Topology, Graylock,
Rochester 1956 and 1957.

P. 8. Aleksandrov and H. Hopf, Topologie, I, Ed-
wards, Ann Arbor 1945.

N. Bourbaki, Topologie Générale, Actualités Scientifi-
ques N 1045, 1084, 1142, 1143, 1235, Paris 1949-1958.

S. Eilenberg and N. Steenrod, Foundations of Algebraic

. Topology, Princeton 1952.

F. Hausdorff, Set Theory, Chelsea, New York 1957.

W. Hurewicz and H. Wallman, Dimension Theory,
Princeton 1948.

J. L. Kelley, General Topology, Van Nostrand, New
York 1955.

K. Kuratowski, Topologie, Monografie Matematyczne,

Warszawa-Wroclaw, vol. I, fourth ed. 1958, vol. IT,

third ed. 1961.

Lefschetz, Introduction to Topology, Princeton Univ.

Press, Princeton 1949.

M. H. A. Newman, Elements of the Topology of Plane

G

2

Sets of Points, Cambridge Univ. Press, Cambridge 1952.
. Nobeling, Grundlagen der Analytischen Topologie,

Springer, Berlin 1954.

L. 8. Pontrjagin, Topological Groups, Princeton Univ.
Press., Princeton 1939.

L. 8. Pontrjagin, Foundations of Combinatorial Topology,
Graylock, Rochester 1952.

H. Seifert and W. Threlfall, Lehrbuch der Topologie,
Chelsea, New York 1947.

W. Sierpinski, General Topology, Univ. of Toronto Press,
Toronto 1952.

A. H. Wallace, An Introduction to Algebraic Topology,
Pergamon Press, London 1957.
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G. T. Whyburn, Analytic Topology, Coll. Public., New
York 1942. X
R. L. Wilder, Topology of Manifolds, Coll. Public., New

York 1949.

We wish to quote also the following elementary books:

E. M. Patterson, Topology, Interscience Publ., New York
1956.

G. L. Spencer and D. W. Hall, Elementary Topology,
John Wiley, New York 1955.

R. Vaidyanathaswamy, Treatise on Set Topology, Part I,
Indian Mathematical Society, Madras 1947.



CHAPTER IX

METRIC SPACES

§ 1. Metric spaces

Definition. A set X is said to be a metric space if to
every pair of its elements, i. e. to every pair of points z,y
belonging to the set X, there is assigned a real number
lx—1vy| = 0, called the distance from the point x to the point vy,
which satisfies the following three conditions:

(1) le—y| =0 if and only if v =1y,
(2) le—y| = ly—af,
(3) le—yl+ly—2l = lo—2|;

the last condition is the so-called triangle inequality.

It follows immediately from this definition that every
subset of a metric space is itself a metric space (the defi-
nition of distance remaining the same).

ExamprLEs. 1. Every set of real or complex numbers
forms a metric space if the distance between two num-
bers z and y is understood to be the absolute value of
the difference of these numbers. This justifies the symbol
we are using for the distance.

2. Buclidean n-space, &", whose points are sequences
of n real numbers (x,, @,, ..., @), i8 a metric space under
the usual definition of the distance from the point
& = (®y, Xay «..y L) t0 the point ¥y = (¥1, Y2y ..., Yun) given
by the Pythagorean formula

n

(4) o—yl = { lo—yie}™.

t=1

This same formula “metrizes” the cartesian product
X; X XX ... x X, of any n metric spaces, X, X, ..., Xa.



110 SET THEORY AND TOPOLOGY

3. Hilbert space. This space is the set of all sequences
of real numbers ¥ = (x,, %3, ..., &, ...) sSuch that the series
D' a2 is convergent. Here the distance between two such

=1
sequences is understood to be

o]

(5) o—yl = Dlwi—yi}"

t=1

4. The set of continuous real valued functions defined
on the closed interval 0 < x < 1 forms a metric space if
the distance between two functions f and ¢ is defined
by the formula

(6) |f—gl=sup|f(®)—g(x)], where O0<x<1.

5. An arbitrary set can be considered to be a metric
space if we assume that the distance between each pair
of distinct points is 1.

§ 2. Diameter of a set. Bounded spaces

The least upper bound of the distances lz— y| between
all pairs of points  and y in the metric space X is called
the diameter of the space X and is denoted by the symbol
6(X). If X is a circle or a sphere, then its diameter é(X)
is the diameter in the usual sense.

Metric spaces with finite diameter are said to be
bounded.

For example, the closed interval 0 < 2 < 1 is bounded.
The same is true of a square and the n-dimensional cube.
On the other hand, the half-line x > 0, the real line, and
the space &" are examples of unbounded spaces.

§ 3. The Hilbert cube

Under the assumption that the spaces X;, X5, ceey Xony -e
are uniformly bounded (i.e. the upper bound of their
diameters is finite; see also Chapter XII, § 4, Remark), we
define the distance between two points @ = (21, X3, ...,
Tmy ...) a0d ¥ = (Y1, Y3y ...y Ym, ...) Of the infinite cartesian
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product X; x X, X ... X Xp X ... by means of the formula

.

(7) w—yl = > (1/2™)|tm— Y

We shall leave it to the reader to prove that the
distance defined in this way satisfies conditions (1)-(3),
i. e. that the space X, x X, X ... is metric.

We denote the closed interval 0 <2 <1 by J. The
space H =T xT x... is called the Hilbert cube; it is
a space all “coordinates” x,, of whose points x = (2, @,, ...,
Zp, ...) are contained in the closed interval [0,1]. The
space &, or the infinite power of the closed interval [0, 1],
is clearly the natural generalization of the »-dimension-
al cube.

Exercises

1. Let &2 be the complex number plane; for points 2, 2" ¢ &2
(where z # 2’) let ||z—2’|| be defined as follows: in case the line 2z’
goes through the origin of the coordinate system, take ||z—=z’||
= |2—2’|, and in the contrary case take ||z—2’|| = |2|+|2’|, where
|2| denotes as always the absolute value of z.

Prove that the function ||z—2’|| can be treated as the distance
of z from 2/, i. e. that it satisfies the conditions of a metric space.

2. Show that if the sets A and B are not void and if 4 c B,
then d(4) < d(B).

3. Prove the inequality

6(4 uB) <d6(4)+6(B)
under the assumption that 4 ~ B # 0.

4. Let X be a metric space and let a ¢ X. We assign to each

point p e X the function f, defined as follows:

fo(@) = |&—p|—|o—al;
prove that |fp—fo| = |p—g|, where the distance between functions
is defined by means of formula (6).

5. Let X and Y be two metric spaces. Let @ denote the set
of all bounded functions which map the space X into subsets of
the space ¥ (we say that the function fis bounded provided that
the diameter §[f(X)] is finite). Prove that if we define the distance

|f—g| for f, g € @ by means of formula (6), the set @ becomes a metric
space (i. e. that conditions (1)-(3) are satisfied).



CHAPTER X

LIMIT OF A SEQUENCE OF POINTS.
CLOSURE OF A SET

We define the concept of the limit of a sequence of
points, which is a fundamental concept in topology, by
making use of the concept of the limit of a sequence of
real numbers which is known from elementary analysis.

§ 1. Convergence of a sequence of points

Definition. A sequence of points p,, s, ..., Py ... Of
a metric space is convergent to the point p of this space
if the sequence of real numbers |p,—p| is convergent
to zero. We then call the point p the limit of the sequence
D1 D2y +-- 3 Pny --- a0d We write p = hmpn

Using the symbolism of logic, we erte this definition
in the following form:

(1) (,l‘l;rgpn =p) = (h'mlpn—p\ =0)
(2) = AV An[(n> k)= (Ipoa—p| <e)].

The definition of the convergence of a sequence of
points in a metric space can be given in another form,
very suitable for considerations in the sequel, by in-
troducing the concept of sphere.

An (open) spherical neighborhood of p with radius
¢ > 0, or more briefly K(p, ¢), is the set of points x whose
distance from the point p is less than e:

(3) K(p, ) = F(le—p| <e).

In the space of real numbers an open spherical neigh-
borhood is an open interval and in the plane it is a circular
disk without the boundary. Hence our terminology cor-
responds to Euclidean 3-space.
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§ 2. Properties of the limit

THEOREM 1. A necessary and sufficient condition that
limp, = p, s that every spherical neighborhood K of p
zmains all the points of the sequence py, Py, ..., with perhaps
the exception of a finite number (i. e. there exists a & such
that p, e K for all n> k).

In order to prove this we substitute p, ¢ K(p, ¢) into
formula (2) instead of |p,—p| < ¢ (which we can do by
virtue of (3)).

THEOREM 2. Every convergent sequence is bounded; in

other words: the set of terms in a convergent sequence is
bounded.

For let p = limp, and let Z be the set of terms of the
n—>00

sequenee Py, Pay ...y Puy ... By virtue of our assumption
there exists a k¥ such that for n > k we have |p,—p| < 1.
Let ¢ denote the maximal of the k41 numbers
[P1—pl, 1D2— Dl ooy IPa—pl, 1
Hence we have |p,—p| < ¢ for every n. Therefore

[Pr—DPm| < |Pu—pl+1P—Pml| <20, i e. 0(2) <2

The proofs of the following theorems do not deviate
from the proofs given in elementary analysis for sequences
of real numbers.

THEOREM 3. If p, =p forn =1, 2, ..., then ]jmpn = p.

THEOREM 4 (ON SUBSEQUENCES). If hmp,, =p and
by <ky,<.. then
limp;, =p.
n—>00
THEOREM 5. Every sequence Py, Ps, ..., which is not con-

vergent to p, contains a subsequence mome of whose sub-
sequences 18 convergent to p.

THEOREM 6. Neither the convergence of a sequence nor
its limit depend on the initial finite number of terms of
this sequence.

8
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This means that the addition or the omission of a finite
number of terms of a convergent sequence does not
affect either its convergence or the value of its limit.

THEOREM 7. If limp, = p = limg,, then the sequence
n—>00

n—>00

Pi1s Gy D2y Gay - 18 COMVErgent to p.

§ 3. Limit in the cartesian product

Let Z = X x Y be the cartesian product of the metric
spaces X and Y.

THEOREM 1. A mnecessary and sufficient condition that

a sequence of Points 2zn = {Ty, Yn> of the space X X Y be
convergent to the point z = {x,y> is that limx, =z and

. n—>oo
limy, =y.
—>00
Proof. Let limz, = 2z and let ¢ > 0. Hence there exists
n—oo
a k such that |2,—2| < e for n > k. But since
|on—2| = {|Bn— &> +|Yn—y2}2 = |2p— 2|

(cf. Chapter IX, § 2, (4)), we also have |r,—x| < ¢ for
n>k, i. e. lima, = x.

n—o0
In an analogous manner we can prove that limy, = .
n—»oo
Let us assume conversely that limx, = « and limy, = .
n—>o0 n—>00

Let ¢ > 0. Then there exists a k such that for n > & we have

len—2] <e and |y.—yl<e,

whence

|on—2| = {{n— a2 +lyn—y P < e)/2.
Therefore limz, = 2.

n—>o0

THEOREM 2. Let X,, X,, ..., Xp, ... be uniformly boun-

ded spaces (see also Chapter XII, §4, Remark). Let
0> 06(Xp) for m=1,2,... Let 2" = (af, a%, ..., Ty, ...) for
n=1,2,.. be a point of the space X; X Xy X ... X Xpp X ...
(4. . T € X, for m =1,2,...), metrized with the aid of for-
mula (7) of Chapter IX, § 3. A necessary and sufficient
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condition that this sequence be convergent to the point

= (Lyy Lsyesey Ty ...) 18 that imay =z, for m=1,2, ..., i.e.
n—>00

(lima" = ) = An (limay, = z,).
n—>00 Nn—>00

Proof. Let limaz® = and let &> 0. Therefore, for

>0
a fixed m there exists a %k such that

2" — x| < /2™
for n > k.
. Since, however,

(1/2"™)wm — om| < |2 — |
by (7) (Chapter 1X, § 3), we have

© | ] < 2™ — | < 2™ 2™ =
for n> k.
This means that

(4) limay, = Tp, .
N—>00

Let us assume next that equality (4) holds for
m=1,2,..
Let ¢> 0. Let ¢ be a natural number such that

(5) 12i<e.
Applying equality (4) for m =1, 2, ..., i, there exists
a k such that for n >k the inequalities
(6) |07 — @] < &, |05 —@| < &y, |WT—ag| <&
hold. Therefore, because of (5) and (6),

" —a] = > (1/2™)|ah— om| = Z<1/2'")|w::,—wm| +

m=1

+ 2 (1/2™) |2 — T] < Z (s/2™) + Z Xn)2™ < s+¢-0

m=i+1 m=1i+1

for all n >k, i. e. |z"—a| < &(1+p). It follows from this
that lima® = x.

Nn—>00
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§ 4. Closure of a set

Let A be a subset of a given metric space. We denote
by A4 a subset of this space, called the closure of the set A,
defined in the following way: a point p is in the set A
if and only if there exists a sequence of points p,, p,, ...,
Pay ... in the set A such that limp, = p.

n—>00

THEOREM. p e A if and only if
7) KnAd#y
for every open spherical neighborhood K of p.
For, if p = limp,, where p, e A, then K ~n A # § by
N0

virtue of Theorem 1, § 2.

Next, let us assume that condition (7) is satisfied for
every K. Let K, = K(p, 1/n). By assumption, K, ~ 4 # 0,
i. e., for every » there exists a point p, € K, ~ A. By the
definition of K, we have |p,—p| < 1/n, and therefore
p = limp,. Inasmuch as p,e 4 we have p e A.

n—>00

Remark. The above theorem can be formulated as
follows: A necessary and sufficient condition that the point p
does mot belong to the set A is, that there exist a spherical
netghborhood of p which is disjoint from the set A.

§ 5. Four fundamental properties of the closure

We shall prove the following properties of the opera-
tion A:

(I) AUB=4UB,
(IT) ACA,
(IIT) 9=9,

(IV) (A)=4.

Proof of property (I). Let p e 4 v B. This means
that p = limp,, where p, e 4 v B. It follows from this

n—>00
that there exists a sequence of indices k, < k, < ... such
that for every » we have p;, e A or for every n we have
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Dk, € B. Since p = limpy, (by virtue of Theorem 4, § 2),

Nn—>00 _
in the first case we obtain p € 4, and in the second case
p € B. Hence, in every case we have pe AU B.

We have thus proved that
(8) AUBCAUB.

In order to prove the converse inclusion we shall show
that

I (ACB)=(4AC B),
i.e. that the condition

9) ACB
implies the condition

(10) ACB.

For, if p € 4, then p = limp,, where p, ¢ A. Because

of the inclusion (9) we dedun_)c(:eo from this that p, ¢ B and
hence that p ¢ B.
Since A CA B and BC A u B, we deduce from (I)
that
ACACB and BCAUB,
and hence, adding these two inclusions memberwise,
we obtain

(11) AUBCAURB.

Inclusions (8) and (11) yield equality (I).
In order to prove inclusion (II) it suffices to note that
if peA then p =limp,, where p,=p for n=1,2, ..
Nn—>00

(see Theorem 3, § 2).
Formula (IV) remains to be proved. By virtue of

inclusion (IT) we have A C (A). Therefore, it suffices to

prove that (4)C 4.

Hence, let p ¢ (4). By virtue of the theorem of § 4,
for every spherical neighborkood K of p we have K ~ A
# (. Hence, let ge K ~ A. Let us choose a spherical
neighborhood L of ¢ such that L C K (to this end it suffices

that the radius of L be less than the difference of two
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numbers: the radius of K and the distance of ¢ from p).
Since g ¢ A, L is a sphere with center g, and hence (by
virtue of the theorem of § 4) we have L ~n A # §. But
since L C K, we therefore have (L n A) C (K ~ A), whence
KA A+ (. We deduce from this that p e 4 (by virtue
of the very same theorem of § 4).

Remark. Properties (I)-(IV), which belong to the
closure (of a set lying in a metric space), defined
above, can be taken as the axioms of a topological space,
if we understand by astopological space a set in which
the operation of closure has been defined and which
assigns to each subset A of this space some subset A
of the same space in such a manner that conditions
(I)-(IV) are satisfied. Every metric space in which closure
has been defined in the manner given in § 4 is therefore
a topological space.

In the sequel, we shall consider mainly metric spaces;
however, we shall introduce many theorems making use
of formulas (I)-(IV) only. These theorems will therefore
be true in every topological space.

§ 6. Further algebraic properties of the operation of closure

Let X denote the metric space under consideration.
Then the following formulas hold:

1. X=X.

This formula follows immediately from the definition
of closure.

2. A-BCA—B.

Proof. 4 UB=(4—B)u B, and therefore 4 B
= (A—B):J B. Fr@__this,_by virtue of formula (I),
we have_A v B =A—Bu B and hence 4ACA—Bu B,
whence A— B C A—B.

3. AnBCAAB.

Proof. Since A ~BCA and 4 ~BCB, we have,
by virtue of property (I'’)y, A~BCA and 4 ~BC B,

and therefore A ~ BC 4 ~ B.
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More generally, the following formula is valid:

4. N4, CNi 4y,
where the variable ¢ ranges over an arbitrary set 7.

Proof. Since for every se¢7T we have [); 4;C A4,
hence by virtue of (I') we have (); 4;C 4,, and from
this we get (), 4;C (s 4,. Replacing the index s by ¢
we obtain formula 4.

5. Ued:C U4

Proof. For every s we have A,C | J; 4;, and hence
by virtue of (I') we have A,C (J; 4;, and |, 4,C U 4.
From this we obtain formula 5.

6. The closure of a set consisting of a single point s
this same set:
) {p} = {p}.

This property is not a consequence of formulas
(D-(IV)1); it follows however immediately from the
definition of closure. For, if ¢ = hm qn, where ¢, € {p},

then ¢, =p for n=1,2,...,, and hence by Theorem 3, § 2
lim ¢, =p, i. e. p=gq.

Nn—>00
§ 7. Accumulation points and isolated points

A point p is said to be an accumulation point of the
gset A if it is the limit of a sequence of points belonging
to A and distinet from p. Every point of the set A which
is not an accumulation point of A is called an isolated
point of A.

For example, the point 0 is (the only) accumulation
point of the set consisting of the points 1,1/2,1/3,...,
1/n, ...; all the points of this set are its isolated points.

The following theorems are easily proved:

THEOREM 1. A mnecessary and sufficient condition that
the point p be an accumulation point of the set A is that
every spherical meighborhood of p contain some point,
distinct from p, of the set A.

!) Topological spaces satisfying Theorem 6 are called G, -spaces.
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THEOREM 2. A necessary and sufficient condition that
the point p be an isolated point of the set A is that there
exist a spherical neighborhood K of p such that K ~ A = {p}.

§ 8. Derived set

The set of all accumulation points of the set A is
called the derived set of A and is denoted by A¢4.
The derived set has the following easily proved pro-

perties.
1. A=Ay A9,
2. A?= Aq,
3. (AuB)= A2y B4,
4. U AT C (Ui 40
5. AddC Ad,

On the other hand—in distinction from the closure—
the second derived set need not necessarily be equal to
the first. If, for example, A consists of the points
1,1/2,1/3, ..., then A% consists of the point 0, and A% ig
the null set. If A is the set of numbers of the form
1/n+1m (n,m =1,2,..), then A2~ Add £ Addd — g,

Exercises

1. Prove Theorems 3-7, § 2.

2. A L* space is a set in which to certain sequences p,, p,, ..
of elements of this set, called convergent sequences, there is assigned

an element p = lim py, called the limit of the sequence, in such a way
n—o0
that Theorems 3-5, § 2, are true. Hence, metric spaces are .L*

spaces. Prove that Theorems 6 and 7, § 2, are valid in .L* spaces.
3. Let a .L* space be given. If limp, =p and the sequence
n—>00

¢15 Qs> ... 18 obtained from the sequence p,, p,, ... by finite repeti-

tion of its elements, then lim ¢, = p.
n—>oc

4. Let @ denote the space of all real valued continuous functions
defined on the closed interval [0, 1] (Chapter 1X, § 1, Example 4).
Show that the equality f= lim fs, where fy ¢ @, holds if and only

n—-00
if the sequence of functions f,, f,, ... is uniformly convergent to
the function f.



CHAPTER XI

VARIOUS TYPES OF SETS

§ 1. Closed sets and open sets

A set A is said to be closed if A = A, that is (because
of Chapter X, § 5, (I)) if A C 4, or in other words: if

the conditions limz, =2 and z,e¢ A imply that z e A.
n—>00

A set A is said to be open if its complement is closed,
that is if X — 4 = X — A4, or in other words if 4 = X —
. —X— A, where X is the entire space.

ExAMPLES. 1. The null set is a closed set, i.e. § = ¢
(Chapter X, § 5, property (III)); the entire space is a closed
set (Chapter X, § 6, property 1). It also follows from this
that the null set and the entire space are open sets.

2. In the space of real numbers the closed interval
a<x<b is a closed set. Our terminology is therefore
in agreement with the terminology used in analysis. On
the other hand, the open interval a <z <b for a < b is
an open set which is not closed.

3. If f is a continuous real valued function defined
on the closed interval a < x < b, then this function,
i. e. the set of points

A = Fo.ily =f@)]A(e <z <b)},
is a closed set.

For, let pe A, i.e. p =limp,, where p,e A. The

n—>o0o

points p, are therefore of the form

(1) P = {Zn, [(2n)> ,

(2) a<2, <b.
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Let p = <z, y)>. Since p =limp,, we have
n—>o00

(3) limz, =,
) lim f(e) =y -

It follows from (2) and (3) that a <z <b.
But because of the continuity of the funection f, it
follows from (3) that
lim f(2,) = f(w),

n—+00
and hence y = f(x) by virtue of (4), i.e. p = <{z, f(x))
and by the definition of the set A we have p ¢ 4.

We have thus proved that A C 4, i. e. that the set 4
is closed.

4. Every finite set is closed.

We omit the easy proof of this assertion. A proof can
be based on property 6 of Chapter X, § 6, and on for-
mula (I) of Chapter X, § 5.

5. The set of integers, as well as each of its subsets,
is closed in the space of real numbers.

6. The derived set A¢ is a closed set (see Chapter X,
§ 8, property 2).

7. If p is an isolated point of the space then the
set {p} is open (and also closed).

§ 2. Operations on closed sets and open sets

THEOREM 1. The union of two closed sets is a closed set.
For, if the sets A and B are closed, i. e. 4 = A and
B = B, then
ACB=AUB=A4A0UB.

This theorem can be generalized (by induction) to an
arbitrary finite number of sets. The union of an infinite
number of closed sets may be a non closed set: if,
e.g. A, = {1/n} then the union 4, U 4, u ... is not a closed
set (in the space of real numbers), since the point 0 does
not belong to it but it belongs to its closure.
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THEOREM 2. The intersection of an arbitrary number
of closed sets is a closed set.

In fact, if the sets A; are closed, i.e. A; = A;, then
by formula 4 of Chapter X, § 6, we have

Ne A:CNe A= Ay,
and hence the set [); 4; is closed.

THEOREM 1'. The intersection of a finite number of
open sets is an open Set.

THEOREM 2'. The union of an arbitrary number of open
sets is an open set.

These properties follow from properties 1 and 2 using
de Morgan formulas (see Chapter II, § 4, (30) and Chap-
ter IV, § 2, (4)):

X—A~AB=(X-A4)u(X—-B), XU di=i(X—4;)

For, if the sets A and B are open, then the sets X— A
and X—B are closed, and hence the set X—A ~ B
= (X—A4)u (X—B) is also closed, i.e. the set 4 ~ B
is open. The generalization of the theorems to the case
of an arbitrary finite number of sets is immediate.

If the sets A; are open, i. e. the sets X — A4, are closed,
then the set X —{J; 4; = [ (X — 4;) is closed, and hence
the set | J; A; is open.

Remark. Theorems 1, 1’ and 2, 2’ are examples of
& so-called duality in topology: to every theorem on closed
sets there corresponds, by virtue of the de Morgan for-
mulae, a theorem on open sets, and conversely.

§ 3. Interior and boundary of a set. Neighborhood of a point
Definitions. For an arbitrary set A, the set
Int(4) =X—X—A4
is called the interior of the set A4, and the set
Fr(d) =4~ X—4
is called the boundary of the set A.
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Let us analyze the above definitions more closely.

The condition pe X — X— A means that p¢ X— A.
Hence, a point p belongs to the set Int(4) if and only
if there exists a spherical neighborhood K of p such that
KAn(X—A)=4,i.e. KCA (cf. Chapter X, § 4, Remark).
Interior points of a set A (i. e. those belonging to the
interior of the set) are therefore the points p for which
there exists a spherical neighborhood contained in the
set A.

By definition, a set A is open if and only if 4 = X —
X—A4,i.e. if A= Int(A). Hence, for every point p of an
open set A, there exists a sphere, with center at p, lying in
the set A. This property also characterizes open sets.

It follows from this that K(p, ¢) is an open set. For
if e K(p,¢), then K(z, e—|z—p|) C K(p, ¢).

As follows from the definition (cf. the theorem in
Chapter X, § 4), the boundary points p of the set 4 have
the property that every K (p,¢) has points in common
with the set A, as well as with the complement of A.

The interior of the closed interval a <z < b in the
space of real numbers is the open interval ¢ < # < b and
its boundary is the set consisting of its endpoints a and b.

The interior of the closed disk [ {lx—p| < o} on the
plane is the open disk [F.{lr—p| < o} and its boundary
is the circumference [F.{|lx— p| = o}.

A set A is said to be a meighborhood of a point p if
p eInt(4), i.e. if p is an interior point of the set A.
Hence an open set is a neighborhood of each of its points.
Every neighborhood of the point p contains an open
neighborhood of the point p, namely its interior.

We say, more generally, that A is a neighborhood of
the set B if B C Int(A4).

§ 4. Dense sets and boundary sets

A set A is said to be dense if 4 = X. A set A is said
to be a boundary set if its complement is a dense set,
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i.e. if X—A = X. (A set whose closure is a boundary
set is also said to be a nowhere dense set.)

Obviously, every set which contains a dense set is
dense and a subset of a boundary set is a boundary set.

In the space & of all real numbers, the set of rational
numbers is both a dense and a boundary set. In the
plane &2 a straight line is a boundary set.

It can be easily proved (applying the theorem of Chap-
ter X, § 4) that the following theorems are valid:

THEOREM 1. A set A is dense if and only if in every
spherical neighborhood there exist points which belong to A.

THEOREM 2. A set A is a boundary set if and only if
in every spherical meighborhood there exist points which
do not belong to A.

THEOREM 3. A closed set A is a boundary set if and
only if for every spherical neighborhood K there exists
a spherical neighborhood L C K such that L ~ A = ¢.

The union of two boundary sets might not be a bound-
ary set. For example, the set of all rational numbers and
the set of all irrational numbers are boundary sets (in the
space of real numbers), but their union is not a boundary set.

On the other hand, the following theorem can be
proved:

THEOREM 5. If a set A is a boundary set and the set B
is a closed boundary set, then A o B is a boundary set.

Hint for the proof. Applying Formula 2 of Chapter X,
§ 6, we have

X-B=X—-A—-BC(X—4)—-B=X—(4AuUB).

§ 5. Sets dense in themselves

A set each of whose points is an accumulation point
of this set is said to be a set dense in itself.
Hence these sets are characterized by the inclusion

(1) AC Al
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or—what amounts to the same thing—by the condition
that they do not contain any isolated points.

THEOREM 1. The closure of a set dense in ilself is dense
in tself.

Proof. Let A be a set which is dense in itself and
therefore satisfying formula (1). From this, by virtue of
formula (1) of Chapter X, § 8, we have

(2) A=A U Ad=4,
and therefore, applying formulas 3 and 5 of Chapter X,
§ 8, we obtain

(A)d = (A U A%)E = AdU Add — 42

whence by (2), we have (A4)¢ = A. Hence, the set A
satisfies condition (1).

THEOREM 2. The union of an arbitrary number of sets
which are dense in themselves is a set dense in itself.

For, if A,C Af, then, by virtue of formula (4) of Chap-
ter X, § 8, we have

Us 4: C Us 47 C (U 4%

THEOREM 3. Each space is the union of two sets of
which one is closed and dense in itself and the other does
not contain any non-empty subset which is dense in itself1).

Proof. Let C denote the union of all subsets of the
given space which are dense in themselves. It follows
from Theorem 2 that the set C is dense in itself and
therefore, by virtue of Theorem 1, the set C is also dense
in itself and hence it is a subset of the set C. Thus C C C,
i. e. the set C is closed. Finally, the set X—C, being
disjoint from C, does not contain non-empty sets which
are dense in themselves.

1) Sets which are simultaneously closed and dense in themselves
are also called perfect sets. They are therefore characterized by the
equality A = Ad. Sets which do not contain any non-empty subset
which is dense in itself are also called scattered sets.
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* § 6. Borel sets

Borel sets are sets which belong to the smallest
family R of subsets of a given space satisfying the follow-
ing conditions:

(a) every closed set belongs to R,

(b) if XpeR for n=1,2, .., then Upzy X,eR,

() if XpeR for n=1,2,.., then (\a=1 XneR.

A family of Borel sets is therefore, in the sense of
the terminology of Chapter IV, § 7, a Borel family gener-
ated by the family of closed sets.

The union of a countable number of closed sets is
called an F,-set. The intersection of a countable number
of open sets is called a G;-set.

It follows directly from the definition that every F,-set
is a Borel set. We shall show in the sequel that also every
Gs-set is a Borel set (see Chapter XII, § 8, Remarks).

Making use of ordinal numbers we can classify Borel
sets in classes R,, where a < 2, in the following manner.

1. The class R, is the family of all closed sets.

2. For a = A+n > 0, where 1 is a limit ordinal and n
is a nonnegative integer, the class R, is the family of all
sets of the form

Miz1 Xe  or  Uker Xi

according to whether n is even or odd, and the sets X,,
X,, ... belong to classes of indices smaller than a.

Therefore, in particular, the class R, is the family
of all F,-sets. The class R, is the family of intersections
of a countable number of F,-sets (they are the so-called
Fs-sets), and so forth.

