
Big Data Algorithms

Selected topics

Jacek Cichoń

WPPT • 2019

Contents

Contents 2

1 Introduction 5
1.1 The Bonferroni Principle . 5
1.2 TF-IDF . 7

2 Similarity of objects 9
2.1 Jaccard similarity . 11
2.2 Shingles . 13
2.3 Min-hash . 14

3 Streaming 17
3.1 Bloom filters . 17
3.2 Reservoir Sampling . 22
3.3 The Heavy Hitters Problem 23

4 Model Map-Reduce 31
4.1 Basic set - theoretic operations 32
4.2 Data base operations . 33
4.3 Combiners . 33
4.4 Matrix multiplication . 34
4.5 Grouping similar objects . 34

Bibliography 35

Index 37

2

Initial remarks

In 2004, the first book was published containing a relatively complete
overview of the basic techniques used in the IT department called Big Data.
It was written by Anand Rajaraman, Jure Leskovec and Jeffrey D. Ullman
and was entitled Mining Massive Datasets ([4]). This book was the basic
material for two Big Data courses for IT students at the Faculty of Funda-
mental Problems of Technology at the Wroc law University of Science and
Technology.

During the lectures it turned out that the material contained there can
not be implemented in the one - semester course. Certain issues, mainly
related to the problem of on-line algorithms were omitted in these lectures
- they are offered to students on other courses.

It also turned out that some of the algorithms discussed in this book re-
quire clarification. All the necessary scientific articles could easily be found
online. The considerations presented in this document contain clarifica-
tions, simplifications and additions to a number of reasoning from the basic
book, scientific articles. So they are an auxiliary material for the Big Data
course.

3