It can be proved that for every a < 2 there exists
in the space of real numbers a set of the class R, which
_does not belong to any class with index smaller than a.

Remark. If we start with open sets, instead of clo-
sed sets (cf. condition (a)), we obtain the Borel family
generated by the family of open sets (which, as can be
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proved, is identical with the Borel family, considered above,
generated by the family of closed sets; see Chapter XII,
§ 7). Here the open sets form the zero class, the @,-sets
form the first class, the Gs-sets form the second class,
and so forth. This classification is dual to the class-
ification previously considered.

Exercises
1. Prove that if the set G is open, then the following rules are
valid for every set X:
{a) ' GAXcGARX,
(b) GAX=G~ZX.
2. Prove the formulas:
(a) Int(X A Y) = Int(X)~Int(Y),
{b) X c Y implies Int(X) c Int(Y),
© UsInt(Xy) c Int(Ue 30,
d) Fr(X)=X~Xu(X-X),
(&) X =XouFr(X),
& FrXuvXY)uFr(XAYXY)u (Fr(X)nFr(Y)) =Fr(X) o Fr(Y),
(8) Fr[Int(X)] c Fr(X),
‘(h) Int(X)AFr(X)=4.
3. Prove that: (a) the complement of a Gs-set is an Fo-set,
(b) the union of an infinite sequence of Fo-sets is an Fs-set; the

intersection of two Fs-sets is an Fs-set. State theorems on Gs sets
which are the duals of (b) (use the de Morgan rules).

4. Since an arbitrary subset E of a metric space & is also a metric
.space, we can define for every set A c E the closure of 4 in the space B
or the so-called relative closure of A in K as follows: we put a point p
into the relative closure of the set A in ¥ if p ¢« E and p = lim p,,

n—>00

where p, ¢ 4. This means that p e 4 ~ E.

The set A ~ E is therefore the relative closure of the set 4 in E.

Prove the following theorems (for topological spaces, assuming
that 4 ~ E is by definition the relative closure of 4 in E):

(a) The relative closure satisfies axioms I-IV relativized to the
set F, i. e. for arbitrary sets A c ¥ and B c E, we have

(I} ACBAE=(AAE v (BAE), (Ig) Ac(AnE),

(Illg) 0~AE=9, (Vg A~AE~E=A4A~E.



VARIOUS TYPES OF SETS 129

(b) The set A is open in E if
A=E-E—-4,
and A is closed in F if
A~RE=A4.

(¢) A necessary and sufficient condition that the set 4 be closed
(open) in F is, that it be the intersection of the set F and a closed
(open) set.

(d) The relative boundary of the set 4 in E is the set

Fre(4) —=A~E~E—4,
and the relative interior of the set A in F is
Intg(d) =FE—E—A4.

5. Show that if the set 4 is closed in the space X and the set B
is closed in the space Y, then the set 4 x B is closed in the space X x Y.

Prove the analogous theorem on open sets.

6. Let A cX, BcY. Prove the following formulas:
Int (A x B) = Int(4) x Int(B),
Fr(4A x B) = [Fr(4) x Bl w[4 x Fr(B)].
7. A necessary and sufficient condition that the cartesian product

A x B be dense in itself is that one of the sets A and B be dense
in itself.

8. Every open subset of a dense in itself space is dense in itself.

9. If the sets 4 and X— 4 are boundary sets, then the space
X is dense in itself.

10. The set Int[Fr(A4)] is dense in itself.

11. By a Hausdorff space we understand an arbitrary set X
in which to every element p there are assigned certain subsets of
the set X— called the meighborhoods of p—in such a way that the
following four conditions are satisfied: .

A. Every point p ¢« X belongs to each of its neighborhoods.

B. If U and V are neighborhoods of the point p, then there
exists a neighborhood of p contained in U~ V.

C. If U is a neighborhood of p and ¢ € U, then there exists a neigh-
borhood of ¢ contained in U.

D. If p+ ¢, then there exist disjoint neighborhoods U of p
and V of q.

Prove that 1. every metric space is Hausdorff (where the neigh-
borhoods of the point p are the open sets which contain p) and 2.
_ every Hausdorff space satisfies conditions (I)-(IV) of Chapter X, § 5,
if closure in this space is defined as follows: p ¢ X if and only if every
neighborhood U of the point p satisfies the inequality U ~ X = 0.

We call a topological space satisfying condition D a G,-space.
Give an example of a G,-space which is not G,.

9
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Prove that statement 1. can be strengthened as follows: every
G,-space is Hausdorff.

12. Prove that the concept of a topological space (see § 5, X,
Remark) is equivalent to the following. The term ‘open set” is
considered as primitive term and the following axioms are assumed:

1. The union of an arbitrary number of open sets is open;

2. The intersection of two open sets is open;

3. The null set is open;

4. The space is open.

The closure of A4 is, by definition, the intersection of all closed
sets (i. e. of complements of open sets) containing 4.

13. Similarly, prove that the concept of topological space can
be defined considering Int(4) as primitive term and assuming the
following axioms:

Int(4 ~ B) = Int(4) ~Int(B), Int(4d)cAd,
Int(X) =X, Int[Int(4)]= Int(4).

14. A family of open non-void sets is called a base of the given
space if every open set is the union of a certain number of sets
belonging to this family (comp. § 1, XIII, Theorem, 2).

A family of sets is called a subbase if the family of finite inter-
sections of its elements is a base.

Let {X;}, where ¢t ¢ T, be a given family of topological G,-spaces.
Show that the cartesian product P:X; (cf. § 8, IV), becomes a G,-
space by assuming that the sets of the form

6 =E3ted),
where G is open in X;, form a subbase.

15. Prove that in the case of metric spaces and of T finite (or
countable) the above definition of open sets agrees with their def-
inition based on the concept of distance given by formula (7), § 3, IX.

16. A family {X;} of subsets of a given space is called locally
finite, if for each point of the space, there is a neighborhood which
has points in common but with a finite number of sets X;. Show,
under this assumption, that

Uixi= Ui X,

17. Let X be a topological space and g an equivalence relation
(comp. Exercise 9, Chapter V). We define a topology in the quotient
space X/p assuming that a subset R of X/p is open if and only if
the set S(R) is open (in X). Show that X/p is a topological space.

18. A relation g is called closed if the set Emwgy is closed in
the product space X x X.

Show that if the quotient space X/o is a G,-space then the
relation g is closed.



CHAPTER XII

CONTINUOUS MAPPINGS

§ 1. Continuous mappings

Definition. We say that a function f, defined for
every point x of the space X and having values f(x) in
‘the space Y, is continuous at the point x, if the condition

(1) limx, = x,
implies
(2) lim f(2,) = f ()

for every sequence of points &;, @5, ..., Xy, ..., Where 2, € X.
This definition is analogous to the definition of the
continuity of a real valued function of a real variable,
which is known in classical analysis as Heine’s definition
of the continuity of a function. We shall prove that it is
equivalent to the following (Cauchy) definition.
THEOREM. A necessary and sufficient condition for the
function f to be continuous at the point xye X is that for every
e > 0, there exist a number 6> 0 such that the condition

(3) lw— | < 6
implies
(4) If (@) —f (o)l < &

for every x e X.
Using the symbolism of logic, we can write this con-
dition in the following form:

(3)  AsVeAa {(lm—m| < 8) =(If (@) — f(a)] <)} -

Proof. Let us first assume that the function f is
continuous at the point x, and suppose that condition (5)
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is not satisfied, i. e. that there exists an & > 0 such that
for arbitrary 6 > 0 there exists an # for which |z—ux,| < é
but |f(z)—f(®) > ¢, 1. e.

VeAsVa(lo—ao] < 0)A(If (@) —f(ao)] > ¢) -
Let us take 6 = 1/n. There exists (by the axiom of

choice) a sequence of points @, &y, ..., Ty, ... such that
(6) [Zn— 2| <1/n

and

(7) If (@n) — f (o) > & .

Equality (1) follows from inequality (6) and hence,
the function f being continuous at the point x,, we have
equality (2). This equality is however in contradiction
with inequality (7). Thus, the supposition that condition
() is not satisfied has led us to a contradiction.

Next, let us assume that the function f satisfies con-
dition (5). Hence for a given number ¢ > 0, there exists
a number 6 > 0 satisfying the implication given in for-
mula (5). Let us assume that condition (1) is satisfied.
Then there exists a %k such that |z,—x, < for n > k.
Therefore |f(x,)—f(x,)| < e. This means that equality (2)
holds and hence the function f is continuous at the
point x,.

§ 2. Functions which are continuous at every point

Such functions are called, briefly, continuous functions.

The set of all continuous functions f defined for every
x € X and having values f(z) in the space Y is denoted
by the symbol YX. [We also denote this set by the symbol
(YX)4op in order to distinguish it from the symbol used
in set theory for the set of all functions f mapping X
into Y (see Chapter VI, § 2). Since, however, we shall
consider only continuous functions in the sequel we shall
omit, in order to simplify our symbolism, the index ‘“top”’,
keeping in mind that the symbol YX is used in the topo-
logical sense.]
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THEOREM 1. A mnecessary and sufficient condition for
the function f to be continuous, i. e. that f ¢ YX, is that for
every closed set B contained in the space Y, the set f~(B)
be closed (in the space X ); in other words, thai the imverse
image of a closed set be a closed set. (The meaning of the
symbol f! was given in Chapter IV, § 4.)

Proof. Let us assume that the function f is continuous
and that B = B. Let us also assume that condition (1)
is satisfied where

(8) xp,efYB), 1i.e. f(ryh)eB for n=1,2,..

Since the function f is continuous, formula (2) holds
and therefore f(x,) ¢ B; but since B = B, it follows from
this that f(x,) € B, i. e. that x, € f1(B).

Thus the set f~1B) is closed.

Next, let us assume that the function f is not con-
tinuous. We have to define a closed set BC Y such that
the set f~1(B) is not closed.

By assumption, there exists a sequence z,, ,, ... satis-
fying condition (1), but which does not satisfy condi-
tion (2). We deduce from this (c¢f. Chapter X, § 2, Theo-
rem 1) that there exists an open spherical neighborhood
K of f(x,) and a sequence of indices k, < k, < ... such
that for all » we have

(9) f(@n,) ¢ KL

Let B = Y— K. The set B is therefore closed. At the
same time, by virtue of (9) we have

(10) f(xx,) eB, 1i.e. g efY(B) for =n=1,2,..,

and

(11) f(xy)e K, 1i.e. f(x)é B, hence ¢ fYB).
Since 2, = lim, (by (1)), the set f~}(B) is not closed.
COROLLARYWITOA necessary and sufficient condition that

the function f be continuous is that the imverse image of
every open set be open.
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We obtain easy proof of this corollary from the
formula

(Y —B) = X—fB)

(cf. Chapter IV, § 4, (16)).

COROLLARY 2. If f is a continuous real valued function
then the sets

Eslf@) <al, [Fe(f®)=a], Fsla<f(z)<b]

are closed and the sets

Eslf(x) <al, [Fulf(@)>a], [Fala<f(x)<b]

are open.

This is true because these sets are inverse images of
the closed sets

Ely<a), Fyy=a), [Eya<y<b)

and of the open sets

Ely<a), FEfy>a), Fla<y<bd),
respectively.

THEOREM 2. If fe YX, then f is a closed set in the
space X X Y.

The proof does not differ from the proof given in
Chapter XI, § 1, Example 3, for the special case where
X denotes the closed interval a <« < b and Y is the set
of all real numbers.

§ 3. One-to-one functions. Homeomorphisms

As stated in Chapter V, § 1, f is one-to-one if for every
two points x # 2’ we have f(x) # f(2'), i. e. if

(12) [f(z) =f(x')] = (x = ).

For every one-to-one function f there exists an inverse
function g = f-1 defined (for y € f(X)) by the equivalence

(13) (9(y) =2l =[y =f(@)]
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If the function f is continuous, one-to-one and its
inverse f~! is also continuous, then we say that f is
a homeomorphism.

We say that the spaces X and Y are homeomorphic
and we write

XY

if there exists a homeomorphic function f which maps X
onto the entire space Y, i.e. ¥ = f(X).

It is clear that
( L=}

2. if f is a homeomorphism then f-' is a homeo-
morphism,

3. the homeomorphism relation is reflexive, symmetric
and transitive.

THEOREM 1. A necessary and sufficient condition for
the function f to be a homeomorphism is that the conditions
(1) and (2) be equivalent, i. e. that we have the equivalence
(14) (imw, = 2,) = [limf(@n) = f(%)] .

n—o0

n—oo
Proof. Let us assume that the function f is a homeo-
morphism. Then, f being continuous, we have

(15) (lima,, = a,) = [imf(2,) = f(x0)],

n—>oo

alid f being one-to-one we have for g = f (ef. (13)):
(16) On=4g(ya) and Yn=7f(@n).

Since the function ¢ is continuous by assumption, we
therefore have

(17) (}biqiyn = Yo) = [f;rgg(yn) = g(%)],
i. e.
(18) [iijgf (@n) = f(20)] = (iirgwn = @) .

Formulas (15) and (18) yield the equivalence (14).
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Conversely, if we assume the equivalence (14), then
obviously formula (15) holds, and therefore the fune-
tion f is continuous.

At the same time, formula (18) holds also, whence
it follows that the function f is one-to-one. For let z
be such that

(19) f(@) = f(w)
and set
(20) x,=a for n=1,2,..
Hence we have limf(z,) = f(x), whence by virtue
of (19), limf(x,) = f(2,) and by (18) lima, = x,.

On the other hand it follows from formula (20) that
limx, = . From this we have x = x,.

n—>00

Hence we have proved that the equality x = x, follows
from equality (19). This means, according to (12), that
the function f is one-to-one.

Let us therefore set g = f~1. Applying formulas (16)
and (18) (which is satisfied by assumption), we obtain
formula (17). This formula means that the function ¢
is continuous.

Therefore f is a homeomorphism.

THEOREM 2. A mecessary and sufficient condition for a
one-to-one function f to be a homeomorphism is that both
the images and the inverse images of closed sets be closed sets.

Proof. Let us assume that the function f is a homeo-
morphism. Let ¢ = f~*. Hence the function ¢ is continuous
and therefore by virtue of Theorem 1, § 2, for every closed
subset A of the space X the set g~'(A4) is closed. Since,
however, g~ = f (cf. 1), this means that the set f(4),
i. e. the image of the set 4, is a closed set.

Also, the inverse images of closed sets are closed sets
because the function f is continuous (cf. Theorem 1, § 2).

Conversely, let us assume that the set f(4), as well
as the set f~Y(B) are closed, provided that the sets
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A C X and BC Y are closed. Since f = ¢, it follows from
this (by the theorem which we have already cited above)
that the functions g and f are continuous, i.e. that f is
a homeomorphism.

Remark. As we have already mentioned in the intro-
duction, topology is the study of the invariants of homeo-
morphisms, i. e. of those properties which—if they belong
to a given space—then they hold in every space which is
homeomorphic with it. We can prove in general (making
use of Theorem 1, § 3) that every property which can be
formulated in terms of the concept of limit and in terms
of the theory of sets is an invariant of homeomorphisms.

§ 4. Examples of homeomorphisms

1. Let a<z<band ¢c<y<d, where a<b and c¢< d,
be two given closed intervals of real numbers. The function
y = {(d—0)/(b—a)}x + (be—ad)/(b— a)
is a homeomorphism which maps the first interval onto
the second. Hence, any two closed intervals are homeo-

morphic.
This same function maps the open interval a <z <b
homeomorphically onto the open interval ¢ < y < d.

2. The function y = tanx maps the open interval
—7/2 < < w/2 homeomorphically onto the entire set of
real numbers. Its inverse is the function x = arctany.

3. A necessary and sufficient condition for a con-
tinuous real valued function, defined on the closed interval
d <z <b, to be a homeomorphism, is that it be strictly
monotonic.

4. Let us consider in Euclidean 3-space &2 the surface
of the sphere #®+y%+4 (2—1)> = 1 and let us draw a line,
which is not parallel to the XY-plane, from the point
- b=(0,0,2). Let us assign to the point p of intersection
of this line with the surface of the sphere, the point
f(p) which is the point of intersection of this line with
the plane z = 0.
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The function f so defined is, as is easy to verify,
a homeomorphism which maps the surface of a sphere
with the point b removed onto the entire plane. Hence
the plane is homeomorphic to the surface of the sphere
with one point removed. One makes use of this fact in
the theory of analytic functions when it is said that the
plane of complex numbers is completed with ‘the point
at infinity”’ to the surface of the sphere.

Remark 1. In the definition of homeomorphism, the
condition of continuity of the inverse map is essential,
which means that the continuity of the mapping f does
not imply the continuity of the mapping f~*. For example,
the function z = €2 maps the set 0 <2 <1 onto the
set of complex numbers lying on the circle with equa-
tion |2 =1 in a continuous and one-to-one manner.
However, the inverse mapping is not continuous at the
point 2z = 1.

5. THEOREM. Ewery metric space is homeomorphic to
o bounded space.

Let X be a metric space. Let us introduce into it
a ‘“new distance’’ by assuming that |lx—y| = |x—y| if
le—y| <1, but |g—y|| =1 if jr—y|>1.

It is easy to verify that the distance |lx—y| satisfies
-conditions (1)-(3) given in the definition of a metric space
(Chapter IX, §1).

In introducing the new distance |lx —y|| between points
of the space X, we have transformed this space into
a metric space X*. Let us denote this transformation by f.
This funetion, i. e. f(x) = @, is a homeomorphism. This
follows from the remark that the conditions

lim|z,—y||=0 and lim|z,—y| =0
n—>00 ) n—>00
are equivalent.
Since for every two points x and ¥ we have |lz—y| < 1,
hence the space X* is bounded; namely we have §(X*) < 1.
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Remark 2. When, in Chapter IX, § 3, we considered
the space X; X Xy;X..XXpX... we assumed that the
spaces X, were bounded in common. Making use of the
theorem we just proved, we can omit this assumption
by defining the distance between two points

L = (Tyy Lyy eoey Ty -..) and Y = Y1y Yoy vy Ymy ---)
by the formula

A m
o=yl = D (1/2™)lom— Yl
m=1
( Theorem 2 of Chapter X, § 3, also remains valid
without the assumption of boundedness.

§ 5. Sequences of functions. Uniform convergence

Let fi, fay coey fny ... be a given sequence of funetions
defined on the space X, with values belonging to the
space Y. As in analysis, we say that this sequence is
uniformly convergent to the limit f if for every & > 0 there
exists a k such that for all » >k and for every xe X
the inequality

(21) [fnl2)—f(@)] <e&
holds, i. e. if
AeViAaAn[(n = k) =(Ifa(x)—f (@) <e)] .
We shall now prove a theorem which is a generalization
of a theorem known from analysis.
. THEOREM 1. The limit of a wuniformly convergent se-
quence of continuous functions is a continuous function.
Suppose f,, fs, ... is a uniformly convergent sequence
of continuous functions defined in the metric space X
with values in the space Y. Let
f(@) = lim fu(z) .

n—>00

Let ¢ > 0 be a given number and let z, ¢ X be a given
point. Hence, there exists a & such that for every x e X
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the inequality
(22) @) —f(z)] <e

holds.
Since the function f; is continuous at the point =z,
there exists a 6 > 0 such that

(23) |fi() — flwo)| < &
provided that |r— x| < 6. By inequality (22) we have
(24) |fie(0) — F (20)] < &

We deduce from the inequalities (22), (23) and (24)
that the condition |x—x, < implies |f(x)—f(x)] < 3e.
It follows that f is continuous at the point x,.

§ 6. Continuity of functions in cartesian products. Functions of
several variables

Let w = f(x,y), where x ¢ X, ye¢ Y and we W. The
function f is a funection of the two variables x and y.
However, this same function can be considered as a func-
tion of one variable, namely the variable z = <z, y)
running over the cartesian product Z = X x Y.

By the definition of continuity, the function f is con-
tinuous at the point z, = {wz,, ¥,> if
(i) (Lm 2y, = 2o) = [lim f(2,) = f(20)] .

n—»o0o N—>00

Since the equality limz, = z, is equivalent to the con-

n—o0

junction limz, = z, and limy, = ¥y, (cf. Chapter X, § 3,

n—>00 n—>00

Theorem 1), condition (i) for the continuity of the func-
tion f can be formulated as follows:

(i) (ima, = o) A(imy, = yo) = [imf(@n, yu) = f(%, Yo)] -
n—oo n—oo n—>00

Similar remarks can be made about functions of

three variables, and more generally, of a finite number
of wvariables. They can also be applied to functions
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of an infinite number of variables. Thus, the following
theorem holds:

THEOREM 1. Let y = f(x), where 2e X; X X,X...X
X Xm X eeey b € & = (Byy By ooy Ty oee) ANA L€ Xppo A mec-
essary and sufficient condition for the function f to be con-
tinuous at the point «° = (23, a3, ...), is that the system of
equalities

limay, = x5,, where m=1,2,..,
N—>00

imply the equality

limf(z") = f(2°), where 2a"=(af,a},..).
7—>00

The proof of this theorem—as in the case of two
variables—follows easily from Theorem 2 of Chapter X,
§ 3 (see also § 4, Remark 2).

Next, we shall consider functions whose values (and
not the arguments, as before) belong to a cartesian product.

Suppose f is a function defined in the space 7' with
values belonging to the cartesian product X x Y of the
spaces X and Y. Since f(t) e X x Y for every teT, we
have f(t) = <x(t), y(t)>, where x(t) ¢ X, y(t) ¢ Y. The func-
" tions « and y (of the variable ¢) map the space T onto
subsets of the spaces X and Y, respectively.

In the particular case where X and Y denote the
space of real numbers, f is a complex valued function.

THEOREM 2. A mnecessary and sufficient condition for
the function f to be continuous is, that the functions x and y
be continuous.

Proof. Assume the functions z and y are continuous.
Let
(25) lim¢, =t;

n—>o0

then
(26) lima(t,) =x(t) and limy(t,) =y(1),

7n—>00 n—>00
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and hence, by Theorem 1 of Chapter X, §3, we have

(27) '}‘1_{1;<w(tn)a Y(tn)> = <x(t), y(t)>,
i e.
(28) }Ll;%f(t") =1,

and therefore the function f is continuous.

On the other hand, if f is continuous then condition (25)
implies (28), i. e. (27), and therefore the equations (26)
hold. Hence the functions x and y are also continuous.

Now let f be a function defined in the space T with
values belonging to the space X; X X, X ... X X\ X ... We
can represent the function f in the following way:

f(t) = (xl(t)a x2(t)7 ey mm“): ) ’
where #, is a mapping of T into X,,.

THEOREM 3. A mecessary and sufficient condition for
the function f to be continuous is that the funcltions xp,
be continuous for m =1, 2, ...

Proof. Let us assume that the functions x,, are con-
tinuous. Then equation (25) implies
(29) limxy(t,) =an(t) for m=1,2,..,

n—>oo

and hence (cf. Chapter X, § 3, Theorem 2):

(30) lim (wl(tn)7 Zs(tn) ) = (wl(t)) os(t) ) ’

n—>o00

i. e.
(31) limf(t,) = f(¢).

n—>00
We deduce from this that the function f is continuous.
On the other hand, it follows—assuming the function
f is continuous—that condition (25) implies condition
(31), i. e. (30). This means that condition (29) is satis-

fied and hence the functions «, (m =1,2,..) are
continuous.
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Continuity of the function |x—y|. The distance |z—y|
between the points x and y of the metric space X ig
a function of two variables (with non-negative real values);
hence we can consider it to be a function defined on the
product X x X.

THEOREM 4. The function |x—y| is continuous.

Proof. Let

lima, =2, limy,=4y

n—oo n—o0o0
and let ¢ > 0 be given. Then there exists a &k such that
for n >k we have

(32) Iw’_wnl <e, lyn_yl <e.
From the triangle inequality we obtain (see Fig. 5):
Yo Y
Xp X
Fic. 5
(33) [2—y| < |[@—@n| +|%n—Yul +|Yn— Yl .
It follows from inequalities (32) and (33) that
(34) lo—y| < |@n—Yn| +2¢.

Similarly, from the inequality
%0 —Ynl < |@n— @] +|2— Y| +|Ya— Y
we obtain the inequality
(35) [Zn—Yul < |w—y[+2¢.
By inequalities (34) and (35) we have for n >k
10—yl — |2 —yl| < 2e.
This means that lim|z,—y, = |x—y| and hence the

n—00
funetion |x—y| is continuous.
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§ 7. Applications. Distance between a point and a set
The distance between the point  and the noh-empty
set A is defined to be the number

(36) po(z, A) = greatest lower bound of

the numbers |x—a|, where a e 4.

‘We assume, moreover, that ¢(x, §) = 1. Let us note
that:

THEOREM 1. If A = {y}, then o(x, A) = |z—y|.

THEOREM 2. If ¢ %+ AC B then o(x, B) < o(x, 4).

THEOREM 3. [o(x, A) = 0] = (x e 4).

In fact, if v e A, then for every &> 0 there exists
a point ae A such that |[vx—a| <e This means that
o(x, A) = 0.

Conversely, if o(xr, A) = 0, then for every ¢ > 0 there

exists a point a € A such that |[x—a| < ¢, and hence = ¢ 4.
From this it follows that:

THEOREM 4. If A is a closed set then
[o(w, 4) =0]=(xed).

THEOREM 5. The function o(x, A) is continuous (for
fived A ).
Proof. The theorem is obvious if the set 4 is empty.

Because of this, we can assume that A4 = 9. Let 6 > 0
and let

(37) lo—a'| < 6.

By virtue of (36), there exists a point a € A (see Fig. 6)
such that

(38) le—al < o(w, A)+4.
It follows from (37) and (38) that

(39) (@, A) <L |z'—a| < |x—a|+|lx—2'| < o(x, A)++9.
Similarly, we have

(40) o(x, A) < o(x'y A)+26.
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Inequalities (39) and (40) yield
(41) - le(x, A)—e(2', 4)] < 26.

This means that inequality (37) implies inequality (41).
Hence the function ¢(x, 4) is continuous.

X

—T"

x'

Fic 6

THEOREM 6. For every pair of disjoint closed sets A
and B, there exists a pair of disjoint open sets G and H
such that

(42) ACG@ and BCH.

(The property of a space expressed in this theorem
is called mormality of the space).
Proof. Let

G = [ale(®, 4) <eo(w, B)], H = [a[e(x,B)<e(z, 4)].

The sets G and H are open. In fact, by virtue of the
continuity of the functions ¢(x, 4) and ¢(x, B), the func-
tion f(r) = o(x, B)—po(x, 4) is also continuous. As

G = Fzlo(z, B)—o(z, 4)> 0],

the set G is open (cf. Corollary 2, § 2). Similarly, the set H
is open.
The proof of the equality G ~ H = ¢ is immediate.
Finally, the formulas (42) hold. For, if ¥ € A, then by
.virtue of Theorem 4 we have g(z, 4) = 0, but o(z, B) # 0,
because = does not belong to B (since A ~ B = §). There-
fore, o(z, A) < ¢(x, B), and from this it follows that = € G.
This means that 4 C @. Similarly, B C H.

10
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*THEOREM 7. Every closed set is a Gs-set.
Proof. Let F =F. Let us set

K(F,¢e) = Ealeo(@, F) <e].
In view of the continuity of the function o(x, F') the
set K (F, ¢) is open (cf. Corollary 2, § 2). We shall show that
F = \a-1 K(F, 1/n).

In fact, if xeF, then p(x,F)=0 and hence
xeK(F,1/n).

Conversely, if xz¢ F, then by virtue of Theorem 4,
o(x, F') > 0 and hence there exists an » such that o(zx, F')
> 1/n; therefore x¢ K (F, 1/n).

Remarks. If follows immediately from Theorem 7
that every open set is an F,-set (and hence every G;-set
is an F,-set). It also follows that condition (a) in the
definition of Borel sets (Chapter X1, § 6) can be replaced by:

(a’)  every open set belongs to R.

*§ 8. Extension of continuous functions. Tietze theorem !)

LeMmMA 1. For every pair of disjoint closed sets A and B
in the metric space X, there exists a continuous real valued
function f defined on the entire space X and satisfying the
following conditions:

-1 ed,
(43) f(x):{ 1 ];Z: ZEB

(44) —1<f@<1 for ax¢AuB.

It is easy to prove, using Theorems 3-3, § 7, that the
function f defined by the formula

() = {e(®, A)—e(x, B)}/{e(x, 4)+ o(x, B)}

satisfies the conditions set forth in the lemma.

1) We shall make use of Tietze theorem in the last chapter.
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LemmA 2. If f is a continuous real valued function
defined on a closed subset of the metric space X such that
If(®)] < u (#0), then there exists a continuous function g
defined on the entire space X and satisfying the following
conditions:

(43) 9(@)| <(Y3)u for all weX,

(46) lg(x)| < (1/3)u  for al xeX—F,
|
(47) @) —g@)| <(@B)p for all zeF.
Proof. Let
A = [L[f(@) <(=1/3)u] and B = Fz[f(x) = (1/3)u]

The sets 4 and B are disjoint and closed (see Corollary 2,
§ 2). The function

(48)  g(w) = (13)u{e(w, A)—o(», B)}/{e(x, 4)+ ¢(®, B)}
satisfies the required conditions in virtue of Lemma 1.

TIETZE EXTENSION THEOREM. Fvery continuous real
valued function f defined on a closed subset F of the metric
space X can be extended to the entire space X; i.e. there

exists a real valued function f* defined on the entire space X
such that

(49) f¥x) =f(x) for wxeF.
Moreover, if f is bounded:

(50) If(@)] < /;( #0) for every weF,

then

(31) If*(x)| <u for every xeX—F.

Proof. Consider first the case where the function f is
bounded and hence satisfies inequality (50). We define
a sequence of continuous functions g, ¢,, ... inductively.
Let go(x) = 0 for every e X. For given n >0 let us
assume that the functions g(x), ..., gu(x) satisfy the
inequality

n

(52)  [f@)— > gla)| <(23)"x for welF.

1=

(=3
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In the case m = 0 this inequality reduces to in-
equality (50).

Replacing in the assumptions of Lemma 2: f(x)
n

by f(x)— > gix) and x by (2/3)"s, we obtain a con-
i=0

tinuous function g¢,.; defined on the space X and satis-
fying the following conditions:

(53) gnir(@)] < (278" u  for xeX,

(54)  lgnia@)| <(@"3"u for weX-F,
n+1

(p5) lf(m)—— Z g,-(:v)l <(2/3)"'u  for xeF.
=0

Thus the continuous functions g, are defined for all
n=20,1,2,..
For every z ¢ X let us set

(56) @) = D) gi(@).
i=0
It follows from inequalities (52)-(54) that the series (56)
is uniformly convergent in the space X; and hence by
virtue of Theorem 1, § 5, the function f is continuous.
Moreover, condition (52) implies condition (49), and
because of inequality (54), we have for x e X —F:

@ =] Y g@) | < X lgia@)l <p X @3*) =g,
=0 =0

=0

and therefore inequality (51) is also satisfied.

Thus the theorem has been proved for the case where
the function f is bounded.

If f is unbounded, we first apply the homeomorphism A
which maps the space of all real numbers onto the open
interval —1 <y <1, e. g. h(x) = (2/r)arctanx. The func-
tion hf (the composition of the functions f and k) is con-
tinuous and bounded; hence there exists by virtue of the
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part of the theorem already proved a continuous func-
tion A* defined on the space X and such that

h*(x) = hf(x) for x e F', |h*(x)] <1 for v e X,

Now let
(@) = h1h*(a)

for every x e X. The function f* is continuous and for
every « ¢ F' we have

f*(@) = h7'hf (w) = f () .

Thus the theorem has been proved in all generality.

COROLLARY 1. Every continuous function defined on
a closed subset F' of a metric space X with values belonging
to one of the spaces &, I", EXE X .y H can be extended
to the entire space X.

We shall prove this corollary, e. g. for the Hilbert
cube H = IxJx.. The proof in the other cases is
analogous.

For every z ¢ F we have f(r)e I XTI X ..., and hence

f(@) =[fi(2), fr@), ..., fal®), ...],

where f,(x) is the n-th coordinate of the point f(x) in the
Hilbert cube, hence a continuous function with real values.
Extending each of the functions f, to a continuous fune-
tion f; defined on the entire space X, we obtain a function

@) =[fi(®), fi(@), ..., fal@), ...]
which is the extension of the function f (see Theorem 3, § 6).
COROLLARY 2. Ewery continuous function f defined on
a closed subset F of a metric space X with values belonging
to the sphere S, (i. e. to the set of points @3 + ...+ @y = 1
of the space &™) can be extended to some neighborhood of
‘the set F (with respect to the space X ).

Proof. By virtue of Corollary 1 there exists an ex-
tension f* e (&"")* of the function f. Let us set
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Because of the continuity of the function f*, @ is
an open set containing the set F' (since |f*(x)| = if(®)| =1
for x ¢ F). Thus the function

g(x) = f*(@)/|f*(@)|
is the required extension of the function f onto the set @
which assumes values belonging to o&,.

Remarks. Spaces which can be substituted in Corol-
lary 1 for &%, J", etc., are called absolute retracts. Spaces
which in Corollary 2 can be substituted for &, are called
neighborhood retracts. (These concepts were introduced by
K. Borsuk.)

This terminology is connected with the concept of
retraction. We say, namely, that a subset R of the space
X is a retract of this space if there exists a continuous
transformation f of the space X onto the set R such
that f(x) = « for z ¢ R (this transformation is called a re-
traction; a projection is an example of a retraction).

Thus, an absolute retract is, as can be proved, a space
which is a retract of every other space containing it and
in which it is closed. A neighborhood retract is not a re-
tract of the entire space, but of some one of its neigh-
borhoods in this space.

These concepts are important generalizations of the
concepts of classical n-dimensional geometry: the »-di-
mensional cube is an absolute retract, every »-dimensional
polyhedron is (as can be proved) a neighborhood retract.

Exercises

1. Prove that a necessary and sufficient condition that the
function f defined in the space X with values in the space Y be
continuous at the point x ¢ X is that for every set B c ¥ the con-
dition f(x) e« Int(B) implies the condition x e Int(f~(B)); similarly,
that it is necessary and sufficient that the implication [x ¢ f~1(B)]
=[f(«) ¢ B] hold for every set B c Y.

Hint: Make use of Theorem 1, § 2.

2. Prove: a necessary and sufficient condition for the function fto
be continuous is that every set A4 c X satisfy the inclusion f(4) c f(4);
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similarly: it is necessary and sufficient that every set B c ¥ satisfy
the inclusion f~X(B) c f~(B).

3. Prove that the composition of two continuous functions
is a continuous function.

4. Let the sets A and B be both open or both closed, and let f
be a function defined on the set A v B. Prove that if the function f
is continuous on the set 4 and on the set B, then it is also continuous
on the set 4 v B.

5. Let f be a function defined on the space X. If the space X
is a union of open sets G¢, and if on each of these sets individually
the function f is continuous, then f is continuous on the entire space X.

6. Let f be a function defined on the space X. If X = | nzy 4a
where A, c Int(4s+:) and if the function f is continuous on each
of the sets 4,, then it is continuous on the entire space X.

7. Prove: a necessary and sufficient condition for the one-to-one

function f to be a homeomorphism, is that the condition f(4) = f(4)
be satisfied for arbitrary set 4; similarly: it is necessary and sufficient

that the condition f~(B) = f(B) be satisfied for arbitrary set B.

Hint: Make use of Exercise 2.

8. If the function f defined on the space X is continuous, then
the set Em,[y = f(x)] is homeomorphic to X.

9. The set of all sequences of natural numbers forms a metric
space (the so-called Baire space), if for the distance between distinet
sequences & = (m,, My, ...) and y = (n,, 0y, ...) We take the number 1/r,
where r is the smallest index such that m; # nr. Show that this
space is homeomorphic to the set of all irrational numbers of the
interval [0, 1].

Hint: Assign the continued fraction

1 1
flx) = Al 1

[my |y

+...

to the sequence of natural numbers ¥ = (m,, m,, ...).

10. A necessary and sufficient condition for the limit f(x)

= lim fa(x) of the sequence of continuous functions f,, f,, ... defined
n—>00

in the space X to be a continuous function is, that the space X,
for every & > 0, be representable as a union of open sets An(e),
- where

An(e) = Fa{|fal@)— f@)] < e}

Hint: In order to show the continuity of the function f under
the assumption of our condition at an arbitrary point x, ¢ X, we
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find an index m, such that x, ¢ Ang(¢/3). Further, we make use of
the fact that the set Ang(¢/3) is open and that the function fn, is
continuous.

11. Introducing a “new’’ distance into the metric space X with
the aid of the formula
?@,y) = |le—yl/[{L+]z—yl},

we have defined a homeomorphic transformation of X onto X.

Deduce from this that the set of all sequences with real terms
® = (2, Xy .o Tm, ...) I8 a metric space under the following de-
finition of distance:

le—yl = D (1/2™)|@n— ym|/{1 +|2n— ym|}

m=1
(this is the so-called Fréchet space).
12. Let F be a closed subset of the space X, and let

fx)=1/ox,F) for wxeX—F.
Prove that the set
FEesly = f@)]n (@ ¢ F)

is closed in the space X x&.

Deduce from this that every open set in X is homeomorphic
to a closed subset of the space X x& (making use of Exercise 8).

Generalize this corollary to the difference of closed sets.

13. Let @ be a Gs subset of the space X,i.e.Q =G, A Gy ~...~
A Gn A ..., where Gy is an open set. Let

fa(@) = 1/o(x, X — Gy) for xeGn, and f(x) = [fi(®), fo(x), ...].
Prove that the set
Fealy = f@)]A (@ Q)

is closed in the space X x&ExEXE X ...
Deduce from this that every Gs-set is homeomorphic to a closed
subset of the space X xEXEXE X ...

"14. Let R denote a family of nonvoid closed bounded subsets
of a metric space X. By the distance of two sets A, B ¢ R we under-
stand the maximum of the two numbers

least upper boundzes o(x, B) and least upper boundyeso(y, 4).
Prove that the distance defined in this way, which we denote

by the symbol dist(4, B), metrizes the set R (i. e. it satisfies con-
ditions (1)-(3) of Chapter IX, § 1).
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15. Show that in Theorem 6, § 7, it is possible to replace the
assumption that the sets 4 and B are disjoint and closed, by a weaker
assumption, namely that A ~ B = (0 =4 ~ B.

16. Prove that if X = G v H, where G and H are open sets,
then there exist closed sets 4 and B such that

X=AuB, AcG and BcH.

17. For every pair of closed subsets A and B of the space X
there exists a pair of closed sets P and @ such that

PuQ=X, PnAn(AduB)=4, Q~A(4duB)=B.

Hint: Consider the sets

Felo@, 4) < o, B)] and Fale(w, B) < o(x, 4)].

18. Prove the following generalization of Theorem 6, § 7: for
every finite system of closed sets F,, F,, ..., Fy satisfying the equality
Fy,~F, ~ ... ~Fn = () there exists a system of open sets @,, Gy, ..., G
such that

GiAnGynenGr=10 and F;cGifori=1,2,..,n.
Hint: Consider the sets

Hi; = Ex[g(a:,Fi) <o, Fj)] and Gi=HuvHpou..woHpn.

‘ In order to prove that G, ~ Gy~ ... n Gon =  we consider for

each point # the maximumYof the numbers ¢(x, Fy), ..., ¢(x, Fn);
if it is the number o(x, Fi) then x ¢ G; .

19. Deduce the following corollary from [the preceding
theorem: if the open sets G,, G,, ..., Gn satisfy the equality
X =G, uGyu...u Gy, then there exist closed sets F,, Fy, ..., Fa
which satisfy the conditions

F,oF,v..0oFh=X and FijcGifori=1,2,..,n.

20. Show that the Hilbert cube & is homeomorphic to the subset
of the Hilbert space (cf. Chapter IX, § 1, Example 3) composed of
points # = (x,, «,, ..., @i, ...) such that 0 < x; < 1/i.

21. Show that Lemma 1 of § 8 can be strengthened as follows:
if f(®) = —1 then zed, if f(x) =1 then xeB.

Hint: Use Theorem 7, § 7.



CHAPTER XIII

SEPARABLE SPACES

§ 1. Separable spaces

Definition. A space is said to be separable if it
contains a countable dense subset.

Hence, a space is separable if it contains a sequence
of points p,, p;, ... such that every point p is of the form
» = lmps,.

The space of all real numbers is a separable space, for
the set of rational numbers is countable and dense. An
example of a space which is not separable, is an arbitrary
uncountable set in which |r—y| =1 for every pair of
points = # y.

We say that a sequence of non-empty open sets
Gy, G, ... forms a base of the space if for every point p
of the space and for every ¢ > 0 there exists an n such that

1) peG, and (G, <c¢.

In the space of all real numbers the open intervals
r < x < 8 with rational endpoints » and s form a base.
The set of these intervals is countable, and for every real
number x and for every ¢> 0, there exist rational r and s
such that r <@ < s and s—r <e.

THEOREM 1. Every separable metric space has a base.
Conversely, if a space contains a base, then this space 1is
separable.

Proof. Let py, p,, ... be a dense sequence in the given
metric space. Let us consider the spherical neighborhoods
of the points p, with rational radii:

Kn,r = Ex(lw_pn]) < 7’) .
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The set of these neighborhoods is countable (cf. Theo-
rem 3, Chapter V, § 3) and forms a base.

In fact, for an arbitrary point p and every number
¢ > 0, there exists a point p,, such that [p—p,| < e. Let r
be a rational number such that |[p—op,| <r <e Then
peK,, and 6(K,,) < 2¢ and hence the sets K,, form
a base.

In order to prove the second part of the theorem,
choose a point p, in every G,. The set of these points
is countable and dense in the space.

THEOREM 2. If G4, G,, ... is a base of the given space
then every open set H is the union of a certain number of
sets belonging to this base.

Proof. Let p € H. Since the set H is open, there exists
a spherical neighborhood K of p such that K C H. By
virtue of our assumption, there exists a set G, such that
p € Gy and 6(G,) < 36(K), and therefore G, C K. Thus, for
every point p € H, there exists an index n(p) such that
P € Guypy C H. Hence H is the union of the sets Gy for
all points p € H.

THEOREM 3 (Lindelof). In a separable space, every
family of open sets H; where te T (T is an arbitrary set)
contains a (finite or infinite) sequence ty,t,, ... such that

\Un Hy, = Ut Hy

In other words: every mnoncountable covering consisting
of open sets contains a countable covering.

Proof. Let G4, G,,... be a base of the space. Let
kyy ks, ... be a sequence consisting of numbers ¢ such
that G; is contained in some one of the sets H;. Therefore
to each k, there corresponds a certain index ¢, such that
Gk” C H,,. We therefore have

(2) Un G"'n C’ L-/ln th C Ut Ht .

It remains to prove the inclusion

(3> L./t HtC Un Hln-



156 SET THEORY AND TOPOLOGY

Let p € H;. Since the sequence @, G,, ... forms a base
there exists an ¢ such that p e G;C H;. Therefore, the
number ¢ belongs to the sequence k,, k,, ..., whence

p e Un Gy, and hence pelJnHy,

by virtue of (2). Inclusion (3) is therefore proved.

§ 2. Properties of separable spaces

THEOREM 1. Every subset Z of a separable metric
space X is a separable metric space.

Proof. Let &4, G,, ... be a basis of the space X. It is
eagily seen that the sequence of the non-empty sets
H,=27ZnG@G, is a base of Z.

THEOREM 2. The cartesian product of two or a finite
number of separable spaces is a separable space.

Proof. If the spaces X and Y are separable, and

P = (py, Ps, ...) i8 dense in X, and @ = (¢, ¢,, ...) is dense
in Y, then the set

(4) PXQ = ({P1,q0, P12y P2y @15 P2y LDy o5

. . <pi7 41'>7 .)
is dense in the space X X Y.

For, if (p,q> e X X Y, then p and ¢q are of the form
(5) p =limp,, ~and ¢=limg,,
n—00

n—o0

whence
{p,q =lmpg, 9,

N—>00

i. e. the point <{p, ¢> is the limit of a sequence of points
belonging to the sequence (4).

The generalization of the proof to the case of a finite
number of sets is immediate.

THEOREM 3. If the spaces X, X,, ... are separable, then
the space X, X X, X ... is also separable. In particular, the
Hilbert cube S is separable.

Proof. Let R, be a countable set dense in the space
X, (e. g. let R, be the set of rational numbers on the
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closed interval J =[0,1] if X,, = J). Let a,, be a fixed
point of the set R, (e. g.let a, =0, if X = J). Let us
consider the set  of all sequences (p,, p,, ...) such that

1. pm € R,, for every m,

2. pm = a,, for sufficiently large m.

Every sequence belonging to the set @ is a point of
the space X; X X, X ... Obviously @ is countable (cf. Theo-
rem 5, Chapter V, § 3).

We shall prove that the set @ is dense. Let
2 = (i, &5, ...) € X; Xx X, X ... Since R, = X,,, we therefore
have for every m
(6) L = limry, ,

n—>00

where 7y, € B,. Let us consider the sequence of points be-
longing to Q:

1 1
p =(rl,a2,a3,a4,...),
2 2 2
p :(7’177'27a37a’47'--)7
n noon n
4 =</"17/r27 vy Py Opy1y Apya, )7

...........................

By virtue of (6) we have x = limp», which was to
n—>00

be proved.

§ 3. Theorems on powers in separable spaces

THEOREM 1. Every separable space has power <c.

Proof. Let p,, p,, ... be a sequence dense in the space.
Therefore, to every point « there corresponds a sequence
of natural numbers k,, k,, ... such that x = limpy, . Thus,

NnN—>»00

there are at most as many points in the space as there
. are infinite sequences consisting of natural numbers,
i. e. at most ¢ (cf. Chapter VI, § 4, (42)).

THEOREM 2. The number of open sets in a separable
space is at most c.
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The same applies to closed sets.

Proof. Let Gy, Gy, ... be a base of the space. By
virtue of Theorem 2, § 1, to every open set H there cor-
responds a sequence of natural numbers %, k,, ... such that

H=J2,6,.

It follows from this that the number of open sets is
at most that of all sequences of natural numbers, i. e. at
most ¢.

The second part of the theorem follows immediately
from the first, for, if we assign to each open set its com-
plement, then we map the family of open sets onto the
family of closed sets in a one-to-one manner.

*Remark. More generally, we can prove that the
family of all Borel subsets of a separable space has power < c.
Hence, every separable space of power ¢ contains non-
Borel sets; and furthermore, since the family of all subsets
of this space has power 2¢, the family of non-Borel sub-
sets has power >c¢ (and therefore, e. g. on the real line
there exist more non-Borel than Borel sets).

THEOREM 3. Hvery family R of disjoint open subsets
of a separable space is countable.

Proof. Let p,, ps, ... be a sequence denge in the space
under consideration. Hence, if H is a non-empty set
belonging to the family R, then there exists an index n
such that p, e H; we denote this index by m(H); if § e R
then we put =n(f§) = 0. We have therefore assigned to
each non-empty set H belonging to R a number n(H)
such. that

(7) Pn) € H.

Distinet numbers correspond to distinet sets. For if
n(H;) = n(H,), then by (7) we have

Py € Hy ~ H,

which is possible only if H, = H, (because the sets be-
longing to the family R are disjoint).
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Therefore, there are at most as many elements of
the family R as there are non-negative integers, which
was to be proved.

THEOREM 4. The set of isolated points of a separable
space is countable.

Proof. Since each isolated point of the space con-
stitutes an open set of the space (see Chapter XI, § 1),
it follows that the one-element sets, whose single element
is an isolated point, form a family of disjoint open sets.
This family is countable by virtue of Theorem 3, and hence
the set of isolated points is also countable.

COROLLARY. Let Z be a subset of a separable space.
Then the set of isolated points of Z is countable.

In fact, the set Z, being a subset of a separable space,
can itself be considered to be a separable space (by virtue
of Theorem 1, § 2).

THEOREM 5. If the spaces X and Y are separable, then
the space YX (i.e. the set of continuous functions which
map the space X onto subsets of the space Y ) has power <c.

Proof. By virtue of Theorem 2, Chapter XII, § 2,
if fe YX, then f is a closed set in the space X x Y;
but since the latter space is separable (Theorem 2, § 2),
the family of all its closed subsets has power <c¢
(Theorem 2).

Remark. If the space Y has power ¢, then the space
YX has the same power, because the set of constant
functions is then of power c¢. Under the assumption that
the space X also has power ¢, we note that there are
more discontinuous than continuous functions, because the
set of all functions mapping X into the subsets of Y
has power ¢¢ > ¢ (cf. Chapter VI, § 4, (45)).

§ 4. URYSOHN THEOREM. Fvery separable metric space X
48 homeomorphic to a subset of the Hilbert cube .
We write this symbolically as

XCH.

top
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Proof. By Theorem 5 of § 4, Chapter XII, we can
assume that

S(X)<1.

Let p,, ps,... be a sequence of points dense in the
space X. To each x ¢ X we assign the point of the Hilbert
cube with ‘“‘coordinates’: |x—p,|, |[t—p,, ..., 1. €.

(8) h(z) = (le—pily =Dl .oy l€— D0l ..0) .

The functions
(9) ho() = |2— pal

are continuous (Chapter XII, § 6, Theorem 4), and there-
fore, by Theorem 3, Chapter XII, § 6, the function h is
also continuous. We shall prove that this function is
2 homeomorphism.

We assume that

(10) limh(x;) = h(x).
k—o0
We must show that
(11) lima, = x .
k—o00

Let ¢> 0. Since the sequence p,, p,,.. is dense in
the space X, there exists a point p; such that

(12) le—psl <e.
It follows from formulas (10) and (8) that
,P_ghi(xk) = hy(®) .
Because of (9) this means that
Az —pj| = |2—p;l ;
therefore, there exists a k, such that

(13) |z —psl < le—pjl+e
provided that k> k,.
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By the inequalities (12) and (13), we therefore have

|2 — 2| < |o—pjl+Ip;—2el <3¢
for &k > k,. This means that formula (11) is valid.
Remark. As every subset of the Hilbert cube is
a separable metric space, it follows from the above theo-
rem that from the topological point of view separable metric
spaces are equivalent to subsets of the Hilbert cube.

*§ 5. Condensation points. The Cantor-Bendixson theorem

A point p of a set A is said to be a condensation point
of A if every spherical neighborhood of p contains a non-
countable set of points of the set A.

We denote the set of condensation points of the set A
by the symbol A°.

Every condensation point of the set A is an accumula-
tion point of A4, i. e.

(14) A°C A2,
It is also easy to prove that the set A° is closed, i. e.
(15) A0 = A°,
and that
(16) (A v B)=A°u B.

The following generalization of Theorem 4, § 3, is
valid.

THEOREM 1. In a separable space the set of points of
an arbitrary set A which are not condensation points of the
set, i. e. the set A— A° is countable.

Proof. Let G,, G,,... be a base of the space. Let
p e A— A° Then there exists a spherical neighborhood K
of p such that A ~ K is countable. At the same time,
there exists an index n(p) such that p € Gy C K, whence
AnGyyCAn~ K, and therefore the set A ~ Guy is
_countable.

Since the union of a countable number of countable
sets is countable (Chapter V, § 3, Theorem 4), the set

S=UpAf‘Gn(p)7

11
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where p e A— A9 is countable. Now, A—A°CS, for
p € A ~ Gypy. Therefore the set 4 —A° is countable.

Since a countable set clearly has no point of con-
densation, it follows from the theorem that

am) (A—A%=9.
From this we deduce that
(18) X0 = X

where X denotes the space. In fact, the identity X =X°o
(X — X°) yields, by virtue of (16) and (17), that

X0 = X0 (X— X0) = X%,

THEOREM 2. Every separable space X which does not
contain non-empty sets dense in themselves (i.e. a space
which is “‘scattered’ ) is countable.

Proof. By virtue of (18) and (14), we have X°= X%
C X9 i, e. X°C X%, which means that the set X° is
dense in itself. Therefore X°= ¢ by hypothesis, it fol-
lows X = X—X° and this last set is countable by
virtue of Theorem 1.

THEOREM 3 (Cantor-Bendixson). Every separable space
is the union of two disjoint sets, one dense in itself and
closed (i.e. perfect) and the other countable.

This is an immediate consequence of the preceding
theorem and of Theorem 3, Chapter XI, §.5.

Exercises

1. Show that the space considered in Exercise 1, Chapter IX,
is not separable.

Hint: Show that there exists a continuum of disjoint open sets
in this space.

2. Prove that A°— B° c (4 — B)°.

3. Prove the rules

(M) e 4t,  Usdsc(Us4).

4. Let there be assigned to every ordinal number £ < a an open
set A¢ lying in the separable space X, so that Agric Ag and Agp#Ae.
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Prove that a < Q (i. e. that there is but a countable number of
sets Ag).

Hint: Let Gy, G,, ... be a base of the space X. Assign to each &
(with perhaps the exception of the last one) a number = (&) such that

Gupy c A and  Guey— Agrn # 0.

5. Prove the analogous theorem obtained by making the as-
sumption that the sets A¢ are closed.

6. Deduce the following corollary from the above theorem:
every set of real numbers which is well ordered with respect to the
“less than’ relation is countable.

7. The derived sets of transfinite order are defined inductively
by means of the formulas

X0 = x4 XY (XH9, X* = [Ne<a X (2 a limit ordinal).

Prove (making use of Exercise 5) that beginning with some
a < 2 the derived sets of all orders are equal.

8. Deduce the Cantor-Bendixson theorem from the above theorem
making use of Theorem 4, § 3.

9. If the sets R,, R,, ... form a base of the space X and the
sets S,, S,, ... form a base of the space Y, then the sets Ru X S,
m=1,2,...; n=1,2,..) form a base of the space X x Y.

10. A space is said to be locally separable at the point p if there
is a separable neighborhood of p. Give an example of a metric space
which is locally separable at none of its points.

Hint: Use a construction analogous to the construction used
in Exercise 1, Chapter IX.



CHAPTER XIV

COMPLETE SPACES

§ 1. Complete spaces

Definition. We say that a sequence of points p,, p, ...
in a metric space is a Cauchy sequence if for every ¢ > 0
there exists a k such that for every n > k we have

(1) ]pn—pkl <87
i. e. if
AeViAn[(n > k) —>(|pa—pr| <e)].

A metric space is said to be complete if every Cauchy
sequence p;, P, ... is convergent, that is, there exists
a point p of this space such that p = limp,.

The space of all real numbers is comﬁgge according to
the known Cauchy theorem from analysis. Let us note
that completeness is not a topological property of the
space. The space of all real numbers is homeomorphic to
the open interval 0 < x < 1 (cf. Chapter XTI, § 4) which
is not a complete space inasmuch as the sequence 1/2,
1/3,1/4, ... is a Cauchy (sequence but is not convergent
(in this space).

THEOREM. Every convergent sequence (in an arbitrary
metric space) is a Cauchy sequence.

Proof. In fact, if the sequence p,, p,, ... is convergent

to the point p, then for every ¢ > 0 there exists a k¥ such
that for every n >k we have the inequality

(2) T pa—pl <ef2.
In particular, for n =k we have
(3) lpe—pl <¢/2.

For n >k, inequality (1) follows from the inequali-
ties (2) and (3).
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§ 2. CANTOR THEOREM. Let {F,} be a given decreasing se-
quence of mon-empty closed sets in a complete space:

(4) F,DF,D..0F,DF,12...
If

(5) limé(F,) =0,

then

(6) N1 Fo# 0.

Proof. Let p,eF,. Then p, p,, ... is a Cauchy se-
quence. In fact, by virtue of (5), there exists for every
£>0 a k such that é(F,) < ¢ provided n > k.

By (4), we also have p,ePF,CF;, and hence for
n >k, we have

Dn, PreFi, whence [pn—pi| <O(Fr) <e;
i. . D1y Psy ... i8 a Cauchy sequence. Since the space
is complete, this sequence is convergent. Hence, let
p =limp,.
n—->00
For every m, the terms of the sequence p;, ps, ...
with the exception of at most the first m —1 terms belong

to F,,, and since the set F, is closed, the limit of this
sequence also belongs to F,, i.e.

peF, for m=1,2,..., ie pe(\metFm.
Remark. The set ﬂ°,,‘:=1 F,, consists of only one point p.

§ 3. BAIRE THEOREM. In a mon-empty complete space
the union

(7) E=F1UF2U...UF]¢U..-
of closed boundary sets cannot fill the entire space; furtheér-
more, this union is a boundary set?).

Proof. In order to prove that the set E is a boundary
set in the space X, it suffices to show that every spherical

1) Sets of the form (7) (where the sets Fx are closed boundary
sets), as well as all their subsets, are said to be sets of the first category.
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neighborhood S, of an arbitrary point contains points
of the set X —F (see Theorem 2, Chapter XI, § 4).

Since the closed set F, is a boundary set, there exists
a point in S, with a spherical neighborhood 8; such that
8, C 8, and S, ~ F, = ¢ (see Chapter XI, § 4, Theorem 3).
Clearly, we can assume that 6(S;) < 1.

Similarly, we find an 8, such that S, C 8y, S, ~ Fy =0
and 6(8,) < 1/2.

Continuing in this manner, we obtain a sequence of
spherical neighborhoods which satisfy the conditions

(8) 8,08,28,0..08,D...,

(9) Sp A Fy =

and

(10) 6(8p) <1/n, whence iir?oé(Sn) =0.

From the Cantor theorem, we deduce by virtue of (8)
and (10) that there exists a point p belonging to all the sets
S,.. Therefore (by (9))

pe m;o=1gnc m;o=1(X‘—Fn) =X U:,o=1 r,,

hence by (7) pe X—E. Also peS,.

This completes the proof of the Baire theorem.

Remarks. 1. Since a subset of a boundary set is
a boundary set, Baire theorem can also be stated in
the following manner: in a complete space every set of
the first category is a boundary set.

2. It follows from the Baire theorem that every non-
void complete dense in itself space is noncountable.

In fact, if the space were countable: X = (p,, ps, ...),
then it would be the union of a sequence of sets each
consisting of one point: X = {p,} v {p,} v ... But each of
these sets is a closed boundary set, inasmuch as each
of the points p, is an accumulation point of the space X
(cf. Chapter XI, § 4, Theorem 4).

Since the space & of real numbers is complete and dense
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in itself, we have thus obtained a new proof of the
inequality ¢ > a.

3. The set of irrational numbers is not an F,-set in
the space & (and therefore the set of rational numbers
is not a G;-set).

For, if the opposite were true, the set of irrational num-
bers would be the union of a countable number of closed
boundary sets (because the set of irrational numbers is
itself a boundary set). But since the set of rational numbers
is the union of a countable number of one-element sets—
and hence of closed boundary sets—the entire space &
could be represented as the union of a countable number
of closed boundary sets; but this contradicts Baire theorem.

Exercises

1. Show by means of an example that Baire theorem is not
valid in arbitrary metric spaces.

2. The cartesian product X x ¥ of two complete spaces, metrized
with the aid of the formula

l<wu Y1) — {&xq, yz>| = {]wl - lez‘l‘lyl—yelz}l/z,
is complete.
3. The cartesian product X, x X, x X;x ... of complete spaces
is complete if the distance between two points x = (x,, ,, ...) and
Y = (Y1, Y, -..) 18 defined by the formula

oo
le—yl = > (1/2")|2a— yal/(L+]2n—yal) -
n=1
4. Prove that every Gs-set lying in a complete space is homeo-
morphic to a complete space (Aleksandrov theorem).
Hint: Use Exercises 3 and 12, Chapter XII.

5. Let X be a metric space and let ¥ be a complete space. Prove
that the space @ of all bounded mappings of the space X onto subsets
of the space Y, metrized by formula (6), Chapter IX, § 1, is com-
plete (cf. Exercise 5, Chapter IX).

6. Making use of the preceding exercise and Theorem 1, Chap-
ter XII, §5, prove that a subset of the space @ consisting of all
continuous mappings forms a complete space.

7. Prove that every metric space is isometric with a subset
of some complete space.

Hint: Use the preceding exercise and Exercise 4, Chapter I1X.



CHAPTER XV

COMPACT SPACES

The concept of a complete space arises from a generali-
zation of the Cauchy theorem; in an analogous way, the
idea of compact space arises from a generalization of the
Bolzano-Weierstrass theorem.

§ 1. Compact spaces

Definition. A metric space is said to be compact if
we can select from each sequence of points p,;, p,, ... of
this space a subsequence which is convergent to some
point p of this space; i. e. if there exists a sequence of
indices
(1) by <hy<..
and a point p such that

(2) limpg, =p.
n—>00

When we say that a set A (situated in a metric space)
is compact, we understand by this that the set A treated
as a space forms a compact space; strictly speaking, that .
every sequence of points belonging to the set A contains
a subsequence which converges to a point which also
belongs to the set A.

ExAmpLE. The classical Bolzano-Weierstrass theorem
states that the closed interval a < # < b is a compact set.
With the aid of this theorem it is easy to prove that the
closed square in the plane, and more generally the closed
cube in Euclidean n-space, is a compact space.

As we shall show, compact spaces situated in Euclidean

n-space are identical with the closed and bounded sets
in this space.
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§ 2. Properties of compact metric spaces

THEOREM 1. A compact space is complete.

Proof. Let us assume the sequence p,, ps, ... is &
Cauchy sequence. We shall show that it is convergent.

By assumption, for a given ¢> 0, there exists a j such
that for n > j we have the inequality

(3) [Pn—p;l <.

Since the space is compact, we can select a subsequence
from the sequence p,, p,, ... which satisfies conditions (1)
and (2).

We shall prove that

(4) limp, =p.
n—-oo

By virtue of (2) there exists an m > j such that
) 1P, — Pl <&

Since (because of (1)) kn, > m > j, we therefore have
by (3):
(6) 1P —Psl <.

Adding inequalities (3), (5) and (6) memberwise, we
obtain

[ pn—p| <3e for n>j,

which proves equality (4).

THEOREM 2. Every compact space is separable. Further-
more, for every number ¢ > 0, there exists a finite number
of points A, = {py, P2y ..., P} Such that

(7) o(w, 4,) <e,

i. e. such that every point x is at a distance less than & from
some point of the set A,.

We define the set A, inductively. Let p, be an arbitrary
point of our space. Let p, be an arbitrary point such that
[py—p.| = &, provided that such a point p, exists; if
such a point does not exist, then we take 4, = {p,}.
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In general, p, is a point such that
(8) | Pn—Pm|=¢ forall m<n,

provided that such a point p, exists; if such a point does
not exist we take A, = {p,, ..., Pn—1}.

The sequence p,, P, ... constructed in this manner
must be finite; for in the contrary case, it should contain
a convergent subsequence (by virtue of the compactness
assumption), which however is impossible because it fol-
lows from condition (8) that no subsequence of p,, p,, ...
is a Cauchy sequence, and hence it cannot be convergent.

‘We have thus defined the set A,. It remains to show
that the space is separable.

Let B=A4, v Ayu...u Ay, v ... This set is coun-
table. It is dense in the space because for every = and
every n we have p(x, B) < o(x, Ayn) < 1/n (by virtue
of (7) and Theorem 2, Chapter XII, § 7); this means
that there exists a point b e B such that |x—b| < 1/n.
And therefore x ¢ B.

THEOREM 3. Every compact space X is bounded.

Proof. Let us put ¢=1 in Theorem 2. It follows that
I(X) < d(4,)+2.

THEOREM 4. A compact subset A of an arbitrary space X
18 a closed set.

Proof. Let us assume that the set A is not closed.
Then there exists a sequence of points belonging to 4
and converging to a point » which does not belong to 4.
Then every subsequence of this sequence is also con-
vergent to p; hence the set A4 is not compaect (because
the point p does not belong to it).

THEOREM 5. Every closed subset F of a compact space X
i8 compact.

Proof. Let p,,p,,.. be an arbitrary sequence of
points in the set F. Since X is a compact space, we can
choose from this sequence a subsequence which satisfies
conditions (1) and (2).
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On the other hand, since F is closed, condition (2)
yields that p € F, which proves the compactness of the
set I

§ 3. The Cantor and Borel theorems

1. CANTOR THEOREM. In a compact space every de-
creasing sequence of mon-empty closed sets

{9) F,DF,D..0F,D...
satisfies the imequality
(10) (=1 Fa 0.

The course of the proof is similar to that of the proof
of the Cantor theorem for complete spaces. Namely, let
P be an arbitrarily chosen point in the set F,. From the
sequence {p,} we choose a subsequence py,, Px,, ... Which
is convergent to some point p of our space (i. e. which
satisfies equality (2)).

Since, by virtue of (9), each of the sets F, contains
almost all of the terms of the sequence p,, ps, ..., and
hence, also almost all of the terms of the sequence
Diys Piss -y We therefore have p ¢ F, because the sets Fy
are closed.

This means that inequality (10) is satisfied.

We shall deduce the following theorem from the
Cantor theorem:

2. BOREL THEOREM. Let X be a compact space and let
(11) X = U’;.bo=1 Gn’
where the G, are open sets. Then there exists an tndexr m
such that
(12) X=Guv..uly,.

Remark. We can formulate the Borel theorem as

follows: every countable covering of a compact space by
open sets contains a finite covering.

Proof. Let us assume that such an index does not
exist and let us set

(13) Fo=X—(GyuGyu... uGy).
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Therefore, F, is a non empty closed set (being the com-
plement of an open set).

By virtue of (13), condition (9) is satisfied and there-
fore according to the Cantor theorem inequality (10)
holds. From this and the de Morgan laws we deduce that

X #X— Npe1 Frn = Un=r (X—Fy).
At the same time, by (13), we have
Ut (X —F) = Ut (610 G e U Gr)
and therefore
Une1 (Gru Gyu .. U Gy) # X

But by virtue of (11) we have
X =Un1GCUnt (GhoGyu.. U@y,

ie. Une1(Ghu Gyu ... U Gy) = X,
‘We have thus arrived at a contradiction. This com-
pletes the proof of the Borel theorem.

Remark. Conversely, it would be possible in an
equally simple manner to deduce the Cantor theorem
from the Borel theorem (the Borel and Cantor theorems
are dual of one another).

The following theorem is a sharpening of the Borel
theorem:

3. BOREL-LEBESGUE THEOREM. Every covering of a com-
pact space by open sets contains a finite covering.

Proof. Let us set
X =1J; Gy.

Since the space X is separable, being compact (ef. Theo-
rem 2, § 2), we may apply Lindel6f theorem (Chapter XIII,
§ 1, Theorem 3), by virtue of which any covering of the
space X by open sets G; contains a countable covering:

X - U;.:;l th .
Applying Borel theorem in turn to this covering, we
choose a finite covering Gy, Gy,, ..., Gy,

X=G¢IUG¢2u...uGt".
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Remarks. 1. As the Borel theorem is dual to the
Cantor theorem, so the Borel-Lebesgue theorem is dual
to the following theorem (due to Riesz) which establishes
a generalization of the Cantor theorem:

If a family of closed subsets Fy of a compact space X is
such that

Ftl r\th A eee N Ftk # 0

for every finite system of indices, then

e Fe#0.

The proof does not present any difficulties; we base
our arguments on the Borel-Lebesgue theorem (and put
Gt = .X ’—F t)-

2. The Borel-Lebesgue theorem can be given the fol-
lowing somewhat more general form:

Let a family of open sets Gy and a compact set A, where

ACUtGH

be given in an (arbitrary) space X; then there exists
a finite system of indices t,,1,, ..., t,, Such that

ACthungu...uth.

THEOREM 4. In a compact space, the family of sets
which are simultaneously open and closed is countable.

Proof. Since a compact space is separable (see Theo-
rem 2, § 2) it contains a sequence of open sets G, G,, ...
such that every non-empty open set H is the union of
a certain number of these sets (see Chapter XIII, § 1,
Theorem 2). If, moreover, the set H is closed, then we
can assume that this number is finite (by virtue of Borel
theorem). Hence to every open-closed set H we can
assign a finite system of natural numbers %k, k,, ..., kx in
such a way that

Hszlquzu...qu".

To distinet sets H there obviously correspond distinet
systems of natural numbers. Hence, there are at most as
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many open-closed sets as there are finite systems of nat-
ural numbers, and the number of the latter is countable
(see Chapter V, § 3, Theorem 5).

§ 4. Continuous mappings of compact spaces

THEOREM 1. The continuous image of a compact space
18 a compact space, . e. compactness is an thvariant of con-
tinuous mappings.

Proof. Suppose f(X) =Y, where f is a continuous
function and X is a compact space. We have to show
that the space Y is also compact.

Let ¥,,9,,... be an arbitrary sequence of points of
the space Y. Since every point of the space Y is the
image of some point of the space X, there exists a se-
quence of points x,, %, ... belonging to X such that
Yn = f(2n).

Since the space X is compact, the sequence x,, @,, ...
contains a convergent subsequence Ty, Ty, ...:

limz, =veX.
n—>00

Because of the continuity of f, it follows from this that

limf(x,) =f(z), 1ie limy, =f(®x)e,

n—o0

which proves the compactness of the space Y.

THEOREM 2. If X is a compact space, F = FC X and
f s a continuous function defined on X, then f(F) is a closed
subset of the space f(X).

In other words, F = F implies f(F) = f(F).

Proof. By virtue of Theorem 5, § 2, F is compact,
and therefore by Theorem 1 the set f(¥F) is compact and
hence, by Theorem 4, § 2, it is a closed subset of the
space f(X).

Remark. It is essential to make the compactness
assumption in Theorem 2. In fact, consider the following
example: let X = the plane, ¥ = hyperbola y = 1/x and



COMPACT SPACES 175

let f denote the projection of the plane onto the x-axis,
i.e. f(x,y) =a.

THEOREM 3. If the continuous and one-to-one function f
maps a compact space X onto Y, then f is a homeomorphism.

Proof. We have to show that the inverse function
= f-1is continuous, i. e. (cf. Chapter XII, § 2, Theorem 1)
that if F is an arbitrary closed subset of the space X
then the set g~(F) is closed in Y. But g = f and hence
g YF) = f(F) and, by Theorem 2, f(#) is closed in Y.
. THEOREM 4 (Generalization of the Weierstrass theorem).
Every continuous real valued function f defined on a compact
space X is bounded and attains its least upper and greatest
lower bounds.

Proof. The set f(X) is, by virtue of Theorem 1,
a compact subset of the set of real numbers and hence
(cf. Theorems 3 and 4, § 2) it is a closed and bounded set.
Since the set f(X) is closed, the least upper bound m,
and the greatest lower bound m, of the function f belong
to f(X). Therefore, there exist an x, such that m, = f(x,)
and an a, such that m; = f(x,), which was to be proved.

We introduce the concept of uniform continuity in
a way similar to the way it is done in analysis.

We say, namely, that the function f defined on the
space X with values in the space Y is uniformly continuous,
if for every ¢ > 0 there exists a 6 > 0 (depending only
on &) such that the condition |¢'—2'| < é implies the
inequality |f(x')—f(2"")] < ¢ for arbitrary pairs of points
2’y x'" of the space X; we write this condition symbolically
in the form

NeVaAw Ner {{J&'—a""| < 6]=[If (@) —f(@")] < el}.

Continuity in the usual sense follows from uniform
continuity. The converse theorem is not true as shown by:

y=1llz (0<xr<l), y=€ (—co<xr< +400).

On the other hand, the following theorem is valid in
compact spaces:
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THEOREM 5 (Generalization of Heine theorem on
uniform continuity). A continuous function f defined on
a compact space X 18 uniformly continuous.

Proof. Let us assume the contrary, that the func-
tion f is not uniformly continuous. Hence there exists
an &> 0 such that for every 6 >0 there exists a pair
of points &', " in the space X which satisfies the con-
ditions

l'—2""| <dé and |f(x')—f(z')] >,

VeAsVar Vo {{l&'—a"| < OIA[If (') —f(2"")| = ]} .
From this it follows in particular for 6 = 1/n that
there exists a pair of points «,, z, such that:

(14) |Xn— | < 1/n
(15) |f () — f (wn)| =
Since the space X is compact, we can select a con-

vergent subsequence &, , &, , ... from the sequence 27, s, ...
Let
(16) limazy, = .

n—»00

It follows from conditions (14) and (16) that

(17) limay, = .
Since the function f is continuous, we deduce from
equalities (16) and (17) that
Limf(a,) =f() and limf(zi) =f(2),

n—>00

whence
hmlz‘ wr,) — I (k)

which is a contradiction of inequality (15).

*THEOREM 6 (on continuous convergence). A necessary
and sufficient condition for a sequemce of continuous func-
tions fy, fay ... defined on a compact space X to be uniform-
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ly convergent to the funmction f, is that the condition

(18) limz, =2
imply
(19) ii_ﬂfn(wn) =f(@).

[We say that the sequence of functions f,, fs, ... i8
continuously convergent if condition (18) implies condi-
tion (19).]

Proof. Necessity. Let us assume that the sequence
fis f2y ... is uniformly convergent to the function f. Let
£> 0. Hence, there exists a k such that

(20) () —f(2)] <&
for all # and for » > k.

Let us assume (18) is satisfied. We must prove
equality (19).

Applying (20), we have

(21) |fa(@n) — f ()] <&
for n > k.

Since the function f is continuous, being the limit
of a uniformly convergent sequence of continuous func-
tions (cf. Chapter XII, § 5, Theorem 1), therefore by (18),
we have

(22) If (2n) —f(@)] <&
for sufficiently large .

From inequalities (21) and (22) we deduce for suf-
ficiently large n

]fn(wn)_f(w)l < 2 ’

which proves that equality (19) is satisfied.

Sufficiency. Let us assume that the sequence of con-
tinuous functions f, is continuously convergent to the
function f, but that it is not uniformly convergent. Hence

VeAnVaVie {(k> n)Allfu(x) —f ()] > €]},

12
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i. e. for some &> 0 and for every natural number n we
can choose a point x, and an index k, in such a way that

(23) Ty < Ty < oo <hin < ...y
(24) fi,(@n) —f(®n)| =& for mn=1,2,..

The space X being compact, we can choose a conver-
gent subsequence from the sequence x,, o, ... Clearly,
we can assume that the points x, are so chosen that the

sequence &, &y, ... is convergent. Now, let the equality
(18) be satisfied. We shall prove that
(25) lim fy. (#2) = f() .

Let us construct the sequence 2, 23, ... in the follow-
ing way:
(26) op =2, for [k, <m<k, (where k,=0).
Obviously
lima,, = limx, = 2.
m—>00 n—>oo

From this, by virtue of the continuous convergence
of the sequence f,, f5, ..., we have

lim fr(2m) = f()

and hence "
(27) ']yl;lgfk,,(mllc”) = f(x).

But since, by virtue of (26) a;, = @, (27) yields (25).
Since the sequence {f,} is continuously convergent,
we have

Hm fou(2,) = [ (o)

m—>o0

for fixed x,. Therefore, for every » we have
m—>00

whence we deduce that the inequality
(28) |fmg(@n) — F(2n)| < 1/n0
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holds for some increasing sequence of indices
(29) My <My < .. <Mp < ...

We showed above that conditions (18) and (23) im-
ply (25). Therefore, taking (29) into account, we have

(30) }bi_)lgfm,,(wn) =f(@).
Formulas (25) and (30) yield
Lim|fy (@n) — fm,(€n)] = 0,

whence by virtue of (29) we have
lim|fy, (#n) — f ()] = O ;

but this contradicts inequality (24).
This also concludes the proof of the theorem.

§ 5. Cartesian multiplication of compact spaces

THEOREM 1. The cartesian product X x Y of the compact
spaces X and Y is a compact space.

Proof. Let 2n = xp,yn> e X x Y, i.e. 2pe X, yne Y.
We must show that the sequence 2;, 2, ... containg a con-
vergent subsequence.

We can choose a convergent subsequence from the
sequence x,, %, ... since the space X is compact. Hence, let
(31) lima, =@.

n—>00

Similarly, since the space Y is compact we can select

a convergent subsequence from the sequence ¥, , Yx,, ... Liet

(32) limy,k” =9v.
n—»00
By (31) we have
(33) limz, =.
n—oco 0

Because of (32) and (33) we get

Hm(w,kn, Yn, > = <&, Y, ie. limg, =z.
n—>o00 NnN—>00
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We have thus selected a convergent subsequence from
the sequence 2y, ?;,...; this completes the proof.

In an analogous manner it can be proved that the
cartesian product of an arbitrary finite number of compact
spaces is a compact space.

Remark. In particular, the »n-dimensional cube J" is
a compact space. It follows from this that for subsets
of Euclidean space &, the concept of a compact set coincides
with the concept of a closed bounded set. For, every bounded
subset of the space &" lies in a sufficiently large cube
(cf. also Theorems 3 and 4, § 2), and therefore—being
a closed subset of a compact space—is compact (Theo-
rem 5, § 2).

THEOREM 2. If the spaces X,, X,, ... are compact, then
the space X, X X, X ... 18 also compact.

Proof. Let p,, p;, ... be a sequence of points belonging
to the space X, X X, x ... Hence

1 2
Dn = (Tny@ny.oy@n,...), where zneX for n,m=1,2,...

Since the space X, is compact, there exists a sequence
of natural numbers

(34) 1<kbi<k,<..
such that the sequence ay,, «%,, ... is convergent. Let
(35) limo, = o',

Similarly, there exists a sequence

(36) 1<ji<ijp< ..

such that the sequence w , @ , ... is convergent. Let
1 2

(37) lima;, = a°.

N—>00 n
Continuing this process, we define an infinite sequence

by 2% a3, ... Let us set
!

q = (% 2%, a3 ...).
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Hence we have ¢ ¢ X; X X, X ... We shall prove that ¢
is the limit of the sequence

(38) Pry Pryy Dy s o

In fact, making use of formulas (34) and (36) we
verify that
1<k1<kh<kjil<...,

and therefore the sequence (38) is a subsequence of
the sequence p,, Ps, Ps, ...
The sequence

1 1
Ly y .%'k’.‘, wes

is therefore a subsequence of the sequence @y, , Ti,, Tiyy ---;
hence, by virtue of (35) it is convergent to x'. Similarly

the sequence
2 2

xk,‘ 5 xkji,’ “ee
converges to a? by virtue of (37).
In general, the sequence

Yy Thyy Ty y -
converges to ™
Thus, we have proved that the sequence (38), which
forms a subsequence of the sequence p,, p,, ..., is con-
vergent to ¢g. This means that the space X, x X, X...
is compact.

§ 6. The function space YX

Let X be a compact space and let Y be an arbitrary
metric space. We denoted by YX (Chapter XII, § 2) the
set of all continuous functions of the form y = f(x),
where xe X and ye Y.

Under the assumption that X is a compact space
we may consider YX as a metric space by defining the
distance between two ‘points’’ f and g of this space by
the formula (cf. Chapter IX, §1, 4.):

(39) If — g = least upper bound |f(z)—g(x)|.
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The least upper bound considered here always exists
because the function |f—g|, being a continuous fune-
tion (see Chapter XIII, § 6, Theorem 4) of the variable z
which runs through the compact space X, is bounded
(by Theorem 4, § 4).

Conditions (1)-(3) in the definition of a metric space
(Chapter IX, § 1) follow easily from formula (39). There-
fore, YX is indeed a metric space.

According to the definition of limit given in Chapter X,
§ 1, we have

(imf, = f) = (lim|fs —f| = 0)
n—00 n—00
= AeVieAn{(n>E)=[1 w. b. |fa(z)—f(2)]] < e}
= AeViAnAz {(n > k) =|fn(x) —f(2)] < &} .
We have thus arrived at the following theorem:
THEOREM 1. The condition limf, = f means that the
sequence of functions fi, fs, ... iysb_);:niformly convergent to
the function f.
As can be seen from this, the convergence of the
functions f, in the space YX means not only that this

gequence is convergent for every x, but also that it is
uniformly convergent on the entire space X.

THEOREM 2. If the space X is compact and the space Y
18 complete, then the space YX is complete.

Proof. Let f,, f, ... be a Cauchy sequence of elements
of the space YX. This means, that to every ¢ > 0, there
exists a k such that the inequality

(40) [fn—ful <e
holds for all » > k.
The sequence

(41) fi@), fx(®)y .y ful@), ...

is a Cauchy sequence for all x e X, because it follows
from (40) that

(42)  |fa(@)— ful@)] <[L u. b. [fa(@)—fr(@)]] = fa—Tfel <&
for all n > k.
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Hence the sequence (41) is convergent, the space Y
being complete. Let us denote its limit by f(x), i. e.

fx) = }vl;l{.lofn(w) .

We shall prove that this convergence is uniform. In
fact, the inequality |fn.(z)—fr(®)] < ¢ holds for all m >k
and hence, by virtue of (42), we have

fn(@) — fm(2)| < 2e, whence |fa(®)—lmfn,(z)| < 2¢,

i.e. |falx)—f(2)] < 2e.
Being the limit of a uniformly convergent sequence
of continuous functions, the function f =limf, is con-

n—>00

tinuous (Chapter XII, § 5, Theorem 1),1i. e. fe YX.

Remarks. In particular, the space &7, i. e. the space
of all real valued continuous functions defined on the
closed interval 0 < a < 1, is complete; this space is not
compact, as is shown by the example f,(x) = 2™ This
same remark applies to the space 9.

Theorem 2 allows us to apply the Baire theorem of
Chapter XIV, § 3, to function spaces (in the case where
the space X is compact and the space Y is complete)
for the purpose of proving existence theorems.

As an example of the numerous applications to ana-
lysis let us quote the following theorem:

BANACH THEOREM. In the space & the set of functions
which possess a derivative at least in one point forms
a boundary set.

Banach theorem is a remarkable sharpening of
Weierstrass theorem on the existence of continuous funec-
tions which do not possess a derivative at any point.

§ 7. The Cantor set

The Cantor set is the set C of all numbers ¢ of the
form

(43) t :t1/3+t2/9+...+tn/3n+... 9
where t, assumes one of two values only: 0 or 2.
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They are therefore numbers of the interval [0, 1] which
can be written in the ternary system of calculation without
using the digit 1.

For example, 1/3 belongs to C because

1/3 = 0/3-+2/9+2/27+ ... +2/3" 4 ... = (0.0222...);,

but 1/2 does not belong to C.

We can also define the set C geometrically as follows.

Let us divide the closed interval [0, 1] into 3 equal
parts and let us remove the middle open interval. We
divide the remaining two intervals (0, 1/3) and (2/3, 1) into
three equal parts and remove their (open) middle parts.
Continuing in this way we obtain an infinite sequence
of deleted intervals

(1/3, 2/3), (1/9, 2/9), (7/9, 8/9), (1/27, 2/27), ...
Deleting from the interval [0,1] the union of the

removed intervals we obtain the set C which was defined
previously arithmetically.

Fic. 7

It is therefore a closed set and—as is easy to see—
it is dense in itself (and hence perfect), and also a boundary
set in the interval [0, 1] (it does not contain any interval).

Next, let us note that every number of the set C
possesses only one development of the form (43), where t,
is either 0 or 2 (without this last assumption this unique-
ness would not hold). It follows easily from it that
a necessary and sufficient condition for the sequence
of numbers of the Cantor set t©,:?, ...,t"™, .. to con-
verge to ¢, is that the k-th digits in the development
of these numbers converge to the k-th digit in the deve-
lopment of the number ¢ (for £k =1, 2, ...), i. e.

(44) (t = lmt™) = Ag (b = limt™) .

n—>00 n—oo
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This means that the following theorem holds (cf. Chap-
ter X, § 3, Theorem 2):

THEOREM 1. The Cantor set is homeomorphic to the
infinite power of the set consisting of two elements:

C i (0,2} X {0, 2} X {0, 2} X ..

Hence, we may identify the points of the Cantor set
with sequences of zeros and twos; in other words, we
identify a number belonging to € with the sequence of
its digits in the ternary expansion (of type (43)).

We deduce from this the following theorem:

TueorREM 2. C? - C.
In fact, every point p of the set 2 can be represented
in the form p = <{x,y)> where x and y are sequences of

zeros and twos:

mz(wl,m2, o) and ) :(y17?/29 ves) o
From these two sequences we form one: x,, ¥,, Z3, Ys, --
and we denote this sequence by f(p).
It is easy to verify that f is a homeomorphic trans-
formation of the set C? onto the set f(C?) = C.
We could prove similarly that C" — C’ for arbitrary n.
Moreover, the following theorem holds

THEOREM 3. CXxCXCX... 5 C.
The points p of the set CxC x... are sequences of

points belonging to C:

(45) p =[p®,p®, .., p™, ...], p™eC.

In turn, p™ being a point of the Cantor set, can be
considered as a sequence of zeros and twos:

pm = [p(ln)a pén)’ ey Pi,’{’, ]

The double sequence {p®™}, where n =1,2,.. and
"m=1,2,.., can, by a known method (cf. Chapter V,
§ 3, (13 and (14)), be transformed into a single sequence

P, PP, P, 1505 P, PP -
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Denoting this last sequence by f(p), we obtain—as
is easily proved—a homeomorphism mapping CxC x ...
onto C.

Remark. Let us consider the (closed) ‘‘non-deleted”
intervals which appear in the construction of the Can-
tor set, i.e.

(0,1/3), (2/3,1),
(0,1/9), (2/9,1/3), (2/3,7/9), (8/9,1),

The intersections of these intervals with the set C
we denote successively by Py, P,, P;, ... The following
theorem holds:

THEOREM 4. The sets P,, P,, ... are open-closed in the
space C and form a base of the space. Furthermore

limé(P,) = 0.

The proof that the sets P, are open-closed does not
offer any difficulty. In order to prove that these sets
form a base of the space C, it suffices to note that the
intervals of the first row have length 1/3, those of the
second 1/9, of the n-th 1/3"; furthermore the intervals
of each row form a covering of the set C.

§ 8. Continuous mappings of the Cantor set

THEOREM 1. The closed interval 0 <x <1 78 a con-
tinuous image of the Cantor set.

Proof. We define a so-called step function which maps
the Cantor set into the interval [0, 1]. Namely, the num-
ber te C being represented in the form (43), we set

(46) @(t) = 3(t/2 +to/4+ ... +1a/2"+..0) .

It is easy to verify that the function ¢ has the same
value at both endpoints of each deleted interval; we take
this value as a constant value of the function f in this
interval; otherwise, i.e. for te C, we set f(f) = ¢(t).
Figure 8 is the graph of this ‘step” function.



COMPACT SPACES 187

THEOREM 2. The Hilbert cube H is a continuous image
of the Cantor set.

Proof. Since, by virtue of Theorem 3, § 7, the set
CxCXxCx.. is a continuous image of the set C, it
suffices to prove that the space H =IxIxTx.. is

Fic. 8

a continuous image of the space CxCXC ... Thus,
if we represent the point p of this last space in the
form (45) we set

(47) f(p) = [p(pD), ¢(p?), ey @(PM), T,

where ¢ is the step function defined by formula (46).

The function f is continuous, as can easily be seen
(cf. Chapter XII, § 6, Theorem 3). Its values are sequences
of numbers belonging to the interval [0, 1], i. e. they
are points of the space . Every point = = (2, z,, ...,
Xy, ...) of this space is a value of the function f, for, by
virtue of Theorem 1, for every = there exists a point
p™ ¢ € such that x, = ¢(p™); hence it suffices to de-
fine p by formula (45) in order to obtain the equality
x = f(p).

THEOREM 3. Every compact space is the continuous
image of some closed subset of the Cantor set.

In fact, by virtue of the Urysohn theorem (Chap-
ter XIII, § 4) a given compact space X can be regar-
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ded as a subset F of the Hilbert cube . Here, F = F
because the space X is compact (cf. Theorem 4, § 2).
Let f be a function which maps the Cantor set C
continuously onto the space H. Let A = f~(F).
Because of the continuity of the function f, the set 4
is closed (cf. Chapter XII, § 2, Theorem 1). At the same
time (cf. Chapter IV, § 4, (18)): f(4) = ff~\(F) =
*Remark. Theorem 3 can be sharpened as fo]lows.

THEOREM 4. Every non-empty compact space is a con-
tinuous image ot the Cantor set.

Because of Theorem 3 it suffices, for this purpose,
to prove the following lemma:

LEMMA. Every non-empty closed subset F of the Canior
set C 18 a continuous image of C.

Proof. Since the sequence P,, P,,... forms a base
of the space C (see Theorem 4, § 7), the open set C—F
is the union of a certain number of terms of this sequence.
Hence, let
(48) C—F=GuvGu..,
where the sets G, belong to the sequence P, P,, ... Since
we have either P; ~ P; = ¢ or P; C P; for ¢ < j, we can
assume that the sets G, are disjoint (for we can omit
terms in the series (48) which are contained in the earlier
terms).

We denote by p, the point of the set F which lies
nearest the set G, i. e. the point in which the function
o(x, Gp) defined on the set F attains its greatest lower
bound (cf. Chapter XII, § 7, Theorem 5 and Chapter XV,
§ 4, Theorem 4); if there is more than one such point,
then we denote by p, any one of them.

We define the function f as the retraction of the set C
to F, namely:

x for zeF,
fo) =
pn for 1xeGy.

Hence we have f(C) =F. We must prove that the

funection f is continuous.
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The sets G, being open, the function f is obviously
continuous on their union. It remains to prove that if

(49) limay=x, where a,eC—F and xzeF,

k—o0
then
(50) ’Icimf(ack) =f(x), i e iimf(xk) =x.

We denote by n(k) an index such that
(51) € Gnry -

Since to a given G, there can belong only a finite
number of points of the sequence wx,, ®,, ... (for x¢ Gy)
and since (cf. Theorem 4, § 7) we have

limé(Pp) =0, and hence Ilimd(Gp) =0,

n—oo n—oo0
we deduce from this that
(52) Ilcimts(Gn(k)) =0.

Let ¢, denote the point of the (closed) set G, lying
nearest the point p,. Hence we have by virtue of the
definition of the points p, and ¢,

[Pn—qul = ¢(pn, Gn) < o(®, Gu) ,
and therefore
[Pnwy — gnag| < (@, Gngy) < |€— @4
according to (51); whence
1Py — @l < |Pniy — Gngn| 19000 — el < |0— wxe] + 6 (Gnaay) -

And therefore by virtue of (49) and (52) we have

(53) limpn(k) =x.

k—o00

At the same time, by virtue of the definition of the
- function f and by the formula (51) we have

(54) f(@r) = Pnary
and hence (50).
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*§ 9. Bicompact spaces

A topological space (not necessarily metric) is called
a bicompact space, if each covering by open sets contains
a finite covering (i. e. if the Borel-Lebesgue theorem is
satisfied, see § 3, theorem 3).

Obviously, each bicompact space is compact. But
a compact space may be non-bicompact. On the other
hand, a compact metric space is always bicompact (by
Theorem 3, § 3).

THEOREM 1. Every bicompact subset B of an arbitrary
‘G,-space X (see Chapter XI, exercise 11) s closed.

Proof. We have to prove that X— B is open. Other-
wise stated, we have to prove that, given a point a ¢ X — B,
there exists an open set G such that

(55) acGCX—B.

Now, X being a ‘G,-space, for each point x of B there
is a pair of open sets U, and V, such that

(56) aeU,, xeV,, U~ Vze=49.

Hence the sets B ~V, form a covering of B, and (B be-
ing bicompact), there is a finite set of points x, ..., Za
such that

B=(BAVgz)uv..u(BnAV,),
whence
BCVgu..uV,,.

It follows in view of (56) that the set G = Uy, ~ ... ~ Uy,
satisfies condition (53).

THEOREM 2. Every closed subset F of a bicompact space X
is bicompact.

Proof. Let us set F = | J;Gy, where the sets G, are
open relatively to F. Let H; be an open set in X such
that F ~ H; = G; (see Chapter XI, Exercise 4). Consider
the covering of X composed of sets H; and of the set
H = X—F. The space X being bicompact, there exists
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a finite covering H, Hy,, Hy,, ..., H; of X, i. e.
X=HuvH,v..uvH, whence F=G,v..u G,

and thus Gy, ..., G, is a finite covering of F.

THEOREM 3. The continuous image of a bicompact space
is a bicompact space.

(Here by a continuous mapping we mean a mapping f
such that f-@) is open whenever G is open; cf. Chap-
ter XII, § 2, Theorem 2).

Proof. Let f be a continuous mapping of X onto Y.
Let {G{} be an open covering of Y. Since {f!(G,)} is an
open covering of X, there is a finite system ¢, ...,%
such that

X :f (th f Gt ), hence Y = thu...UGg”.

THEOREM 4. Let f be a continuous mapping of a bi-
compact space X onto a G,-space Y. Then:

1. if F is a closed subset of X, f(F') is a closed subset of Y,
2. if f is one-to-one, then f is a homeomorphism.

The proof is essentially the same as the proof of
Theorems 2 and 3 of § 4.

Remark. The bicompact spaces have the following
important property (which we state here without proof).

TIHONOV THEOREM. The cartesian product P:X; of
bicompact spaces is bicompact (the product topology being
defined as in Exercise 14, Chapter XI).

Exercises

1. Prove: A necessary and sufficient condition for the space X to
be compact is that the derived set of every infinite set A c X be 5 0.

2. Prove: A necessary and sufficient condition for a space to be
compact is that it be complete and that for every ¢>0 it be possible
to represent it as the union of a finite number of sets with diameter
less than & (spaces with this last property are said to be totally
bounded).
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3. Prove: A necessary and sufficient condition for the function f
defined on an arbitrary space X (compact or not) to be uniformly
continuous, is that the condition

lim |2g — | = O
n—>o00

imply the condition
lim | (@n) — f (@n)| = O
—>00

for every pair of sequences x,, &,, ... and x}, 2}, ... of points belong-
ing to the space X.

4. Prove: In a compact space, every sequence of functions f,, f,, ...
which is convergent to the function f with the property that to
every ¢ > 0 there exists a ¢ > 0 such that the condition ['—a”| < ¢
implies

|[fa(x’)— ful@”’)] <& for n=1,2,..,
is uniformly convergent to f.

5. Prove that if f is a continuous mapping of the space X onto
the space Y, and the sequence A, > 4,>... is a decreasing sequence
of compact subsets of the space X then

f(ﬂgix An) = m;ilf(An).

6. Prove the following Banach Theorem (which holds in an
arbitrary complete space):

If f is a function which maps the complete space X continuously
into itself, and if for every pair of points x,, z, ¢ X the inequality

lf(xl)_f(x2)l < klxx_xll

holds, where % is a constant satisfying the condition 0 < k¥ < 1,
then there exists exactly one point x, ¢ X such that f(x,) = x,.
Hint: Construct inductively a sequence of points @, @,, ... in
the following way: let x, be an arbitrary point of the space X and
let oy = f(wn—). Show that a sequence constructed this way is a Cau-

chy sequence, and then setting x, = lim @s, prove that f(x,) = ,.
n—>00

7. Prove using Banach theorem the following theorem on the
existence of a solution of a differential equation:
Given the differential equation

(i) dyldz = f(x,y),

where the function f is continuous in some plane region G and
satisfies in this region the Lipschitz condition with respect to ,
i. e. there exists a constant M such that the inequality

(i) |f(m, n—fx, y)| < 3Il?/l“ yzl
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holds for every pair of points <x, y,>, <z, ¥;> ¢ G. Furthermore, let
{&%y, Yoy € G be a given point. Then there exists a number § > 0
such that in the interval w,—d, x,+ & there exists exactly one
function ¢ satisfying equation (i), i.e.

(iii) dg (@)/de = f(x, g(x)) ,
and satisfying the initial condition

(iv) Yo = g (@) -

Hint: Instead of the differential equation (i) we consider the
equivalent integral equation

(v) Y=Y+ f@, ydo.

To each element g of the space of continuous functions &7,
where J denotes the closed interval z,—d, z,+J, we assign the
function hy of the variable x defined as follows:

(vi) ho(x) = Yo+ ! f(t, g(®))at.

Making use of (ii) we prove that for sufficiently small 6 > 0
the inequality
|ho,— hg,| < klgi—g], where 0 <k <1,
holds.
Then applying Banach theorem (Exercise 6) to the space &7
we deduce that there exists exactly one function g such that k; = g;

it is a solution of equation (v), and consequently also of equation
(i), and satisfies condition (iv).

8. Theorem on implicit definitions. Let g be a continuous function
of two variables # and y with a continuous partial derivative with
respect to y in some square with center <=, y,>; let, also,

9(Zo, %) =0 and g;,(mo, Yo) # 0.

Then there exists one and only one function f, continuous in
a neighborhood of the point x,, such that

g(@, f(@) =0 and () =yo;

in other words, the curve Ez,,,[g(w, y) = 0] is locally, at the point
. <&y, Yo», the graph of a function.
Reduce the proof by means of the substitution

h(@, y) = Y= Yo— 9@, )90, Yo)
to the following theorem:

13
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Let & be a function of the variables «# and y, which is continuous
and has a continuous partial derivative with respect to y in a square
K with center <z,,y,> and with side 2d; let, also,

R (@, Yo) = 0 = hy(o, Yo) -

Then, there exists one and only one function f continuous in
a neighborhood of the point x,, such that

(vii) f@) =h(x, f@)+y, and f(z) =y,

Sketch of the proof. We can assume that the number d is
so small that

]h,',(a;, y) <% for (xz,y)eK.
Let I, denote a closed interval with center x, so small that

|h(x, )] <4d for wel,.

Let I, = Fuly— v, < d).

Let us assign to each function feID, satisfying the condition
f (@) = y,, the function Fj of the variable # defined as follows:

Fy(x) = yo+h(z, f(x)) for wxel,.
We obtain

th(x)_Fh(x)I = Ih(x’ fl(x))_ h(x9 fz(x))l
= |L(®) — f2@)] | ha(®, 22)| < $|ful@)— Fo@)| 5

where f,(x) < 2z < fa().
We deduce from this that

|Frn—Fr| < 3lfi—fil -

At the same time Fy eI, which we prove easily by using the
inequality |h(x, y)| <|h(®, y)— h(z, y)| +|h (@, yo)|. Finally, Fy(@o)=y,.
Hence we may apply Banach theorem. It follows that there
exists a function f such that Fy = f, i. e. satisfying conditions (vii).

9. Prove that for each metric non-compact space there is a real-
valued bounded function whose least upper bound is not attained.
Hint: Use Tietze extension theorem.

10. Prove that a compact space cannot be isometric to a proper
subset of itself.
11. Prove that a bicompact G,-space is normal.

Hint: Use a method similar to the method used in the proof
of Theorem 1, § 9.
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12. Let X and Y be metric spaces. Show that the set ¥X of
all continuous mappings of X into ¥ may be considered as a topo-

logical space by defining the closure & of & c YX as follows:
(f D) = [(f|F) e D|F for each compact F c X],

the topology in Y7 being defined as in § 6, formula (39), and @|F
denoting the set of elements of @ restricted to F.

Show that in the case where X is an open subset of a compact
space, f belongs to @ if and only if there is a sequence of functions
f1s> fa» « in @ converging uniformly to f on each compact subset of X.



CHAPTER XVI

CONNECTED SPACES

§ 1. Connected spaces

Definitions. A space X is said to be connected if it
does not contain a subset A such that

(1) p#A4A#X
and
(2) A~AX—A=y.

This means that a space is connected if and only if
every non-empty proper subset of it has a non-empty
boundary.

Let us note that a set A satisfying condition (2) is
closed, for we have then 4 ~ (X—A4) = ¢, therefore AC A
i.e. 4 = A. This set is also open since the set X— A is
closed. It follows from this that the space is connected
if and only if its only open-closed subsets are the null
set and the entire space.

The connectedness of a space can also be defined in
the following manner.

THEOREM 1. A space X is connected tf and only if,
for every decomposition

(3) X=AUB
into two nonvoid closed sets A and B, the condition
(4) A~B#Y
18 satisfied.
In other words, a space is connected if and only if it

cannot be represented as the union of two non-empty, disjoint
and closed sets.
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Proof. Let us assume that the space X is not con-
nected. Let the set A satisfy conditions (1) and (2).

The sets A and B = X— A are then non-empty and
closed, and satisfy condition (3), but do not satisfy con-
dition (4).

Next, let us assume that the sets A and B are closed
and non-empty and that condition (3) is satisfied, but
that condition (4) is not satisfied, i. e. that

(5) A~AB=49.

It follows from (3) and (5) that X— A = B and hence
A~X—A ZA_f\BZA/\BZQ.

Furthermore, 4 # X since B §§ and B= X— A. The
set A therefore satisfies (1) and (2), i. e. the space X
is not connected.

Remark. The condition given in Theorem 1 can be
formulated in the following manner: a space is connected
if for each of its decompositions into two non-empty
sets A and B at least one of these sets contains a point
which belongs to the closure of the other set (i. e. if there
exists a point p of the form p = limp,, where pe 4

n—>o00

and ppeB, or peB and p,eA).

This condition allows us to make a suitable formulation
of the definition of a connected set.

A set is said to be connected if this set treated as
a space forms a connected space. Therefore, a set C is
connected if for each of its decompositions imto two nonvoid
sets A and B:

(6) ¢ =A4u B,
we have _
(7 (A~AB)u(A~B)+#9.

In other words, if we say that two sets A and B are
separated provided that they satisfy the equality
(8) (ZnB)u(AmE)=0,
we may say that a set C is connected if it cannot be de-
composed into two nonvoid separated sets.
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We shall prove several properties of separated sets
which will be useful in the sequel.

THEOREM 2. If the sets A and B are separated and
A, C A and B, C B, then the sets A, and B, are separated.

This is true because
(ZIABI)U(AIABI)C(ZHB)U(Ar\E) =9.
THEOREM 3. If the sets A and B are separated and the
sets A and C are separated, then the sets A and B o C are

separated.
This follows from the formula

[An(Bu)]u[AdnBU (]
=AABuU(A~C)Uu(A~B)u(A~0)=9.

THEOREM 4. If the sets A and B are both closed or both
open, then the sets A— B and B— A are separated.

Proof. We have
A—BA(B—A)=AA~A(X—B)ABn~(X—-4)

CAAX-BABA(X—A).
If A=A, then

A~AX—BABA(X—A)CAA(X—4)=09.
If the set B is open, i. e. if the set X — B is closed, then
A~AX—B~ABA(X—A)C(X—B)~nB=y.

In an analogous way we prove that under our as-
sumptions

(A—B)AnB—A =9,
and hence the sets A—B and B— A are separated.

§ 2. Properties of connected spaces

THEOREM 1. The image under a continuous mapping
of a connected space is a connected space; in other words,
connectedness is an invariant of continuous mappings.
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Proof. Let f be a continuous mapping of the space X
and let f(X) = Y. Let us assume that the space Y is not
connected. We shall then prove that the space X is not
connected.

Hence, let A and B be nonvoid closed sets such that

9) AuB=Y
and
(10) AAB=9.

Then by virtue of (9) (cf. Chapter IV, § 4, (16)):
fH(4) v fAB) =1 Y) =

The sets f1(A) and f(B) are non-empty and, as
the function f is continuous, they are also closed (see
Chapter X1IT, § 2, Theorem 1); making use of (10) (cf. Chap-
ter IV, § 4, (17)), we have

fHA) A fYB)=fYA~B)=09.

Thus, the space X has been decomposed into two
nonvoid disjoint closed sets. Hence, the space X is not
connected.

Remarks. The only connected subsets of the space
of real numbers (other than the entire space, the void
set and single points) are closed or open rays, i. e. sets
of the form

Fdr<a), [Fox<a), Flr=a), [Flz>a),
closed or open intervals, and, finally, sets of the form
Faola<x<b), [Fala<az<b).

For, if the set A is not of one of these forms, then there
exists a number d¢ A and numbers x,, z, ¢ A such that
x, <d<x,. The set A is then the union of two non-
empty sets M and N contained in the separated sets

Fox<d) and [Fiz>d),

respectively, and hence A is the union of two non-empty
separated sets, i. e. it is not a connected set.
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Now let f be a real valued continuous function defined
on the connected space X. The set f(X) is then, by
Theorem 1, a connected subset of the set of real numbers
and hence it is one of the sets we indicated above.

It follows from this that if y, € f(X), ¥, ef(X) and
9, < ¥,, then the entire interval y, <y < ¥, is contained
in the set f(X), or in other words, if y, <y <y,, then
9 € f(X). This means that the function f has the Darboux
property, i. e. it assumes all intermediate values in passing
from one value to another. We have thus proved the
following property of connected spaces:

THEOREM 2. Every real valued continuous function de-
fined on a connected space has the Darboux property.

We note further that this property is characteristic
of a connected space. For if a space X is not connected
and 4 and B are non-empty disjoint closed sets such
that 4 v B = X, then the characteristic function of the
set A, i. e. the function defined by the conditions

1 for xed,

flo) = { 0 for xeB,

is a real valued continuous function defined on the space X
and not having the Darboux property.

THEOREM 3. If C is connected and C ~ A +# ¢ #C— A,
then

C~Fr(d)+#49.
In other words, if a connected set C has points in com-

mon with the se¢ A and also with its complement, then it
also has points in common with the boundary of the set A.

Proof. By virtue of the connectedness of the set C
and the equality C = (C ~ A) u (C— 4), the sets C ~ A
and C— A4 are not separated, i. e.

(11) [CAAA(C—A)]u[C—A~CA A]#0,
i. e. Cn[(CnAr\(X—A))u(C—Ar\A)];éﬂ.
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We also have

C~AnACA, X—ACX—A, C—ACX—A, ACA.
Therefore, by (11), we have
0 #C~AA~X—A4A=0~Fr(4).

THEOREM 4. If the set C is connected, and C C M o N
and the sets M and N are separated, then CC M or CCN.

Proof. The sets C ~ M and C ~ N are separated
(see Theorem 2, § 1) and (C ~ M) w (C ~ N)= C. Hence,
because of the connectedness of the set C, one of these
two sets is void. If C ~ N = ¢, then C=C ~ M,i.e. CC M.
Similarly, if ¢ ~ M = ¢, then CCN.

THEOREM 5. If the sets C and D are connected and are
not separated, then their union is connected.

Proof. Let C v D= M v N, where the sets M and N
are separated. We have to prove that one of them is void.
By Theorem 4 we can assume that C C M. Similarly,
DC M or DC N. The inclusion D C N does not hold, be-
cause the sets C and D would then be separated (by
virtue of Theorem 2, §1), contrary to assumption. There-
fore DC M, whence C v DC M and hence N = .

Theorem 5 can be generalized as follows.

THEOREM 6. If {C;} is a family of connected sets and
if one of them, Cy, is not separated from any of the re-
maining sets, then the union S =\J; C; is a connected set.

Proof. Let S = M o N, where the sets M and N are
separated. We shall show that M = ¢ or N = §.

By virtue of Theorem 4, we can assume that C, C M.
Since the sets (; and C; are not separated for any #, we
deduce from Theorem 5 that the sets Cy v C; are con-
nected, and hence Oy v C;C M for all ¢, whence SC M
and therefore N = ¢.

Remark. If follows immediately from Theorem 6 that
if {C is a family of conmmected sets and [0y 6, then
the set | J; Oy s connected.
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TaEOREM 7. If the set C is connected and CC A COC,
then the set A is also connected.

In particular, the closure of a connected set is connected.

This theorem follows from the preceding theorem,
Cy, being the set C, and the sets of the family {Ci},
t # t,, being the one-element sets {r} where x ¢ A. None
of the sets {z} is separated from C because x ¢ C. Hence,
the set O u |Jg{r} = A is connected.

THEOREM 8. If C is a connected subset of the connected
space X and
(12) X—-C=MuUN,

where the sets M and N are separated, then the sets C v M
and C o N are connected.

Furthermore, if the set C is closed, then the sets C v M
and C u N are also closed.

Proof. Let us assume that
(13) CuM=AUB,

where the sets A and B are separated. We have to show
that 4 =¢ or B = ¢.

Since we have C C A u B (by virtue of (13)), we can
therefore assume, by Theorem 4, that C C B. It follows
from this (see Theorem 2, § 1), that the sets A and C
are separated and in particular 4 ~ C = ¢. But since
ACC U M, hence AC M, and since the sets M and N
are separated, it follows from this that the sets 4 and N
are separated. The set A is therefore separated from B
as well as from N; it is therefore separated from B v N
{see Theorem 3, § 1).

On the other hand, by (12) and (13) we have

(14) X=CUMUN=AUBUN=AU(BUN).

The space X is therefore the union of two separated
sets A and B u N. Since the space is connected, one of
these two sets must be void. Hence, either A = § or else
B U N = ¢, whence B = §.
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If, moreover, C = C, then by (14):
CoM=0uM=Cu[M~(CuMuN)]
—CUMU(IAN)=CUM,
gsince M A N =¢ (M and N being separated).
Hence the set ¢ v M is closed.

The same argument proves that the set Cu N is
connected and closed.

§ 3. Components
The component of the point p is the union of all connec-
ted sets which contain the point p.
THEOREM 1. Each component is a connected set.
Moreover, a component S is a maximal connected set,
i. e. if C is a connected set thenm
{15) (8CQC)=(C=NR8).

Proof. Let S be the component of the point p. There-
fore, S is of the form

S=Ut0t9

where C; is a connected set containing the point p. By
virtue of Theorem 6 (see Remark following Theorem 6,
§ 2) 8§ is a connected set.

Moreover, if SC C, then p € C, and hence C is of the
form C = C;, whence C C S. Thus C = 8.

THEOREM 2. Each component 8 is a closed set.

Proof. By Theorem 7, § 2, the set § is connected.
But since 8 CS, we have, making use of (15), S = 8.

THEOREM 3. Two distinct components are always Se-
parated.

Proof. If the components 8, and 8, are not separated,
then the set 8; v 8, is connected (see Theorem 5, § 2),
and hence S, U S, CS; and 8; u S, C S,, that is S; = 8,.

ExampLE. Let I, denote the segment (situated in the
plane) consisting of points <{z,y> such that z = 1/n,
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0<y<1 for n=1,2,.. Let I, denote the segment
x=0, 0<y<1l Let A=1I,v1,vl,v.. The com-
ponents of the space A are segments I,, (m > 0). Let us
note that the component I, is not an open set in the
space under consideration.

THEOREM 4. If A is a connected subset of a connected
space X and C is a component of the set X — A, then the
set X— C is connected.

Proof. Let X—C = M o N, where the sets M and N
are separated. We shall show that M =¢ or N = ¢.

By assumption, we have C C X — 4 and hence

(16) ACX—C=MUN.

We can assume (see Theorem 4, §2) that A C M,
whence A ~ N = ¢. Since

A~A(CUN)=(AN0)u(A~N)=4,
then C U NC X— A, whence
(17) CCCuNCX—-A4.

Since C is a component of the set X — 4, and the set
C U N is connected (by Theorem 8, §2), formula (17)
yields C = C v N (cf. (15)). It follows that N C C. Since,
by (16), we have NC X— C, hence N = §.

Exercises

1. Prove that if the spaces X and Y are connected, then the
cartesian product X x I” is a connected space also.

Hint: Note that for every point y ¢ ¥ the set X x {y} is con-
nected and then use Theorem 5, § 2.

Generalize this theorem to the cartesian product of.a countable
number of spaces.

2. Prove that every connected space which contains more than
one point has at least the power of the continuum.

3. Show that the Euclidean space &" (n > 1) remains connected
after removing a countable number of points from it.
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Hint: Let N be a countable set of points of the space &" and

let p, q e 5"— N. Further, let L be a straight line which does not
pass through the points p and g. Notice that on the line L there
always exists a point = such that the segments px and xq are disjoint
from the set N.

4. Let the sets A and B be either both closed or both open.
Show that if the sets A v B and A4 ~ B are connected, then the
sets A and B are also connected.

Hint: Make use of Theorem 8, § 2, setting X =4 o B,
C=AA~AB, M=A—B, N=B— A, and of Theorem 4, § 1.

5. Let

x =Uw

be a given open covering of the connected space X.

Prove that every pair of points <a, b> of the space X can be
joined by a chain consisting of sets G, i. e. that there exists a finite
system of indices t,, ..., # such that

aeGy, GunGup+b0, .., ng_lr\th;ﬁO, beGy,.

Hint: Let Z be the set of all points which can be joined by a chain
with the point a. Prove that the set Z is open-closed.

6. We say that the space X is connected between the sets A and B,
if the space cannot be decomposed into two disjoint closed sets one
of which contains 4 and the other contains B. Prove that if there
is given a system of sets 4,, ..., A, such that the space is connected
between no pair A4i, A; (for ¢ # j), then there exists a system of
disjoint closed sets Fy, ..., F satisfying the conditions

X=Fyu..uFy, AicF; for 1=0,..,n.
7. Show that the relation
poq = (the space X s connected between the points p and q)

is an equivalence relation (cf. Exercise 9, Chapter V).

8. The equivalence sets determined by the above considered
relation are called quasi-components of the space.

Show that

1. every quasi-component is the intersection of all closed-open
sets containing a given point;

2. every component of the space is contained in a quasi-com-
ponent, but the converse is not true;

3. if X is connected between x, and x,, and Y is connected
between y, and y,, then X x ¥ is connected between <(x,,y,> and
%oy Ya73
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4. generalize the last statement to the case of a cartesian product
of n factors.

9. Let A be a subset of a given metric space. Show the equi-
valence:

(A is connected between p and q) = (each open G containing A is
connected between p and q).

Hint: Use the theorem stated in Exercise 15, Chapter XII.

10. Prove that the relation ¢ defined in Exercise 7 is closed
(cf. Exercise 18, Chapter XI).

Show that the above theorem is not true for the relation “x and y
belong to a connected subset of the space’” (construct the space
having the required property on the plane).

11. Show that a connected, metric and locally separable space
is separable.



CHAPTER XVII

CONTINUA

§ 1. Continua

Definition and examples. A continuum is a com-
pact connected space.

For example, a closed interval is a continuum. Other

examples of continua are a circular disk together with
its boundary and the closed n-dimensional cube.

y

i

-1

Fic. 9

The set S of points in the plane defined by the follow-
ing equations:
{ y =sin(l/z) for O0<2z<1,

(1) —-1<y<1 for z=0

is a continuum (see Fig. 9).

The set consisting of a single point and the void set
are obviously continua; closed intervals are the only
other sets which are continua on the real line.
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§ 2. Properties of continua

The following five theorems are immediate conse-
quences of the corresponding theorems in Chapters XV
and X VI (these are specified more closely in parentheses).

THEOREM 1. The union of two continua which have
a common point is & continuum (cf. Chapter XVI, § 2,
Theorem 5).

THEOREM 2. If the space X is a continuum, C is a con-
tinuum contained in X, and X —C is the union of two
disjoint sets M and N, then the sets C v M and C u N
are continua (cf. Chapter XVI, § 2, Theorem 8).

THEOREM 3. The continuous image of a continuum s
a continuum (cf. Chapter XV, § 4, Theorem 1 and Chap-
ter XVI, § 2, Theorem 1).

In particular, if C is a non-empty continuum and f s
a continuous real valued function defined on C, then f(C) is
either a point or a closed interval.

This is a generalization of the known theorem from
analysis, that a continuous function defined on a closed
interval attains its bounds and passes through all inter-
mediate points.

THEOREM 4. The cartesian product of a finite number
of continua is a continuum (cf. Chapter XV, § 5, Theorem 1
and Chapter XVI, Exercise 1).

In general, if Cp, is a continuum for m=1,2, ..., then
Cy X Cy X ... i8 a continuum.

In particular, the cube J" and the Hilbert cube FH are
continua.

~

THEOREM 5. Every component of a compact space s
a continuum (cf. Chapter XVI, § 3, Theorems 1 and 2).

We shall now prove the following theorems.

*THEOREM 6. If A and B are two distinct components
of a compact space X, then X can be decomposed into two
disjoint closed sets F' and K which contain the sets A and B,
respectively:

X=FuK, F~AK=¢p, ACF and BCK.
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In other words, there exists an open-closed set F which
satisfies the conditions ACF and F ~ B = ¢ (we can, of
course, take K = X—F).

We shall base the proof on the following lemma:

Lemma. The intersection C of all open-closed subsets
of a compact space, which contain a given point p, is
connected.

Proof. Let us assume the contrary. Then let P and @
be two closed sets such that

(2) C=Pu@,
3) Pn@ =9,
(4) P#g+#Q,
(5) peP.

By virtue of (3) and of the fact that the space is
normal (cf. Chapter XII, § 7, Theorem 6), there ex1st‘,
two open sets G and H such that

(6) PCG, QCH and GAH=9.
Therefore, setting @° = X — G and H° = X — H, we have

(7 PAG =y,

(8) QnH =9,

(9) X=GuH,

where the sets G° and H° are closed.
Let

(10) Dy, Dy, ey Dy, ...

be the sequence of all open-closed sets which contain the
point p (cf. Chapter XV, § 3, Theorem 4). From the
definition of the set ¢ we have

(11) 0 = MNa=1Dn.
Let
(12) En=.D1f\D2/'\...f\.Dn.

14
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Then formulas (11) and (12) immediately yield

and
(14) E,DE,D..OKE,D...

Let us set Fp = E, ~ G° ~ H°. Then, because of (13),
we obtain

(15) m;’;an:(m:LlEn)ﬂGcﬂHc:Cchan:(),

for formulas (2) and (6) yield C = (P v Q)C (G v H).

At the same time, the sets F, form a decreasing se-
quence (cf. (14)) and are closed (cf. (12)). Hence, if they
are nonvoid, then by the Cantor theorem (Chapter XV,
§ 3, Theorem 1) their intersection would not be empty,
contrary to (15). Therefore, there exists an index n such
that ¥, = ¢, i. e. such that

(16) EnﬁGcf\Hc:ﬂ, i. e. .Enf'\HcCG.

The set B, ~ G is open-closed. It is obviously an open
set since it is the intersection of two open sets. It is also
closed because, by (9) and (16), we have

(17)  EanG=Ey~ G~ (6°wH) = E,~H,

and the set B, ~ H° is the intersection of two closed sets.

As the open-closed set E, ~ G contains the point p (cf.
(5) and (6)), it is therefore one of the terms of the se-
quence (10): E, ~ G =D,,. Hence, by (11) and (17), we have

CCDy=EynG=E,~H CH,
whence by (2):
QCCCH®, ie. @Q=QA~H°=y

by (8). But this contradicts the inequality (4).

Proof of Theorem 6. Let pe A and let C (as in
the lemma) be the intersection of all open-closed sets
which contain the point p. Each of these open-closed
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sets obviously contains the set A, since A is connected
(cf. Chapter XVI, § 2, Theorem 4); and therefore

(18) ACC.

Since C is a connected set and 4 is a component of the
space, inclusion (18) yields the equality

(19) C=4

(cf. Chapter XVI, § 3, (15)).

If every open-closed set containing A also contained B,
contrary to the hypothesis of Theorem 6, then we should
have B C C, whence BC 4 (cf. (19)). But this is impossible,
because the components are disjoint (see Chapter XVI,
§ 3, Theorem 3). Therefore, there exists a closed set F
such that 4 CF and B—F +# . Since the set B is con-
nected, the last inequality yields F ~ B = §.

COROLLARY. For every compact space there exists a con-
tinuous mapping of this space into a subset of the Cantor

set which maps two distinct components into two distinct
points of the Cantor set.

Proof. Let D,, D,,... be the sequence of all open-
closed subsets of the given space. We shall define the
function f as follows:

f(@) =8/3+6,/9+ ... +ta/3" + ...,

where &, = 2 if € Dy, and t, = 0 if x ¢ D,. (This is call-
ed the characteristic function of the sequence D,, D,, ...)

Hence the values of the function f are points of the
Cantor set.

Since the set D, is open-closed a function assuming
the value 2 on it, and the value 0 on its complement is
continuous. It easily follows from this that the function f
is continuous.

Finally, if A4 and B are two distinct components, then
by virtue of Theorem 6 there exists an = such that
A C Dy, and B ~ D, = (; and hence we have i, = 2 for
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zeA and t, = 0 for = e B. Therefore the values of the
function f on the sets A and B are distinct.

Let us add that every component is mapped under
this mapping into some point (and distinct components
map onto distinct points); this follows from the fact
that the continuous image of a connected set is connected,
and the Cantor set does not contain nonvoid connected
sets other than sets consisting of a single point.

*THEOREM 7. The intersection of a decreasing sequence
of continua is a continuum.

Proof. Let C, (n =1, 2,...) be continua and let

(20) 0,00, D0..02C,D...
and
(21) C=Na=1Ca.

Let us assume that C is not a continuum. Then there
exist two closed sets P and ¢ which satisfy conditions
(2)-(4). Let G and H be two open sets which satisfy con-
ditions (6) and hence also conditions (7)-(9). Let us set

Then, by (22) and (21), we have
ﬂ?_an= (ﬂff=1 Cn) n FAH =0~GC~H =y

because formulas (2) and (6) yield C = (P v Q) C (G v H).

Since the sets F, are closed and form a decreasing
sequence (because of (20)), we therefore deduce from
this (using the Cantor theorem) that not all these sets
are non-empty, i. e. that F, = ¢ for some =, i. e.

(23) ConG ~AH =4.
At the same time, by (9), we have
(24) CnCGcUHc, i. e. 0n=(0nf\Gc)U(Cnf\Hc).

It follows from formulas (23) and (24) that O, is the
union of two closed disjoint closed sets Cn, ~ G° and
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On ~ H°. Since C, is a continuum, one of these two sets
is void. Let, for instance, Cn ~ G°=1¢, i. e. 0,CQG,
and therefore, because of (2) and (21), QCCC (CrCG@G,
i.e. @ C G, whence by (6) we have QC G~ H = ¢. In
this manner we have arrived at the conclusion that
Q = ¢, contrary to formula (4).

Exercises

1. Prove that for every two points @ and b in the continuum ¢
and for every &> 0, there exists in O a finite sequence of points

a4 =Dy, PrseeesPn=0">

such that |p,  —p;| <& for ¢=1,2, ..., n. Show that this property
distinguishes the continua from all other compact spaces (Cantor’s
definition).

2. Show by means of an example that in Theorem 7 it is essential
to make the compactness assumption: the intersection of a decreasing
sequence of closed connected sets may be not connected.
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LOCALLY CONNECTED SPACES

§ 1. Locally connected spaces

Definition. We say that a space is locally connected
at the point p if for every real number ¢ > 0 there exists
a connected set I such that

peInt(E) and O(B)<e.

A space is said to be locally connected if it is locally
connected at each of its points.

We can also say that spaces which are locally con-
nected at the point p are spaces for which every neigh-
borhood of the point p contains a connected neighborhood
of this point.

ExAmpLES. 1. The set of all real numbers, the Euclidean
n-space, and the n-dimensional cube are locally con-
nected spaces.

2. The set S defined in Chapter XVII, § 1, (1), is not

Fig. 10

locally connected at the points of this set which are
situated on the y-axis.

3. The so-called ‘“whisk-broom’’ set, shown in Fig. 10,
is not locally connected.
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We obtain this set by joining the point <0, 1> with
segments to the point <0, 0> and to the points <{1/n, 0>
for n =1,2, ...

This set is not locally connected at the points on
the segment on the y-axis, except at the point <0, 1).

§ 2. Properties of locally connected spaces

THEOREM 1. In a locally connected space every com-
ponent i8 an open set.

Proof. Let S8 be a component and let peS. Let E
be a connected neighborhood of the point p, i. e. p € Int(E)
(such a neighborhood exists by virtue of the definition).
Therefore E C 8, whence we have Int(E)C Int(S). It
follows that p € Int(S), i. e. every point of the component S
is its interior point. Thus the component § is an open set.

THEOREM 2. Every open subset G of a locally connected
space X is a locally connected set.

Proof. Let pe G and let 0 < e < po(p, X—G). Since
the space is locally connected at the point p. there exists
a connected neighborhood E of the point p such that
6(E) < &, whence F C G. At the same time F is a neigh-
borhood of p with respect to the set G, i.e. p¢ G—E
(because p ¢ X —E by assumption). This means that the
set @ is locally connected at the point p.

THEOREM 3. The components of open subsets of a locally
connected space are open Sets.
This is an immediate consequence of Theorems 1 and 2.

Remark. Theorem 3 characterizes locally connected
spaces, i. e. that every space in which the components
of open sets are open sets is locally connected.

THEOREM 4. An open subset of a locally conmected
separable space has a countable number of components.

For, every family of disjoint open sets in a separable
space is countable (see Chapter XIII, § 3, Theorem 3).
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THEOREM 5. A locally connected separable space has
a base consisting of sets which are simultaneously open
and connected.

Proof. Let Gy, Gs, ..., Gu, ... be a base of the space
(consisting of open but not necessarily connected sets).
Let Spi, Spzy ... be a finite or infinite (cf. Theorem 4)
sequence of components of the set Gyn. The sets Sug,
n=1,2,..and k=1,2,.., form a base consisting of
open connected sets (by virtue of Theorem 3).

THEOREM 6. If 8 is a component of an open set G then
Fr(8)nG@=9.

Proof. Fr(8)=8—48 since S is an open set. But
since G— 8 is also an open set, being the union of open
sets, we therefore have S~ (G—8) =28 (G—8) =g,
which is what we wished to prove.

§ 3. Arcs. Arcwise connectedness

Definition 1. An arc is a set which is homeomor-
phic to the closed interval 0 < ¢ < 1.

We can easily verify that every arc is a locally con-
nected continuum.

An arc with endpoints # and y is usuvally denoted by
the symbol xy (or yx).

THEOREM 1. If ab ~ bc = {b}, then the union ab U bec is
an arc ac.

For, we can define a continuous one-to-one mapping
of the closed interval [0,1] onto the arc ab and a con-
tinuous one-to-one mapping of the closed interval [1, 1]
onto the arc be in such a way that both of these mappings
map the point I onto the point b. In this manner we
obtain a homeomorphic mapping of the closed inter-
val [0, 1] onto the set ab u be.

THEOREM 2. If ab ~ bc # 0, then the union ab o be con-
tains an arc which connects a with c.
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For, let d be the first point on the arc ab (ordered
from a to b) which lies on the arc bc. Let ad denote the
arc contained in ab, and let dc be the arc contained in be.
We therefore have ad ~ dc = {d}. By Theorem 1 the
set ad U dec is an arc ac.

Definition 2. A space is said to be locally arcwise
connected, if for every point p and every &> 0, there
exists an # > 0 such that if |x—p| <, then the point =
can be connected with the point p by means of an arc
of diameter <e.

THEOREM 3. A space which is locally arcwise connected
at the point p is locally connected at p.

For if we denote by E the set of points which can
be connected with p by means of an arc of diameter <e
we can easily prove that E is a connected neighborhood
of the point p with diameter < 2e.

THEOREM 4. Every two points of a connected and locally
arcwise connected space can be connected by an arc in the space.

Proof. Let p be a given point of the space X. Let us
denote by F the set of all points # which can be connected
to p by an arc. We have to prove that F =X or
equivalently (since the space is connected), that the set
F is closed and open. '

In order to prove that F = F let us assume that
r=limx,, where aeF.
n—>o00

Since the space is arcwise locally connected at the
point «, the point x, can be connected with x, for suf-
ficiently large », by means of an arc x,x. But since x5 ¢ ¥
there exists an arc px,. By Theorem 2 the union px, v, ®
of the arcs px, and z,x contains an arc pz. Therefore
rel.

In order to prove that the set F' is open, let us assume
that x e F. Since points situated sufficiently closely to the
point = can be connected with x by means of an are,
then, by Theorem 2, they can be connected by an arc
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to p (because by assumption, # can be connected with p
by means of an arc). Therefore x ¢ Int(F). From this
it follows that the set F is open.

THEOREM 5. If a compact space is locally arcwise con-
nected, then for each & >0, there exists an n >0 such that
if lx—a'| < n then the points x and «' can be connected
by means of an arc xx' of diameter <e.

Thus uniformity holds for the choice of » corres-
ponding (to & (independently of p). The proof is entirely
analogous to the proof of Theorem 5 in Chapter XV, § 4.

§ 4. Locally connected continua

THEOREM 1 (Sierpinski). A mecessary and sufficient con-
dition for the continuum C to be locally connected, is that for
every ¢ > 0, C can be represented as the union of a finite
number of continua each of which has diameter <e, i. e.

(1) C:CI\JCzU...UCn’
and
2) 5(C) <.

Proof. The condition is mecessary. Let C be a locally
connected continuum, and let &> 0. For every point
p € C let us denote by R, an open connected set such
that p € By and 6(R,) < &. Such a set exists by virtue of
Theorem 5, § 2. The family of sets R, is a covering of the
space C. Therefore (cf. the Borel-Lebesgue theorem,
Chapter XV, § 3, Theorem 3) there exists a finite number
of open connected sets R, , Ry, ..., By, which also cov-
ers C. Let

Cv=R,, (k=1,2,..,n).

Conditions (1) and (2) are therefore satisfied. Further-
more, the set Cj is connected, being the closure of a con-
nected set (see Chapter XVI, §2, Theorem T7), and
compact, being a closed subset of a compact set (see
Chapter XV, § 2, Theorem 5). Hence Cj is a continuum.
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We have thus proved that the condition is necessary.

We shall now prove that it is sufficient.

Let us therefore assume that the continua C,, C,, ..., C,
satisfy conditions (1) and (2). Let p € C. We shall choose
a connected neighborhood E of the point p with diameter
not greater than 2e.

Let us denote by Cy,, Cpy, ..., Or, continua which
contain the point p and all the remaining ones by
Omys Cimgy ovy Oy

Let

EZCkluckzu...UCk .

r

We therefore have

C—ECChulpyu..uChy,,
whence
C—ECCywlpu..uly,.

Thus pe C—C—E, i.e. peInt(E). The set E is
therefore a neighborhood of the point p. It is a con-
nected set, being the union of connected sets which
contain p.

Finally, 6(E) < 2. For, let @, y € E. Let @ € Cy;, y € C,.
Since

le—yl <le—pl+ip—yl
and since by (2)

lo—pl <6(Cp) <& and |p—y| <(Cy) <e,

we have |r—y| < 2¢. It follows that 6(H) < 2e.

THEOREM 2. A continuous image of a locally connected
continuum is a locally connected continuum.

Proof. Let K be a locally connected continuum,
f a continuous function and let f(K) = C.

By virtue of the Heine theorem on uniform continuity
(Chapter XV, §4, Theorem 5), for every ¢ > 0, there
exists an % > 0 such that for an arbitrary pair x,, 2, ¢ K
the condition

(3) [z — 2yl <
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implies
(4) 1(21) — T (22)] < e.

By virtue of Theorem 1 there exist continua K,,
K,, ..., K, such that

(5) K=K, vK,u..uK,,
and
(6) 0(K;) <n.

It therefore follows from (5) (cf. Chapter IV, § 4, (14))
that

(7) O =f(K) =f(K)) v f(L) ... v [(Ka).

By (6), for every pair of points #, and x, belonging to
K; formula (4) holds, and hence

(8) O[f(Kq)] <e.

Since f(K;) is a continuum (see Chapter XVII, § 2,
Theorem 3), we deduce from formulas (7) and (8) and
Theorem 1 that C is a locally connected continuum.

Remark 1. A continuous image of a locally connected
space which is not compact is not necessarily a locally
connected space.

Let us consider the example of the space S in Chap-
ter XVII, § 1, (1), and let us join the point (1, 0) with
the point <0,1) by means of an arc in such a manner
that the arc does not cut the set S at any point. The set
thus obtained is, as can easily be seen, a continuous image
of the half-ray 0 < & < 4 oo, but is not locally connected.

Remark 2. From Theorem 2 it follows in particular
that a continuous image of a closed segment or of a rect-
angle (together with boundary) is a locally connected
continuum. Therefore the curves possessing continuous
parametric representations on an interval of the form

v=uwt), y=y({), z2==2(t), where a<t<b,
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are locally connected continua, as well as surfaces of
the form

v=wx(u,v), Y=y, =z=zu,v),

where a <u <b, ¢ <v <d.

Thus, the geometric configurations which are studied
most frequently in analysis are locally connected.

Remark 3. The theorem asserting that a continuous
image of a closed interval is a locally connected con-
tinuum has a converse, i. e. the following theorem (due
to Mazurkiewicz) is valid:

Every locally connected continuum is a continuous image
of the closed interval 0 <t < 1.

We shall not give a detailed proof of this theorem
here, but shall limit ourselves to proving it under the
assumption of local arewise connectedness; this limitation
is after all only apparent, for it is possible to prove that
every locally connected continuum is also locally arcwise
connected (Mazurkiewicz-Moore theorem).

THEOREM 3. Fvery locally arcwise connected continuum C
(# #) 18 a continuous image of an interval.

Proof. On the basis of Theorem 3, Chapter XV, § 8,
there exists a continuous function f defined on some
closed subset H of the Cantor set and such that f(H) = C.
Let a and g denote the initial and terminal points of the
set H. We shall extend the function f to the entire
segment af. The set af — H, being open in af, is the union
of a sequence of open intervals (a,b,), (asb,), ...

Obviously,

lim(bp—ax) =0,
nN—>00

whence
9) lim|f (bn) —f(an)| =0,

n—>00
because of the uniform continuity of the function f.
According to Theorem 5, § 4, there exists a sequence
of numbers 7, such that each two points p and ¢ of the
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continuum C satisfying the inequality |p—gq| < nx can
be joined by an arc with diameter <1/k. Therefore by
virtue of (9) there exists a sequence of arcs L, with end-
points f(as) and f(b,) satisfying the equality
(10) limé(Ly) = 0.
n—o0

Let f, denote a homeomorphism mapping the (closed)
segment a,b, onto the arc L,, such that f.(as) = f(as) and
fu(bn) = f(bs). Finally, let

) = f(%) for teH,
)= fat) for @<t <by,,n=1,2,..

Hence the function g maps the segment of onto the
continuum C. It is a continuous function, which fact
follows easily from formula (10).

Remark 4. It follows from Theorem 3 in particular
that a square together with its boundary is a continuous
image of a segment; the same is true of the n-dimensional

cube J", and even of the Hilbert cube H.

This discovery made by Peano (in 1890) was con-
sidered to be very paradoxical. For it means that the
square J2 has a continuous parametric representation
over a closed interval, contrary to the opinion that this
property applies only to curves. It follows from this that
the hypothesis of differentiability usually made in
analysis for parametric representations is essential from
this point of view.

The following is a direct proof of the Peano theorem
(given by Sierpinski).

We divide the square into 9 equal squares and draw
in each of them the diagonal as shown in Fig. 11. We
divide the segment [0,1] into 9 equal segments and
we transform (linearly) each of them into the correspond-
ing diagonal in the order given in Fig. 11. We denote
by f, the function thus defined, mapping the segment
[0, 1] continuously into the polygonal line consisting of
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9 diagonals. We call the squares considered squares of
first approximation.

Next, we divide each of the 9 squares into 9 equal
squares; they are the second approximation squares. We

N
7
¥
\
\ N
%
Fic. 11

draw a diagonal D in each of them; here in second
approximation squares lying on a diagonal of a first ap-
proximation square we draw the diagonal lying on the
diagonal D. Thus the first square of the first approx-
imation appears as in Fig. 11 after the corresponding

Fic. 12

reduction; the second square of the first approximation
is given in Fig. 12.

We divide each of the intervals (»—1)/9, n/9, where
n=1,2,..,9, onto 9 equal parts and we map each of
these parts onto the diagonal of the corresponding square
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of the second subdivision. This defines the function f,
which maps the interval [0,1] continuously onto the
polygonal arc made up of 92 intervals.

Continuing thus, we define an infinite sequence of
continuous functions f,, f3y ...y fn, ... It is easy to prove
that this sequence is uniformly convergent; and therefore
its limit function f is continuous (see Chapter XII, § 5,
Theorem 1). Furthermore, every point of the square is
a value of the function f; in fact, in each square of the
n-th approximation there are values of the function f,
and consequently )

Unfa(9) =92 whence f(J)= J°.

Remark 5. Let us notice that the proof of Theorem 3
in the case where the continuum C is the n-dimensional
cube can be somewhat simplified. Namely, in this case
we can take the interval with endpoints f(ax) and f(bs)
for the arc L,; hence, we can define the function f, as
the linear transformation of the interval a,b, into the
interval f(a)f(bn).

This theorem can also be deduced directly from
Theorem 3, Chapter XV, § 8, and Tietze theorem (Chap-
ter XII, § 8, Corollary 1).

Exercises

1. Let F be an open subset of the interval ¢ < z < b. Prove
that the components of the set F are open intervals. Moreover,
if there are an infinite number of these components then their
diameters tend to zero.

2. Prove that local connectedness at a given point is a topological
invariant; i. e. that if the space X is locally connected at the point p
and f is a homeomorphism, then the space f(X) is locally connected
at the point f(p).

3. Prove that a necessary and sufficient condition for a space to
be locally connected at the point p, is that for every number £¢>0
there exists a number z > 0 such that the condition |[x—p| < g
implies the existence of a connected set C satisfying the conditions
x,peC and §(C) < e.
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4. Let p e A ~ B. If the sets 4 and B are locally connected
at the point p, then the set 4 w B is also locally connected at this point.

5. If the spaces X and Y are locally connected at the points a
and b respectively, then the cartesian product X x ¥ is locally con-
nected at the point <a, b).

6. Let E be an arbitrary subset of a locally connected space.
If C is a connected subset of F and is open in F (i. e. it is of the
form C = E ~ G, where G is an open set), then there exists an open
connected set H such that C = E ~ H.

Hint: Use Theorem 3, § 2.

7. If a locally connected space can be represented as the union
of two closed sets A and B with locally connected intersection, then
the sets 4 and B are locally connected.

Hint: Use Exercises 4 and 6, above, and Exercise 4 of
Chapter XVI.

8. Let X be a locally connected space. If F is a closed locally
connected set and C is a component of the set X —F, then the sets
X—C and CuUPF are locally connected.

Hint: Use Exercise 7.

9. Let E be an arbitrary subset of a locally connected space

and let E = 8, v S, u ... be the decomposition of F into components.
Then

Int(E) = UnInt(Sy) .

10. Let E; be an arbitrary subset of a locally connected space.

Prove that
Fr (Ut Et) c Ut Fr (&) .

Hint: Use Theorem 3 of Chapter XVI, § 2.

11. Let E be an arbitrary subset of a locally connected space
and let 8 be a component of E. Prove that Fr(S) c Fr(E).

12. Let F be an arbitrary subset of a locally connected space.

If the set Fr(F) is locally connected, then E is locally connected.
Hint: Use Exercise 7.

13. Let X be a locally connected continuum. Prove that each
of its subcontinua C is the intersection of a decreasing sequence
of locally connected continua:

0= 1e10n, €205 ...
Hint: Use Theorem 1, § 4.

15



CHAPTER XIX

THE CONCEPT OF DIMENSION

§ 1. 0-dimensional sets

A space X is said to be 0-dimensional at the point p
if there exist arbitrarily small open-closed sets which
contain the point p. We write then dim, X = 0.

A non-empty space X which is 0-dimensional at each
point is said to be 0-dimensional; we write this in the
form of the equality: dimX = 0.

Examples of 0-dimensional spaces are: the space of
natural numbers, the space of rational numbers, the space
of irrational numbers, the Cantor set and any finite set.
The set consisting of the intervals

(1/3,1/2), (1/5,1/4), ..., (1/(2n+1),1/2n), ...

and of the point 0, is 0-dimensional at the point 0 and
only at that point.

An interval, as well as any connected space (which
does not reduce to a single point), is not 0-dimensional;
for it does not contain non-empty open-closed sets which
are distinct from the entire space.

§ 2. Properties of 0-dimensional sets

We introduce here without proof the most important
properties of 0-dimensional sets (see the references to
the proofs in the exercises). We could already have ob-
served some of these properties in the Cantor set.

THEOREM 1. Ewvery 0-dimensional separable space has
a base consisting of open-closed sets.

THEOREM 2. Ewvery 0-dimensional separable space is
topologically contained in the Cantor set (i.e. it is homeo-
morphic to some subset of the Cantor set).
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THEOREM 3. Every 0-dimensional compact space can
be decomposed into disjoint closed sets of diameter < ¢
(e arbitrary positive):

X=F,0F,0..0F,, F;~F;=0fori#j, o6F)<s.

THEOREM 4 (Sharpened normality property). For every
pair of disjoint closed sets A and B, there exists an open-
closed set G such that A C G and G ~ B = §.

THEOREM 5. The union of a finite or infinite sequence
of 0-dimensional closed sets is a 0-dimensional set.

§ 3. n-dimensional spaces

We define the dimension inductively:

1. the dimension of the void set is —1;
2. the dimension of a set X at the point p is <n, i.e.

(1) dim, X <n,

if there exist arbitrarily small open sets containing p and
having boundaries which are at most (n—1)- dimensional;

3. a set X which has dimension <n at every point
is at most of dimension n: '

(2) dimX <n. .

Furthermore, we assume that dim,X = co if for-
mula (1) does not hold for any natural #, and that dim X
= oo if formula (2) does not hold for any n.

The definition of dimension 0, given in §2, is in
agreement with the definition given here, for an open-
closed set is a set with a void, and hence a (—1)-dimension-
al boundary.

In the sense of the above definition a closed interval
has dimension 1. For, each of its points p can be surrounded
by an arbitrarily small interval and hence by a set whose
boundary consists of two points (or perhaps one, if p is
an endpoint of an interval), but a finite set is 0-dimen-
sional. It follows that the dimension of an interval is <1;
at the same time—as we know—the dimension of an
interval is # 0, and hence it is = 1.
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In an exactly analogous way we prove that the di-
mension of the circumference of a circle is 1. Similarly,
the dimension of an unbounded straight line, of an arc
(i. e. a set homeomorphic with a closed interval) and of
a simple closed curve (i. e. a set homeomorphic with
the circumference of a circle) is 1.

The plane has dimension <2. For every point in
the plane is the center of an arbitrarily small circle;
and as we have shown, the circumference of a circle
has dimension 1.

Similarly the surface of a 3-dimensional sphere has
dimension <2.

The proof that the plane does not have dimension 1
(and hence that it has dimension exactly 2) is not
so simple. We shall come back to this proof in Chap-
ter XX, § 3.

When we speak of the space &" as being ““n-dimen-
sional” Euclidean space, we have in mind its so-called
geometric dimension. A theorem of fundamental impor-
tance for topological dimension theory is the theorem
which asserts that dim&" = n.

We have given tke proof of this theorem for n = 1.
We have proved that dim&? < 2; in an exactly analogous
manner we prove (by induction) that
(3) dim&" < n.

On the other hand, the proof that dim&" > n—1
presents difficulties—as we have stated—already for n = 2
(cf. Theorem 3, Chapter XX, § 3).

THEOREM. Dimension is a topological invariant.

For, condition 2. means that in every mneighborhood
of the point p there exist open sets which contain p and
have boundaries of dimension at most n—1.

§ 4. Properties of n-dimensional spaces

We shall state here, without proof, several theorems
of the dimension theory. They are generalizations from
0 to » of the theorems in § 2.
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THEOREM 1. BEvery separable n-dimensional space has
a base consisting of open sets with boundary of dimension
at most n—1.

THEOREM 2. Every separable n-dimensional space is
topologically contained in the cube J2n+1,

In particular, every 1-dimensional set (and hence
every curve) is contained topologically in the cube I3
and every 2-dimensional set (in particular the surfaces
considered in analysis) are contained in the cube J°.

These exponents cannot be made smaller, i. e. for
every n there exists an n-dimensional set which is not
contained topologically in the cube J2». For example,
a polygonal line consisting of the edges of a tetrahedron
and the segment connecting two disjoint edges (see Fig. 13)
is not contained topologically in the plane (this follows
eagily from the Jordan theorem given in Chapter
XXTI, § 8).

Fic. 13 Fic. 14

The polygonal line shown in Fig. 14 has the same
property. It consists of 6 edges of a tetrahedron and
of 4 segments connecting the center of gravity of the
tetrahedron with the vertices.

*Remark 1. Every polygonal line which cannot be
embedded topologically in the plane contains topologically
one of the two polygonal lines shown in Figs. 13 and 14.

*Remark 2. If dimX <, then the set of homeo-
morphisms is dense in the function space (J2n+1)X,

THEOREM 3. Every n-dimensional compact space can be,
for arbitrary ¢ > 0, decomposed into closed sets of diameter
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<e& 1n such a manner that no point belongs simultaneously

to n+2 of these sets:

(4) X=FovlF,u..0F,, o6F)<e,

(B) FipynFiymn .nF, =0 if << <in1.
For example, with the aid of a finite system of points

a segment can be decomposed into arbitrarily small

segments such that no point belongs to any three of them.

Fic. 15

A rectangle can  be decomposed in small rectangles
by a system of ‘“bricks’ as shown in Fig. 15 (no point
belongs to 4 “bricks”). Similarly, the cube J" can be
decomposed in “bricks” satisfying formulas (4) and (5).

Remark. The condition given in Theorem 3 is ne-
cessary and sufficient in order that a compact space have
dimension <m.

THEOREM 4 (Sharpened normality property). For every
pair of disjoint closed sets A and B, there exists an open
set G such that

ACG, G~AB=y, dimFr(@) <n-1.

THEOREM 5. The union of a (finite or infinite) se-
quence of n-dimensional closed sets is an n-dimensional set.

THEOREM 6. For every compact n-dimensional space X,
there exists a closed subset T of the Cantor set and a con-
tinuous function f which maps the set T into X and which
does not assume any value more than n-+1 times.
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For example, a closed interval can be obtained from
the Cantor set with the aid of a continuous function
which does not assume any value more than twice (such
a function is the step function defined in Chapter XV,
§ 8, Fig. 8).

Remark. The existence of a set 7' and of a function f
having the properties stated in Theorem 6 forms a con-
dition which is not only necessary but also sufficient in
order that dimX <.

Exercises

1. Prove that every set of real numbers which contains no
interval is O-dimensional.

2. Prove that the set of points in the plane, one coordinate of
which is rational and the other irrational, is 0-dimensional.

3. Prove that the set of points in Euclidean space & all of
whose coordinates are irrational is 0-dimensional.

4. Hint to the proof of Theorem 1, § 2. Consider, for given =,
all the open-closed sets with diameter < 1/n and apply Lindelof
theorem (Chapter XIII, § 1, Theorem 3).

5. Hint to the proof of Theorem 2, § 2. Consider the charac-
teristic function of a base consisting of open-closed sets.



CHAPTER XX

SIMPLEXES AND THEIR PROPERTIES

§ 1. Simplexes

Definition. Let py, ..., pn be a given system of n 1
points in Euclidean n-space. By the simplex p, ... p, We
mean the set of all points p of the form

(1) P = APo+ .. +nPu,
where

(2) dot ot in=1,
(3) 2;>0,

and where the multiplication of the point by a scalar
and the addition of points is to be understood as in the
algebra of points (or vectors), i. e.

)h' (wl’ cesy mn) = (lm]_, ceey Awn) 9
(@1y eeny Tn) + (Yo ooy Yn) = (X1 + Y1y eovy To+Yn) .

In this connection we shall always assume that the
points Py, ..., pn are linearly independent, i. e. that they
do not lie in the same (n—1)-dimensional hyperplane.
This means, in the case n = 2, that the points p,, p1, P2
do not lie on a line, or that p,p,p, is a triangle (without
boundary); similarly, when n = 3, p,p,p.ps is the interior
of a nondegenerate tetrahedron (i. e. the points py, 91, P»
and p; do not lie in one plane).

The coefficients 4y, ..., 4» are the barycentric coordi-
nates of the point p; they can be interpreted as masses
which must be distributed at the points p,, ..., pn, Te-
spectively (retaining conditions (2) and (3)), in order that
the point p be the center of mass. It is clear that each
of the barycentric coordinates is a continuous function
of the point p.
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Each of the points py, ..., p» is said to be a wvertex of
the simplex p,...pn; each of the simplexes py ... p;,,
where iy < ... < iz < n, is said to be a face (or edge) of
the simplex.

We include the vertices as well as the entire simplex §
in the faces of the simplex 8 = p,... p» (for k£ assumes
the values from 0 to ).

Let us note that
(4) 8 = Upio'“pik7
for all possible systems of numbers 4, ..., iz, whereby &
assumes all integral values from 0 to =.

Finally, let us note that:

1. the simplexes Py, ... py, 0 (4) are disjoint,

2. the point p belongs to S when and only when it
fulfils conditions (1), (2) and

(5) 2;=0.
§ 2. Simplicial subdivision
Let
S =py... Pn-

By a simplicial subdivision of § is understood its
subdivision into simplexes such that the intersection of

F1c. 16

the closures of each pair of simplexes is the closure of
their common face (which might be the null set). Figure 16
shows a simplicial subdivision of a triangle.

If in Figure 16 the edges of the shaded triangle were
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omitted, then the figure would no longer represent a sim-
plicial subdivision.

It can be proved that:

1. For every ¢ > 0 there exists a simplicial subdivision
of S into simplexes with diameter <e.

2. SPERNER THEOREM. Let S be subdivided simplicially
and let the function m(8) assign to each vertex of the sim-
plexes of this subdivision the integer m(s) which satisfies
the following condition:

(6) if 8 € Piy ... Py, then m(s) is one of the integers iy, ..., i.

Then there exists among the simplexes of the subdivision
under consideration at least one simplex on whose vertices
the function m(s) assumes all the values from 0 to n.

(The shaded simplex in Fig. 16 is such a simplex.)

We shall carry out the proof by induction. We shall
prove a stronger assertion, namely that the number »
of simplexes on whose vertices the function m(s) assumes
all the values from 0 to =, is odd.

For n = 0 this is obvious; for then § = {p,} and r = 1.

Let us assume that the theorem (in the stronger
formulation) is valid for »—1. We shall prove that it is
valid for n.

We take into consideration the family of all sim-
plexes of (n—1)-dimension which appear in the given
simplicial subdivision (for the subdivision represented in
the figure this is the family of all sides of triangles).
Among them we distinguish those simplexes on whose
vertices the function m(s) assumes all the values from 0
to n—1. We denote by R the family of these distinguished
simplexes. Finally, in the family R we consider those
simplexes which lie on the face p,... pp—1 (in the figure
this is the segment [0, 1] lying at the base of the triangle);
we denote by w the number of these simplexes. By our
assumption, » is an odd number.

Let us write down the sequence

A17 A27 seey Ah At+17 L) Aw
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of all the simplexes appearing in the simplicial subdivision
under consideration; let the simplexes A,, ..., A; have the
dimension » and let the remaining have dimension <.

We denote by v; for j <t the number of faces of the
simplex A; belonging to R. Denoting by W; the set of
values which the function m(s) assumes on the vertices
of the simplex 4;, we easily prove that

1. if W;=(0,1,...,n), then v; =1,

2. if (0,1,..,n—1)C W; # (0,1, ...,n), then v; =2,

3. if (0,1,...,n—1) ¢ W;, then v; =0.

Therefore

r=(v+v+..+v)mod2.

On the other hand, if to each j <t we assign the faces
of the simplex 4; belonging to R (provided that such faces
exist), then every simplex belonging to R will be assigned
to one or two indices j depending on whether or not it
lies on the face p,... p,—1. Hence, we have

v+ 0+ ..+, =umod2, whence r=wumod2,

and therefore r is an odd number (because # is odd).

§ 3. Dimension of a simplex

LEMMA. Let there be given in a compact space a finite
system of closed sets F, ..., Fy such that

(7) Fop\...f\Fn=@;

then there exists an &> 0 such that every set X, having
points in common with each of the set Fy, ..., F,, has
a diameter >e.

Proof. Let f(x,, ..., ), Where zy € Fy, ..., Tn € Fy, de-
note the maximum of the numbers |v;—x;|, Where the
indices ¢ and j assume all the values from 0 to n. It is
easy to verify that the function f is continuous. Let &
denote the least upper bound of this funection. Since
the set F,x..xF, is compact, the function f attains
its greatest lower bound (see Chapter XV, § 4, Theorem 4).
Hence, let f(ay, ..., @) = &. It follows from this that ¢ > 0
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for otherwise we should have ay=... = a, contrary to
equality (7).
At the same time, if 2, € X ~ Fy, ..., 2n € X ~ F,, then
f(@gy ..oy @) 2 e whence o(X)>e.

THEOREM 1. I} the system of closed sets Fy, ..., I, satis-
fies the condition

(8) p’io"'p’ikc-.F«[OU vee UFik
for each face of the simplex S = py... pn, then
(9) Forn.nFp#£4§.

Proof. Let us assume the contrary, i. e. that equality
(7) holds, and then apply the lemma.

Let there be given a simplicial subdivision of S into
simplexes of diameter <& Let s be a vertex of some
simplexe of this subdivision. By virtue of formula (4)
and because of the fact that the faces of the simplex §
are disjoint (see §1,1), there exists only one face p;, ... py,
which contains s; and therefore, by (8), there exists an
index ¢; such that seFy.

Let us set

(10) m(s) =1t;, i.e seFyy.

The function m(s) thus defined satisfies condition (6).
Hence there exists, by virtue of Sperner theorem, a sim-
plex s;... 8, such that for ¢ =0,...,n,

(11) m(s;) =14, and hence s;eF;, i.e. 8...8, ~Fi= 4,
contrary to the lemma, for d(s,... 8x) <e.

THEOREM 2. Let P; be the union of all the faces of the
simplex S having p; for a vertex (in other words, P; i8 the
set of all the points of S for which A;> 0). Let the system
of closed sets F, ..., Fy satisfy the conditions:

(12) S=Fyu..uF,,
(13) F,CP;.

Then condition (8) is satisfied and hence (by virtue of
Theorem 1) condition (9) also.
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Proof. Let p € py, ... py,. Therefore, for every j distinct
from each of the numbers i, ..., % we have 1; =0,
i. e. p ¢ P;, whence p ¢ F; by virtue of (13). Applying (12),
we deduce from this that
(14) peFou .. . OF; OUF; ;o ...uF,.

Since formula (14) holds for each j satisfying the
inequalities

?'75"'07 ety j#ilw
it follows that peFy v ... v Fy .
Thus, inclusion (8) is proved.
THEOREM 3. dim S = n.

Sketch of the proof. By virtue of formula (3),
Chapter XIX, § 3, we have dim&" < n. Therefore

(15) dimS <n.
Thus, we have to prove that

(16) dimS>n—1.
Let

17 T,=8—P;

(where P; has the same meaning as in Theorem 2); thus,
T; is the set of those points p for which 4; =0 (in
other words, this is the closure of the faces lying opposite
the vertex p;). By virtue of condition (2) we have

(18) Tone.nTh=19,
and since the sets 7'; are closed we can apply the lemma
to them.

Let us assume, contrary to inequality (16), that
dim S < n—1. By virtue of Theorem 3 in Chapter XIX,
§ 4 (stated without proof), we can then decompose S
into a finite number of closed sets
(19) S=H,oHy,w..uH,
such that

1. no point belongs simultaneously to n+41 of the
sets H;,
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2. 6(H;) < ¢ where ¢ is the number appearing in the
lemma; this means that each of the sets H; is disjoint
with at least one of the sets 7;, or—by virtue of (17)—
is contained in at least one of the sets P;.

Let us divide the sets H; into classes putting into
the zero class those which are contained in P,, into the
1-st class those which do not belong to the zero-th class
and are contained in P;, and so on, so that finally, to
the n-th class belong those which do not belong to any
of the preceding classes and are contained in P,.

Since
(20) S=Pyu..u Py,
each of the sets H; has been put into one and only
one class.

Let us denote by F; the sum of sets belonging to
the ¢-th clags. Then conditions (13) and (12) are satis-
fied (by virtue of (19) and (20)). By virtue of Theorem 2
inequality (9) is therefore satisfied. Let p € Fo~ ... n Fy;
this means that the point p belongs for each ¢ =0, ..., n
to some one of the sets of the ¢-th class. But then
this point belongs to n+1 of the sets H;, contrary to
condition 1.

This contradiction proves that the inequality (16) is
satisfied.

Thus we obtained the fundamental formula of di-
mension theory: dimS = n, and hence dim&" = n.

§ 4. The fixed point theorem

Let S be, as before, the simplex p, ... pn.

BROUW_ER THEOREM. For every continuous mapping f
of the set S onto one of its subsets there exists a fixed point,
i. €. a point p such that

(21) fp)=p.

Proof. We shall use the following notation: for an
arbitrary p e S we write

(22) f(p) =p* =8po+ ... + AnPn,
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where (analogously to (2) and (5)):
(23) ot .. +Am=1,
(24) H=0.

We have to prove that there exists a point p such that
(25) M =2 for every ¢.

Let us denote by F; the set of all points p for which
(26) <.

By virtue of the continuity of the barycentric co-
ordinates and of the function f, the sets F; are closed.
We shall prove that condition (8) is satisfied.

Let p € py, ... pg,- This means that

(27) Aigt e+ 2 =1.
But since by (23):
(28) Myt A <1,

hence from (27) and (28) it follows that
Myt + 25, <yt oo+ gy,
and therefore (cf. (24)) for some j < k% we have 12; < -
By (26) this means that p ¢F;. And therefore inclu-
sion (8) is proved.
Owing to Theorem 1, § 3, inequality (9) is satisfied.
Hence let p € Fy-...- F,. This means that
25 < Aoy
29 L.
In <
Adding these inequalities we obtain

Attt in< 2t it n,
which yields, by (23) and (2),
).g‘l—...‘f’“)-;l:: ;uo‘l—...“—}sn.
Therefore in the system of inequalities (29) there

cannot appear any strict inequality of the form A} < ;.
In other words, formula (25) holds.
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Remarks. 1. The Brouwer theorem for n = 1 states
that for every continuous mapping f of the closed interval
into any one of its subsets there exists a fixed point.
This is an immediate consequence of the Darboux property
of the function f(x)—z.

2. The Brouwer theorem is obviously also applicable
to the n-dimensional cube as well as to any set homeo-
morphic to S. It is interesting to note that this theorem
can be generalized also to the Hilbert cube ¥ and some
function spaces.

This generalization has numerous applications in the
theory of differential equations in proving the existence
theorems ). For, a theorem on the existence of a solution
of a differential equation can be formulated as a theo-
rem on the existence of a fixed point of some mapping
of the space of continuous functions into itself (under
suitable hypotheses which we shall not give here).

Let us illustrate this by an example (cf. Chapter XV,
Exercise 7).

To solve the differential equation

(30) dylde = f(x, y)

with initial values x,, %,, means to find a function g of
the variable x such that

dg(x)/de = f(w7 g(x)) and  g(%) =¥, .
In other words, we must find a function ¢ such that

(31) g(@) = yo+ [ f(t, 9(t))dt .

Lo

Let us denote by h the mapping which assigns to each
function ¢ the function &, of the variable x defined by
the condition

ho(@) = yo+ [ 1(t, 9 (1) dt .

1) J. Schauder, Der Fizpunktsatz in Funktionalriumen, Studia
Mathematica 2 (1930).
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The fixed point of this mapping is a function g such
that
hy=g9 ie  hyx) =g(x) for every z,

which means that the function g satisfies equality (31).

Thus the proof of the existence of a solution of equa-
tion (30) reduces to the proof of the existence of a fixed
point for the mapping h (which maps a certain function
space onto one of its subspaces).

COROLLARY. The surface C of the set K = [, lz2| <1
(in Euclidean space of an arbitrary number of dimensions)
18 mot a retract of it; i. e. there does mot exist a contimuous
function f which maps K into C in such a way that

(32) fle)=a for xeC.

Proof. Would there exist a function f with the pro-
perties named, then the funection

(33) g(x) = —f()

would map K onto ¢g(K)C K without a fixed point,
contrary to Brouwer’s theorem (see Remark 2).

In fact, if ¥ e L— C then g¢g(x) # z, as g(x) e C. But
if # € C then g(x) = —x by virtue of (33) and (32) and
hence we also have g(x) # .

This completes the proof of the corollary.

We shall now give another formulation of this co-
rollary, using the concept of homotopy.

Definition. Let there be given two continuous map-
pings of the space X into the space Y, i.e. f,ge YX.
We say that these two functions are homotopic if there
exists a continuous function % of two variables x and ¢,
where 0 < t < 1 such that

(34) h(x,t)eY, h(x,0)=f(r) and h(r,1)=g(x).

We can state this in more graphic language: there
exists a continuous transition from the mapping f to the
mapping ¢ (we interpret the parameter ¢ to be time).

16
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Let us note that if Y is the space & of real numbers
(or more generally, ¥ = &"), then the functions f and ¢
are always bomotopic.

For it suffices to set

h(@, 1) = f(x) +t(g(x) —f(x)) .

If, however, Y denotes the circumference of a circle
or more generally the sphere &, (i. e. the set of points
Zit..+at., =1 of the space &"'), then this is no
longer true. Namely, the identity and a constant are mot
homotopic. This means that if

X=Y:(Sﬂ7 f(w)=w, g(w)zc, 05‘5"7

then there does not exist a continuous function & satis-
fying conditions (34).
For let us assume that such a funection & exists and set

f*(tx) = h(x,1—t) for wed, and 0 <t < 1.

Let Ky, consist of points |2| < 1; hence &, is its
surface.

Since every point of ¥, can be represented uniquely
in the form 2z =tx (with the exception of the point z = 0),
therefore the function f* is continuous, i. e. f* e (,)%n.
And at the same time we have

f*(@) = h(z, 0) = f(2) =,

i. e. the function f* is a retract of H(n,., to its surface.
But this is impossible by the last corollary.

Exercises

1. Let S be an n-dimensional simplex lying in the space &™
Prove that the boundary of the simplex S is the union of all its
faces of dimension <n.

2. The continuum C consists of the closure of the graph of the
function y = sin(l/x) for 0 < |z] < (1/x) and of an arc joining
the points (—1/x, 0), (1/m, 0) outside of the rest of the continuum
C. Prove that under every continuous mapping of the set C onto
its subset there exists a fixed point.
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3. Let S =p,...pn be a given simplex and let X be a given
space covered with open sets: X = Gy u ... U Gn.
Consider the mapping

#(@) = Ao(@) Po+ .. + An(®) " P,
where
@) = e(@, X—Gi)/{g(x, X —Go) + ...+ o (x, X —Gn)}

(this is the so-called kappa mapping).

Prove that

(a) x(x) ¢ S where J(x) is the i-th barycentric coordinate of the
point x(z) (i. e. conditions (2) and (5) are satisfied);

(b) #~1(P;) = Gi, where P; has the same meaning as in Theo-
rem 2, § 3;

(€) # Y Piy .. Pip) = Gig ooe  Gi— (JiGi, where the union is over
all indices ¢ different from 4,, ..., tx;

(d) #(X—G)~Py=10;

(e) if every intersection of m + 2 of the sets Gy,...,Gn is void,
then dimx(X) < m.

4. Let § = P, ... pn be a given simplex and let f be a continuous
mapping of § into itself. We assume that, if p ¢ Fr(S), then f(p)
¢ Fr(S) and that f(p) # p. Prove that F(S) = 8.

Hint: Assuming that f(S) = § we denote by r the point belong-
ing to S—f(8) and by g(p) the projection of the point f(p) from r
into Fr(S). We then arrive at a contradiction of Brouwer theorem.

5. Let S = p, ... pn and let the sets G, ..., Gx, open in §, satisfy
the conditions § = Gy w ... v Gn and Gic P; for ¢ =0, ..., n. Then
Gof\...f\Gn¢ 0.

Hint: Make use of Theorem 2, § 3, and of Exercise 18,
Chapter XII.

6. Let T; denote the closure of the face lying opposite the
vertex p; (cf. (17)). Prove that if the closed sets F,, ..., Fn satisfy

the conditions § = Fy u ... v Fy and T; c F;, then Fy A ... ~ Fp = f§-
Hint: Use Exercise 5.

7. Let S = p,...pn and let f be a continuous mapping of S
into itself such that j(Ti) c T; for i = 0, ..., n. Then f(8) = 8.
Hint: Argue as in the solution of Exercise 4 and set F; = g~*(T%).

Then apply Exercise 5.



CHAPTER XXI

COMPLEXES, CHAINS, AND HOMOLOGIES

§ 1. Abelian groups

We shall now give the concepts and theorems from
the theory of groups which we shall use in this chapter.

Definition 1. An abstract set G is said to be an
abelian or cominutative grouwp if an operation, called ad-
dition, is defined in this set such that to every pair a
and b of elements in @ there is assigned a certain element
a+b of the set G (called the sum of the elements a and b)
in such a way that the following conditions, called the
axioms of the theory of groups, are satisfied:

(i) (a+b)+ec=a+(b+o0),
(ii) a+b=0b+a,
(iii) there exists exactly one element (denoted by 0)

of the set G which possesses the property that a +0 =a
for every aed,

(iv) for every element a ¢ G there exists exactly one
inverse element (which we denote by (—a)) possessing
the property that a4 (—a) =0.

Exampres. 1. The set of integers forms a group with
respect to addition but, on the other hand, it does not
form a group if we define the group operation to be
multiplication because in this case axiom (iv) is not
satisfied.

2. The set of complex numbers 2 such that |z| =1
(these are numbers of the form e*) forms an abelian
group with respect to the operation of multiplication of
complex numbers.

3. The set of all continuous functions f, defined on
a space X and which assume mnon-zero complex values,
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forms an abelian group if we define the group operation
as follows:

(fs=h-1o) = N [fs(x) = ful®)- fo(2)].
Definition 2. If a subset G, of the group G itself
forms a group with respect to the group operation de-
fined in @, i.e. if the condition a, b € G, implies that
(a+b) e Gy, and (—a) € Gy, then we call G, a subgroup of
the group G. We define the relation a~b(mod@,) for
elements of the group G as follows:

(v) [a~b(modGy)] =[(a—Dd)e@,].

THEOREM. Relation (v) is an equivalence relation,
1. e. it 18 reflexive, symmetric and transitive.

Proof. a~a(mod@Gy), i.e. a—a%OeGo (for @G, is
a subgroup of @).

[a~b(modGy)] =[a—b € Gy)
=[b—aeG,) =[b~a(modG,y)].

Let (a~b) and (b~c), i.e. a—be @, and b—c e Gy;
from this we obtain (a—b)+(b—c) e Gy, and therefore
a~c¢(mod G,).

Relation (v) leads to a decomposition of the elements
of the group G into disjoint sets of mutually conjugate
elements, called cosets (cf. Exercise 9, Chapter V).

We denote by Gy (a) the set of elements which are
conjugate mod @, to a. Thus

[Go(a) = Gy(b)] = [a~b(mod Gy)] .

We introduce the operation of addition of cosets in
the following way:

(vi)  Go(a)+ Go(b) 35 Gola+ D).

We can easily prove that addition defined by for-
mula (vi) does not depend on the choice of the element
chosen in the cosets and that with this operation the
class of cosets forms an abelian group.

Definition 3. The group of cosets is called the
quotient group and is denoted by G/G,.
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Definition 4. Let G and H be two abelian groups.
A function f which maps the group G onto a subset of
the group H is said to be a homomorphism of the group ¢
into the group H if

fla+b) =f(a)+f(b).

We call the homomorphism f an isomorphisin if the
function f is one-to-one; if moreover f(G) = H, then the
groups G and H are said to be isomorphic.

Just as topology deals with the invariants of homeo-
morphisms, the theory of groups deals with the invariants
of isomorphisms. From the point of view of group theory
two isomorphic groups have the same properties.

Remark. The connection between the concepts of
homomorphism and quotient group is established by the
following theorem (which will not be used in this book):

Assume f is a homomorphism of the group G onto the
group H. Let G, denote the set of those elements of the
group G which map under f onto the zero element of the
group H (this set is called the kernel of the homomorphism f),
i. e.

(x € Go) = [f(x) = 0].

Then

1 the set G, i8 a subgroup of the group G,

2. the quotient group G/G, is isomorphic to the group H.

§ 2. Oriented simplexes. Chains

Let 8 = pg ... p» be an n-dimensional simplex (n > 0)
(see Chapter XX, § 1). Every sequence consisting of n+1
of its vertices (without repetition) is called an oriented
simplex; we identify any two oriented simplexes if one
can be obtained from the other by an even permutation;
we then say that these simplexes have the same orienta-
tion (of course, a 0-dimensional simplex has just one
orientation); e. g.

(Pos P15y P2) = (P1y P2y Po) = (D2, Doy P1)
. (Poy D1y P2) # (P1) Doy P2) -
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Figure 17 illustrates this.

By a (closed) complex we understand a finite set of
simplexes having the property that if any simplex belongs
to it then all the faces of this simplex belong to it also.

1% 2

Fic. 17

Let K be a complex. The n-dimensional simplexes
belonging to K, after they have been oriented, are con-
sidered as elements of an abelian group, denoted by
L™(K); thus the elements of this group, called n - dimensional
chains, are linear forms:

(1) L :k1S1+k282"|—“. "I—kmSm,

where 8;, S,, ..., Sy are oriented »-dimensional simplexes,
and %y, ..., k, are integers.

We assume here that the multiplication of a simplex 8
of dimension >1 by —1 denotes a change of its orienta-
tion, and we identify the chain 1-8 with §, e. g.

—1(170, pl) = (p17 po) = 1(P17 po) ’

—1(Po, D1, P2) = (P1y Do, P2),  —1(P) =(p).
As usual we denote by 0 the zero of the group

L*K), and consider 0 to be an n-dimensional chain for
every n =0,1,2, ..

Remark. Obviously, an n-dimensional chain is de-
fined when the coefficients %, k,,... are given for all
#n-dimensional simplexes of the complex~K (some of the
k; may vanish). Hence it is possible to define an =-di-
mensional chain as a function f which assigns to every
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oriented #-dimensional simplex 8 an integer k = f(S);
this function is odd (in the sense that a change in the
orientation of the simplex S leads to a change in sign of
the function); the addition of functions h = f+4g¢ is de-
fined by the rule

R(8) =f(8)+9(8).
For such a definition of the group L"(K), the zero of

this group is the function which is identically zero.

§ 3. Boundary of a chain. Cycles

In order to define the boundary 0L of the chain L
we first define the boundary of an oriented simplex:

' /lf L= (pm ceey pn), then

n
(2) oL = Z (—l)k(pm ooy Pr—1y Pret1y ooey pn)y
k=0
o) =1.
Furthermore, we assume that if L is of the form (1), then
m
(3) oL = k;-08;.

For example,

0(Po, P1) = (P1)— (Do) » o[5(po)] =5,
(Pos P1y P2) = (P1) P2) + (P2, Po) + (Poy P1)

o[(Poy P1y P2) + (D2y D1y P3)]

= (Do) P1) + (P1, Ps) + (Ps, P2) + (P2, Do)
(see Fig. 18).

From the above definitions it follows immediately that
the boundary of an n-dimensional chain for » > 1 is an
(n—1)-dimensional chain, and that the operation oL is
- additive, i. e.

(4) 8(Ll +Ly) = oL, +0L,.
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Thus, for n > 1, the operation 9L is a homomorphism
which maps the group L™K) onto a subgroup of the
group L"7Y(K).

By a cycle we mean a chain L such that oL = 0.

It is easy to prove that

(5) oL =0,

i. e. that the boundary of an arbitrary chain (of dimension

n>1) 48 a cycle, the proof is carried out first for the
Pa Pa

N

Po P
Fic. 18

case where L reduces to a simplex (formula (2)) and then
formula (4) is applied.
(6) The sum of two cycles is a cycle.
For if 0L, = 0 = oL,, then o(L,+L,) = 0L, + 0L, = 0.
It follows that the n-dimensional cycles form a sub-
group of the group of n-dimensional chains. We denote

it by the symbol Z"(K).

§ 4. Homology (or Betti) groups

We say that the cycle Z ¢ Z"(K) is homologous to zero
in the complex K, which we write as

(7) Z~0 in K,
if Z is the boundary of some chain L ¢ L""'(K):

(8) Z =2a(L).
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ExAMPLE. Let K be a complex consisting of all (0-, 1-
and 2-dimensional) simplexes given in Fig. 19, except
2

— ‘/‘
0 1
Fic. 19

the simplexes 012 and 345 (for simplicity we write k
instead of p;). The chains

Z,=(0,1)+(1,2)+(2,0)
and
Zy=1(3,4)+(4,5)+(5,3)

are cycles which are not homologous to zero in K. On
the other hand we have

Z,—Zy~0 in K
because Z,—Z, = 0L, where
L =(0,4,3)+(0,1,4)+(1,5,4)+
+(1,2,5)+(2,3,5)+(0,3,2).

The sum of two cycles homologous to zero in K is a cycle
homologous to zero in K, i.e.

(9) (Z,~0in K) and (Z,~0 in K)
=>(Zy+Z,~0 in K).
For if Z, =0(L,) and Z, = o(L,), then
Zy+Zy = 0(Ly) +0(Ly) = 0(Ly+ Ly).

It follows from this that the n-dimensional cycles
which are homologous to zero in K form a group, which is
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a subgroup of the group Z"(K). We denote it by the
symbol H™(K).

f Z,—-Z,~0 in K, we write Z,~Z, in K and we
then say that the cycles Z, and Z, are homologous to
each other.

The quotient group Z"(K)H"(K) is called the n-th
homology group or the n-th Betti group of the complex K.
We denote it by B™(K).

Thus, a Betti group is formed by joining into classes
cycles which are mutually homologous.

We say that the cycles Cy, C,, ..., O, are homologously

independent (or linearly independent modulo H"(K)) if the
condition
EC+..+k,0pn~0 in K
implies that
by=..=kn=0.

The maximal number of homologously independent
n-dimensional cyecles is called the n-th Betti number of
the complex K.

For example, in the complex given in Figure 19 the
first Betti number is 1 because there exist 1-dimensional
cycles which are not homologous to zero, but there do
not exist two such homologously independent cycles.

For an arbitrary simplex, the complex consisting of
all its faces has all Betti numbers equal to zero.

Let S(K) denote the union of all simplexes belonging
to the complex K. It is therefore some polyhedron
(a polygon, if K is a one- or two-dimensional complex).
It is clear that this same polyhedron P can be represented
in the form P = S(K) for different K; for example,
a two-dimensional polyhedron can be triangulated in
various ways. It can be proved that the Betti numbers
do not depend on the method of simplicial subdivision:
if S(K)= S(K,), then the n-th Betti numbers for K
and for K, are equal; hence they are a property of polyhe-
dra. These numbers are invariant under a homeomorphism.
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In particular, the zero-th Betti number is the number
of components of the polyhedron under consideration
minus 1. The first Betti number of a polygon in the plane
is the number of regions in the complement minus 1.
More generally: the n-th Betti number of a polyhedron

in the space &"'' is the number of components of its
complement minus 1.

Exercises

1. The complex K consists of all the segments 8, = pyp,,
8: = P1Pss ooos Sm = Pm—1Pm together with the vertices py, Py, «..s Pm
of the polygonal arc L (see Fig. 20). Let the chain Z = k, S, + k, 8, +
weo+kmSm be a cycle. Prove that k, = k, = ... = km = 0.

2. K consists of all the segments and vertices of the polygonal
line L given in Fig. 21.

P

Fic. 20 Fic. 21

Po S. P,

We assign an orientation to the segments of L in the direction
indicated on the figure. We denote the 1-dimensional simplexes
thus obtained by 8,, S,, ..., Ss. Prove:

(a) that every chain of the form

8
(i) ke M8

i=1

is a cycle;

(b) that every 1-dimensional cycle of the complex K is of the
form (i);

(c) that (a) and (b) imply that the first Betti group of the
complex K is isomorphic to the group of integers.

3. K consists of the segments and vertices of two polygonal
lines I, L, having one vertex in common (see Fig. 22). The segments



COMPLEXES, CHAINS, HOMOLOGIES 253

of the complex K are oriented (as in Fig. 22); let us denote them
by Si and Sx depending on whether the segment belongs to I,
or to L,. Let us set

4 4
Zy= D 8, Zy= ) Su.
i=1 i=1

Fic. 22

Prove that
(a) every one-dimensional cycle Z of the complex K is of the form

(i1) Z=kZi+kZy;

(b) every chain of the form (ii) is a cycle.

Deduce from (a) and (b) the nature of the Betti group of the
complex K.

4. Fig. 23, after identifying the sides ¢! and ¢}, represents
a triangulation of a surface called the Mébius band. The orientation &

t/ 4 t}
I S L B =g
¢ ¢! t
Fic. 23

of the triangles of this triangulation and also the orientation of the
segments t; are denoted on the figure.
Set

[] []
L=)1# and Z= )14,
=1

i=1

and prove that oL = Z + 2t!.

5. We can obtain a triangulation of the projective plane in the
following way: we consider the triangulation of the square given
in Fig. 24 consisting of the 24 oriented triangles ¢, ¢, ..., t2,, the
12 segments !, ¢}, ..., t, and the vertices; next we identify ¢} with
i, 13 with £, 3 with ¢}, t} with ¢!, ¢! with #,, and £ with ,.



254 SET THEORY AND TOPOLOGY

Instead of 12 oriented segments we obtain 6 segments which
we denote as before by ti, 1, ..., ti. We have thus obtained a trian-
gulation K of the projective plane. Set

13

4 8

6, Z=Y4

and prove that 8L = 2Z and that Z is not the boundary of any two-
dimensional chain of the complex K.
Hint: oL, = Z implies L, = kL.

™~

18

1

I
I~
<.

L]
-

¢ td t;

ey == /:/ /I/ Al
/

ty == = = M
/

thy /:/ /,'/ ' t
t! t t]

Fic. 24

6. Let K be a complex formed of all the faces of a tetrahedron S
and let L be the complex formed of all the faces of dimension <3
of the tetrahedron S. Show that all the Betti numbers of the com-
plex K, from the zero-th to the third, vanish. The zero-th and first
numbers of the complex L vanish but the second equals 1.

7. Denote by m, the number of r-dimensional simplexes of the
complex K. The number

n

2(K)= D (=1)'m,

r=0

is called the FEuler characteristic of the complex K. The following
formula (of Euler-Poincaré):

n
= D (=1 b(K)+1,

r=0

where b,(K) denotes the r-th Betti number of the complex K, holds.
Compute y(K) and the Betti numbers for the complexes considered
in the preceding exercises.

8. Let the function f assign to each vertex of the complex K;
some vertex f(p) of the complex K, (we do not assume that to distinct
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vertices of the complex K, correspond distinct vertices of the com-
plex K,). If the condition

(Popr - Pu) € K,
implies
L@ (D)) - f(Pn)] € Ky

then we say that f is a simplicial mapping of the complex K, into
the complex K,. For each simplex S = p,p, ... Pn € K; we write

F(8) = f(pa) f(P1) - f ()
in the case where the vertices f(p,), f(D1), ..., f(Pn) are distinet and
we write f(S) = 0 otherwise.
The mapping f induces the following mapping f of the group
L™K,) into the group L™K,): for

L =1k 8 +k,8S;+ ...+ kmSm
we put
FD) = kaf (82) + K f (S3) + wv. + Kimf (Sm) «
Prove the following properties of the function f:
(@) f(Ly+ L) = f(L) +f(Ta)
(i. e. f is a homomorphism of the group L*(K,) into the group L"(K;)).
(b) of(L) = f(@L), i
(¢) if ZeZYK,), then [(Z)eZ"K,),
if Z~0in K,, then f(Z)~0 in K,,
if Z, ~Z, in K,, then [(Z,)~ f(Z,) in K,.
Deduce from (a), (b) and (c) that the mapping f induces a homo-
morphism of the group B™K,) into the group B™K,).



CHAPTER XXII

CUTTINGS OF THE PLANE

§ 1. Auxiliary properties of polygonal arcs

As usual, we shall denote the plane of complex numbers
by &% By &, we denote the plane &2 extended by the
point at infinity (called the Gauss plane); topologically
&, does not differ from the surface of a three-dimen-
sional sphere.

THEOREM 1. Any two points of a connected open set R
(i. e. of a region) situated on &S, can be joined by a poly-
gonal arc.

The proof is completely analogous to the proof of
Theorem 4 of Chapter XVIII, § 4: by F we denote the
set of all points of the region R which can be joined by
a polygonal arc with the fixed point pe R and then we
prove that this set is nonvoid and open and that the
set R—F is open; taking into consideration the con-
nectedness of the set B we deduce from this that F = R.

THEOREM 2. If L is a polygonal arc C S,, then the
set S,— L is homeomorphic to the plane &2.

The proof is by induction on the number n of links in
the polygonal are.

For » =1 we have to prove that the Gauss plane
minus a Segment is homeomorphic with the Gauss plane
minus a point.

To this end, we describe about the center of the seg-
ment L a sequence of concentric circles K,, K,, ... with
radii tending to 0. Let E,, E,, ... be a sequence of ellipses
(together with their interiors) whose intersection is the
segment L; we may assume here that E, = K, (Fig. 25).

We define the required homeomorphism h as follows:
on the exterior of the circle K, we set h(z) = 2. Next
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we map the annulus F,— F, homeomorphically onto the
annulus K, — K, ; in general, we map the annulus Z,, —Eni
onto K,,—K,11.

The theorem is thus proved for » = 1.

£, K,
K,
£, Ks

Fic. 25

For » =2 the polygonal arc L consists of two seg-
ments 4, and 4,. We carry out a homeomorphic mapping
of &, onto ,, which leaves the segment A, invariant,
but maps 4, into a rectilinear extension of the seg-
ment A,. The proof thus reduces to the case n = 1.

A similar method allows, in the case where L consists
of n+1 segments to “straighten out” the last segment
(perhaps contracting it) in order to obtain a polygonal
arc consisting of n sides.

Remarks. Theorems 1 and 2 are valid in the space &"
for arbitrary n. For » = 2 Theorem 2 can be sharpened
. by replacing the polygonal arc L by an arbitrary arc;
namely, the complement of an arc contained in &2 is
homeomorphic to the complement of a point. On the
other hand, for n = 3 the theorem thus sharpened is not
valid: there exists in &% an are, the so-called Amntoine’s arc,
whose complement is not homeomorphic to the comple-
ment of a point.

§ 2. Cuttings

We say that the (closed or open) set A is a cutting
of the space &, (or: that it separates or cuts this space)
if the set &,— A is not connected.

17
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A separates S, between the points p and q if these
points belong to distinet components of §,— 4.

THEOREM. If the closed set A cuts &, between p and q
then there exist two closed sets R and ¢ such that

,=Ru@, peR, qe and R~Q=A4.

Proof. Let M be a component of the set 5,—A
which contains the point p, and let N be the union of all
the remaining components of this set. Since the com-
ponents of §,— A are open (see Chapter XVIII, § 2,
Theorem 3) and the sets M, N and A are separated, then
the sets R= M v A and @ = N u A are closed and, as
can easily be seen, they satisfy the desired conditions.

§ 3. Complex functions which vanish nowhere. Existence of
the logarithm

We shall denote by the letter £ the plane minus the
point 0, i. e.

P=6—{0}.

We say that the function fe P4 (i. e. continuous,
defined on 4, complex valued and everywhere different
from 0) has a single-valued continuous branch of the log-
arithm if it is of the form

(1) f(2) = e, where ue(&2)4
(the function % is this branch). We then write
f~1.

More generally: if f ¢ P4 and B C 4, then we write
f~1 on B,
if there exists a function u e (&2)B such that
(2) f(z) =ev® for zeB.

A fundamental theorem for the topology of the plane,
which is our nearest goal, is the following theorem:

EILENBERG THEOREM. Let A be a compact or open
subset of the space L. A mecessary and sufficient condition
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that the set A does mot separate S, between the points 0
and oo 18, that the identity has, on the set A, a single-valued
continuous branch of the logarithm, i.e. that there exists
a function u e (E2)4 such that

z=e4  for zed.

§ 4. Auxiliary theorems

THEOREM 1. Let R denote a ray lying in the plane and
emanating from the point 0. Then z~1 on the set &2— R.

Proof. Let ¢ be the angle between R and the positive
direction of the x-axis; we assume that 0 < ¢ < 2.

Since every point 2z of the plane is of the form z = |2|¢’e,
we can assume that ¢—2n < a < ¢ for points 2z not be-
longing to R. The funection

(3) u(2) = logz = log|?| + ia
is continuous on &2— R and satisfies the identity
z=e4 for ze&S2—R.
From this we obtain the following theorem.
THEOREM 2. If fe(&2— R)4 the;@ f~1.
For, the function u(f(2)) is continuous on the set 4 and
f(z) = e  for zeAd

(where w is the function defined by the formula (3)).

THEOREM 3. Let fe P4. To every point ze A there
corresponds a certain meighborhood G such that

(4) f~1 on @.

Proof. Let R be a ray emanating from the point 0
and not containing the point f(z) (such a ray exists be-
cause f(z) # 0). Owing to the continuity of f we have

RAf(@®)=¢, ie [fCE—R

for some neighborhood G of the point =z.

This means that the function f considered on @
satisfies the assumption of Theorem 2. Hence, we have
formula (4).
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THEOREM 4. Let fe P4, let ae A and let ¢ be one of
the values of logf(a). If f~1, we can choose the function u
satisfying formula (1) tn such a way that its atisfies the
“imitial’® condition:

(8) u(a) =c.
Proof. Since f~1, the function f is of the form
f(z) =ev®@  where ve(&2)4.

Let us set
(6) u(z) =v(2)—v(a)+c.

Hence, we have

ew(?) — gv(@) . g—v(a). g¢ — f(z) ,
gince

@ =1/f(a) and e = elos/@ = f(a).

Hence the function « satisfies condition (1). Moreover,
formula (6) immediately implies formula (5).

Remark. The initial condition (5) in general does
not determine the function # uniquely. We have unique-
ness, however, under the assumption that the set A is
connected. This follows from the following theorem:

THEOREM b. If the set A is comnected and
(7 f() = e = e,

then v(2) = u(2)+ constant.

Proof. By virtue of (7), ev@—u= =1, and therefore
for every z there exists an integer k(z) such that »(2) —u(2)
= 2k(2)ni. Hence, the function %(2) is continuous. Since
k(2) is defined on a connected set and has integral values,
it is therefore constant (for the continuous image of
a connected set is connected (cf. Chapter XVI, § 2,
Theorem 1)).

THEOREM 6. If F is a closed subset of S, and the func-
tion fePF satisfies the condition f~1, then there exists
a function ¢ e P2 which is an extension of the function f
“and which satisfies the condition g~1.
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Proof. By assumption, formula (1) is satisfied, and
because of Tietze extension theorem (Chapter XII, § 8,
Corollary 1) the function # can be extended to the entire
space &,. Let v be this extension. Hence, we have

ve (&) and v(R) =wu(z) for zeF.

The function g(z) = ¢*@ is the desired funection.

THEOREM 7. Let A and B be two closed or two open
sets with connected intersection. Let f € PAYB, If f~1 on A
and on B, then f~1 on A U B.

Proof. By assumption there exist two functions
% € (524 and v € (62)F such that

e for zed,
e*®  for zeB.

je) = |

Let A~nB=¢, and ae A ~ B. We can assume that v
has been so chosen that v(a) = u(a) (cf. Theorem 4).
Since the set A ~ B is connected, it follows (by virtue
of Theorem 5) that v(2) = u(2) for every 2 ¢ A ~ B. Hence,
if we assume that
®) we) - |

uw(z) for =zed,
v(z) for =zeB,

then—as can easily be verified (see Exercise 4, Chap-
ter XII)—the function w is continuous, i. e. w e (&2)4YB,
As f(2) = ev@ for ze¢ A u B (cf. (8)), hence f~1.
We arrive the same conclusion if 4 ~ B =9.
THEOREM 8. Let fe P% and let O, Cyy ..., Un, ... be
a sequence of commected sets such that

(9) G=CIU02U...UOnU...,
and
(10) CnCInt(Cn+1) for n = 1, 2, eee

If f~1 on Cy for every w, then f~1 (on G).
Proof. Let ae ;. By assumption we have

(11) f(z) = e=®  for 2zeCyp and u,e(E2)Cn.
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We can assume (see Theorem 4) that wa(a) = u,(a). It
follows, by virtue of the connectedness of the set C,
that un(2) = u,(2) for 2e¢C,, and since wu, ,(a) = un(a),
we have similarly

(12) Upi1(?) = Un(2) for zeCy.
Let
(13) u(2) = un(z) for 2zeC,.

Because of (12) and (9), formula (13) defines the funec-
tion % uniquely for every ze . This is a continuous
function. For, if 2z, € Cp, then by virtue of (10) 2, e Int (C,, 1,);
but since u(2) = u,.,(2) for 2z € Cy, the continuity of the
function %,, at the point 2z, implies the continuity of the
function « at this point (cf. Chapter XII, Exercise 3).

Finally, formulas (11) and (12) yield

f(z) = e for ze@G, 1i.e. f~1.
THEOREM 9. Let G be an open set (in &,) and let
1 e PG, If
(14) f~1 on C
for every subcontinuum C of the set G, then f~1 (on G).

Proof. Let us first assume that the set G is connected.
There obviously exists a sequence of open circular disks
K,, K,, ..., Ky, ... such that

(15) E.,CG@ for n=1,2,..,
and
(16) G:K]_\J.Kzu...U.KnU..-

We shall define inductively a sequence of continua
¢y, Cyy ...y Cn, ..., satisfying conditions (9) and (10).
Namely, let 0, = K,. For given n, let m, be an index >n
such that

a7 CnCKyu...u Ky,
(the existence of the index m, follows from the Borel
theorem, Chapter XV, § 3, Theorem 2).

Since G is an open connected set (by assumption)
we can join K; by means of polygonal arcs with each



CUTTINGS OF THE PLANE 263 -

of the discs K,, K, ..., K, in the interior of G (Theo-
rem 1, § 1). The union of these polygonal ares and sets
K, ..., Ky, is denoted by Cp.,.

Inclusion (17) immediately yields inclusion (10), and
equality (16) yields equality (9) (because of inclusion (15)
and of inequality m, > n).

Hence our theorem is proved for the case where the
open set G is connected.

In the case where the set G is not connected we
congider its decomposition into components (cf. Chapter
XVIII, § 2, Theorem 4):

G=GuvlGu..uG,u..

Since the set G, is connected and open (by virtue
of Theorem 3 of Chapter XVIII, § 2), it follows from
the part of the theorem already proved that

le on Gn,
i. e. f(2) = €@ for ze @y, and v, € (52)%n
Let us set v(2) = vn(2) for 2z € G,. Since the sets Gy are

open, it follows (cf. Chapter XII, Exercise 5) that the
function » is continuous. Hence we have

f(2) = ¢¥®@, where ve (529, i.e. f~1.

§ 5. Corollaries to the auxiliary theorems

COROLLARY 1. Let I be the closed interval 0 <t < 1.
Every function fe P¥, where F =F CJ, satisfies the
formula f~1.

Proof. By Theorem 3, § 4, we can assign to every
point t ¢ F an open set G; which contains ¢ and is such
that f~1 on F ~ G;. By virtue of the Borel-Lebesgue
theorem (Chapter XV, § 3, Remark 2.), there therefore
exists a finite number of open sets which cover the set F
and are such that f~1 on each of them individually.
In other words, there exists a system of points

O=a0<a1<...<an=1,
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such that f~1 on the intersection F A (ap—iax) for
k=1,2,..,n.

The intersection [F ~ (aya,)] ~ [F ~ (a,a,)] being con-
tained in {a,} is connected (perhaps void). Hence we have
f~1on F ~ (aa, v a,a,) = F ~ (a,a,) by virtue of Theo-
rem 7, § 4.

Similarly, f~1 on F A (a,a, v a,a3) = F ~ (ayas3).

By induction we prove that f~1 on F ~ (a,a,) = F.

COROLLARY 2. Let K be a square (with interior) C &2.
Every function f e PK satisfies the formula f~1.

Proof. Let us decompose the square K into a finite
number of squares A4,, 4,, ..., A», enumerating them in
such a way that the intersection
(18) Ak ) (A]_ U e YV Alc—l)

is connected for k = 2, 3, ..., n (cf. Fig. 26). We assume
that these squares are so small that f~1 on each of them

16 | 15 | 14 | 13

3 |10 11| 12

8 7 6 b}
{ 2 3| 4
Fic. 26

individually (we reason as in the preceding proof making
use of Theorem 3, § 4, and the Borel-Lebesgue theorem).

As f~1 on A, and on A4, and as the intersection
A, ~ A, is connected, we have f~1 on 4, u 4,. Reasoning
by induction and using the fact that the intersection (18)
is connected, we deduce that f~1on 4, u...u 4,,i.e. on K.

COROLLARY 3. Every function fe PE» satisfies the
formula f~1.

Proof. Let K, be a square with side » and with

center 0. Since
=K uvEKu..0oK,u..
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and since f~1 on K, by virtue of the preceding theorem,
we deduce from Theorem 8, § 4, that f~1 on &2

Remark. Theorems 1-3 hold not only for the sets J,
K and &2, but also for arbitrary sets which are homeo-
morphic to these sets; in particular, for arbitrary arcs,
for a circular disk, for the complement (with respect
to &) of a polygonal arc.

Let us carry out the proof for the arc.

Let h be a homeomorphic mapping of the segment I
onto the arc A. Let fe P4. Substituting z = h(x) for
x € J, we therefore have

f(2) = Fh(@) = e = Wi~ — 9,
where v(2) = uh™Y(2), ze A.
COROLLARY 4. Let C denote the circumference |z| = r.
There does not exist a single-valued branch of the logarithm

on C; that s,
xz not ~1 on C,

Proof. Let z,=(r,0), and 4 = C—{z,}. For ze¢ A
we have
(19) z =ren@®, where 0<a(?)<2rw.

Obviously the function a is continuous on A.

Let us assume that our theorem is false. Then

2 = retb@ R

where 8 is a real valued function continuous on C.

As the set A is connected we have (see Theorem 5, § 4):

(20) a(2) = B(#) + constant.
It would then follow from this that the function a

can be extended in a continuous manner onto C. But
this is impossible. For, let

limz, =z, .
n—>00

If the points 2, lie above the x-axis, then

lima(z,) =0,

n-—>o0
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and if the points 2, lie below the x-axis, then

lima(z,) = 2=.
n—o

§ 6. Theorems on the cuttings of the plane

Proof of Eilenberg theorem (see §3). Let AC 2.
We shall consider separately the case where A is a clos-
ed subset of J, and the case where A is an open set.

1. A = AC P. Let us assume that 4 does not separate
&, between the points p = 0 and ¢ = co. We have to
prove that

(21) z~1 on A.

Since the points p and ¢ lie in one of the components
of the set &,— 4, there exists a polygonal arc L (cf. Theo-
rem 1, § 1) such that

(22) L=pqCS,—A.

By Theorem 2, § 1, the set §,—L is homeomorphic
to the plane &2, and hence by virtue of Corollary 3,
§ 5 (cf. Remark) we have z2~1 on &§,—L, whence for-
mula (21) follows, for A C §,— L by (22).

Let us assume next that A separates &, between the
points p =0 and ¢ = co. Hence, there exist (see § 2)
two closed sets R and @ such that

(23) SH=Ru@, peR, qeQ,
(24) RAn@Q =A4.
We shall show that the assumption (21) leads to

a contradiction.
In fact, from (21) it follows that (cf. Theorem 6, § 4)

(25) z=eud on A, where we(&E%)%.
Let us set

26
(26) if zeR and z2#0.



CUTTINGS OF THE PLANE 267

By (24) and (25), the function f is defined and contin-
uous for every z # 0 (cf. Chapter XII, Exercise 4), i. e.
(27 fe P52,  whence f~1
by virtue of Corollary 3, § 5 (cf. Remark).

Since the point 0 does not belong to ¢, there exists
a disk with center at the point 0 which is disjoint from @
and hence contained in R. Let C be the circumference
of this disk. Hence we have (c¢f. (27)) f~1 on C, i. e. by
(26) 2~1 on C. But this contradicts Corollary 4, § 5.

2. The set A is open. Let us assume that the set 4
does not separate the plane J, between the points p = 0
and ¢ = oo, i. e. that these points lie in the same com-
ponent 7' of the set S,—A. Hence, if F = F C A, then
the points » and ¢ lie in one component of the set 5,—F
(namely in the one that contains the set T'). As already
proved, we therefore have z~1 on F. From this, by
virtue of Theorem 9, § 4, we obtain formula (21).

Let us assume next that the set A separates the
plane &, between the points p = 0 and ¢ = oo, i. e. that
these points belong to distinect components of the set
&;—A. Therefore, there exist two closed sets M and N
(see Chapter XVII, § 2, Theorem 6) such that

(28) S—A=MUN, peM, gqeN,
(29) MA~AN=¢.
As the space o, is normal (see Chapter XII, § 7, Theo-

rem 6) and because of formula (29), there exist two open
sets R and @ such that

(30) MCR, NCQ@Q,

(31) RAQ=9.
Let '

(32) F=8—(Ru@).

The set F' is therefore closed. Because of (30) and (28),
we have

(33) F=&—(Ru@)CH—-(MuN)=4,
peR and qe@Q.
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Therefore &,—F is the union of two open disjoint
sets B and @ of which one contains p and the other
contains ¢ (cf. (32)). The set F therefore separates o,
between these points. By virtue of the part of the theo-
rem already proved, we have z not~1 on F.

But since F C A (because of (33)) we therefore have
a fortiori that z not~1 on A.

§ 7. Janiszewski theorems

THEOREM 1. Let A and B be two closed or two open
subsets of S,. If neither of these sets separates &, between
the points p and q and if the intersection A ~ B is con-
nected, then the union A o B also does mot separate Sy
between these points.

Proof. By means of the homographic transformation

(34) h(2) = (z—p)/(z—q)
we reduce the proof to the case where
(35) p=0, ¢g=o0.

Hence let us assume that the equalities (35) hold.
Since neither A nor B separates the plane &, between
the points p and ¢, the relations

z2~1lonAd and 2~1on B

hold, by the Eilenberg theorem.

It follows from this, by virtue of Theorem 7, §4,
that 2~1 on A u B. And therefore, by the Eilenberg
theorem, A v B does not separate &, between p and gq.

THEOREM 2. As before, let A and B be two open or
two closed subsets of S,. If the sets A and B are connected
but the intersection A ~ B is not connected, then the union
A o B separates 5, between some pair of points.

Proof. We use the usual notation
Ac=§2_A, BCZQS’2—'
Let us assume—contrary to the assertion of our
theorem—that the set A4 v B does not separate o,
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i. e. that the set S,—(4 v B) = A° ~ B° is connected.
We shall prove that then the assumptions of Theorem 1
are satisfied by the sets A° and B® where p, ¢ is an ar-
bitrary pair of points belonging to A ~ B.

In fact, both the sets A° and B® are open or both are
closed, and their intersection A° ~ B® is connected. It re-
mains to prove that neither the set A° nor the set B°
separates &, between the points p and g, i. e. that these
points belong to some component of the complement of
the set A° or to some component of the set A, and,
similarly, to some component of the set B. But this
follows immediately from the assumption that the sets A
and B are connected and contain the points p and gq.

Applying the first of the Janiszewski theorems to the
sets A° and B°, we deduce that the union A°u B° does
not separate &, between p and ¢, i. e. that p and ¢ belong
to the same component of the set (A°u B°)° = A ~B.
But since the points p and ¢ are arbitrary points belong-
ing to A ~ B, it follows from this that the set 4 ~ B is
connected, contrary to assumption.

§ 8. Jordan theorem

For every simple closed curve CC &S, (i.e. for every set
homeomorphic to the circumference of a circle), S,—C de-
composes S, into two regions and C is their common boundary.

We precede the proof with the following lemma.

LEMMA. No arc or closed subset of an arc separates &,.

Proof. Let us assume, on the contrary, that some closed
subset F of the arc L separates &, between the points p
and ¢. Applying the homographic transformation (34) we
can assume that these points are p =0 and g = oo.
By the Eilenberg theorem we have 2z not~1 on F. But
this contradicts Theorem 1 of § 5 (see Remark, § 5).

Proof of the Jordan theorem. Since the curve C
can be represented as the union of two arcs whose inter-
section is not connected (namely consisting of two points)
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we deduce from the second of the Janiszewski theorems
that C separates .

Let
(36) R,, R,, ...

denote the sequence of components of the set S,— C.
We have proved that this sequence contains at least two
terms. It remains to prove that it does not contain more
than two terms and that

(37) Fr(R,) = C = Fr(R,).

We shall begin with the proof of formula (37). By
virtue of Theorem 6 of Chapter XVIII, § 2, we have

(38) Fr(R,)C C.

If equality (37) did not hold, then the set Fr(R;)
would be a closed subset of some arc (contained in C)
and therefore, by the lemma, it would not separate o,.
But this is impossible because Fr(R,) obviously separates
d: between every point of R, and every point of R,.

Hence the first of the equalities (37) is proved and
the second is obtained by symmetry.

It remains to prove that the sequence (36) consists
of two terms.

Let us assume the contrary, i. e. that there exist at
leagt three regions R,, R,, R;. Let

(39) p;eR; for 4§=1,2,3.

Let us assume that the region R; is bounded. Let Z
be a straight line passing through the point p,. This
straight line therefore contains the segment L = apgb
lying in R; with the exception of the endpoints which
belong to C:

(40) LCRyu {a} v {b}.

Let ag,b and ag,b be two arcs of the curve C de-
termined by the points a and b.
Hence we have

(41) agq,b v ag,b =0C,
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and
(42) a¢:b ~ ag,b = {a, b}.
Let
(43) A;=aq;b oL, Ay,=agbul.
It follows from formulas (42) and (43) that
(44) A, ~nA,=1L.

Since ¢, ¢, € C, we therefore deduce from (37) that
the sets R, v {g,} v R, and R, U {¢;} v R, are connected,

q,
Fic. 27

and from (39), that they contain the points p,; and p,. As
these sets are disjoint from A, and A4, respectively (cf. (40)
and (43)), the sets 4, and 4, do not separate &, between
p, and p,. From formula (44) we deduce by virtue of
the first Janiszewski theorem that A4, v A4, does not
separate o, between p, and p, either. But this is impos-
sible because (cf. (41) and (43)) {4, 4, =C UL, and C
separates &, between p, and p,.

*Remark 1. We can sharpen the Jordan theorem by
introducing the interesting concept of accessible point.
Namely, we say that a point p lying on the boundary
of the region R is accessible from this region if there
exists an arc containing the point p and lying entirely—
with the exception of the point p—in the region E.

An example of a point which is not accessible is the
following. Let C be the closure of the curve y = sin(1/x),
0<|z|] <1, and let R be the complement of the con-
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tinuum C; the point <0, 0> is not accessible from the
region R.

One can prove that every point of a simple closed
curve is accessible from both regions into which the curve
separates the plane.

In the general case of an arbitrary region R, the
points which are accessible from R form a dense set on
its boundary.

For let p e Fr(R). For ¢ > 0 there exists a point g ¢ R
at a distance <& from p. On the segment gp let » be the
first point (starting from g¢) of the set Fr(R). Therefore
the segment ¢r lies—with the exception of the point r—
entirely in the region R. Hence, the point r is accessible
from R. At the same time |r—p| < |¢—p| <e.

*Remark 2. Another generalization of the Jordan
theorem is given by the following theorem:

Let 8 be the circumference of a circle and let C be a simple
closed curve contained in Sy. Every homeomorphism h map-
ping S onto C can be extended to a homeomorphism h* of
the entire plane §, onto itself; i. e. h*(S,) = S, and h*(p)
= h(p) for peS.

On the basis of this theorem one can prove that every
topological property of the circumference S with respect
to the plane §, (such as the number of components in
J;—8 and the accessibility of points on the circum-
ference) also holds for any simple closed curve.

An analogous theorem concerns arcs lying in o,:
every homeomorphism defined on the segment I can be
extended to a homeomorphism of S, onto S,

However, this theorem is not valid for ares (and also
for simple closed curves) lying in &3 The Antoine arc
referred to in the remark at the end of § 1 is a counter-
example.

*Remark 3. Jordan theorem is a special case of
the following theorem on the invariance of the number
of components of the complement of a closed set lying
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on the sphere J, (i. e. on the surface of the unit sphere
of Euclidean space &"'): if F=FCS, and if the set
In—F has k components, then for every homeomorphic
transformation h of the set F' onto a subset of the space Sy,
it follows that the set Sn—h(F) also has k components.

The proof of this theorem can be carried out making
use of the concept of homology extended to arbitrary
compact sets?).

As for polyhedra, we then prove that the Betti num-
bers are topological invariants and that the (n— 1)-st Betti
number of the closed set F lying in J, equals the number
of components of the set 5,—F minus 1.

For sets lying in &, the proof of the above theorem
can be carried out considering the function space PF
to be a group. Namely, the group operation is defined
as follows.

Let f,, f, and f; be three elements of the space %PF.
We assume that f; =f,-f, when f,(2) = fi(2)-fs(2) for
every zel.

The functions f satisfying the condition f~1 form
a subgroup of the group £F, as can easily be verified.
Let us denote it by G and let us consider the quotient
group B(F) = P7/G.

The rank of this group, or the maximal number of
linearly independent elements, equals the number of com-
ponents of the set 5,—F less one, as can be proved.

Let us note finally that the proof of the invariance
of the property of a closed subset F of 5, of separating
J» can be carried out without the use of homology. For,

the connectedness of §,—F and of Sr_, are equivalent 2).

1) Another proof was given by K. Borsuk. This proof requires
an apparatus which goes significantly beyond the scope of this
book. See Fundamenta Mathematicae 37 (1950), p. 217-241, and my
Topologie, vol. II, third edition, 1961.

2) Borsuk theorem, see Monatshefte fiir Mathematik und Physik
38 (1931), p. 218, and Mathematische Annalen 106 (1932), p. 239.
Cf. also P. Aleksandrov, Dimensionstheorie, § 5, Mathematische
Annalen 106 (1932), p. 218 or my Topologie, vol. II, p. 347.

18
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Exercises

1. Prove that 2» is not ~1 for = # 0 on the circumference of
a circle with center 0.

2. Prove that if f ¢ 25 then f~1.

Hint: Decompose &, by the equator and apply Corollary 2, § 5.

3. Prove that the star-shaped curve consisting of » arcs having
one end in common, and having no other points in common, does
not decompose the plane.

4. Prove that a curve consisting of three arcs having common
endpoints, and having no other points in common (Fig. 27), de-
composes the plane in three regions.

5. A connected space is said to be wunicoherent if A ~ B is con-
nected for every decomposition of the space into two closed connected
sets A and B. Prove that the circular disk and the space &, are
unicoherent.

6. Prove that if O is a subcontinuum of the plane &, (or more
generally, of a connected unicoherent space), and R is a component
of the complement of C, then Fr(R) is a continuum.

Hint: Use Theorem 4 of Chapter XVI, § 3.

7. Let the space X be a locally connected unicoherent continuum.
If the closed set F separates this space between the points a and b,
then it contains a subcontinuum which also separates the space
between these points.

Hint: Consider the component R of the set X — F which contains
the point @ and the component P of the set X —R which contains
the point b, and apply Exercise 6, above, and Exercise 11 of
Chapter XVIII.

8. Under the preceding assumptions on the space X,let 4 and B
be two disjoint closed sets neither one of which separates X between p
and ¢q. Prove then that A v B does not separate the space be-
tween p and ¢ either.

9. Show by an example that without the unicoherence assumption
the theorems of Exercises 6-8 are false.

10. Let & denote the circumference of the circle of radius 1
and with center 0. Let the function feS° satisfy the condition
f(—2) = —f(2) for every zed. Then the condition f~1 is not
satisfied.

11. The Borsuk-Ulam theorem on antipodes. For every function
fe((?z)"y“ there exists a point 2z, such that f(z) = f(—2).

Hint: For every point p belonging to the disk @, with radius 1
and center 0, let us denote by p+ the point belonging to the “upper
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half” of §,, whose projection is p. Let h(p) = f(p+)—f(—p+). Let
us assume, contrary to the assertion of the theorem, that k(p) 0
for every p. Show (making use of Corollary 2, § 5, and of the remark
immediately following it) that this assumption leads to a contra-
diction to the above theorem.

12. A region R lying in the plane , is said to be simply connected
if its complement, i.e. the set §,— R, is connected.

Prove that if a simply connected region R c &, contains a simple
closed curve O then it also contains one of the two components
of its complement. In particular, if B does not contain the point
at infinity, then it contains a bounded component of the set §,— C.

Hint: Note that the set J,— R is contained in one of the com-
ponents of the set §,— C.

Remark. The property of simply connected regions formulated
in the above theorem is also a sufficient condition for simple con-
nectedness, as can be proved.

13. Let R be a simply connected region contained in &,, and
let L be an arc which, except for its endpoints, lies in R. Prove that
the arc L separates the region R (i. e. that R— L is not connected).

14. Prove the following more general theorem: let R be an
arbitrary region contained in &,, and let L be an arc which, except
for its endpoints, lies in R; a necessary and sufficient condition
for this arc to separate the region R, is that both its endpoints be-
long to the same component of the set &,— R.

Hint: In the proof of the necessity of the above condition make
use of Theorem 6, Chapter XVII, § 2, and of the first Janiszewski
theorem. Make use of the second Janiszewski theorem in the proof
of its sufficiency.

15. If C is a continuum contained in_o&,, then each of the com-
ponents of the set §,— C is a simply connected region.

Hint: Cf. Theorem 4, Chapter XVI, § 3.
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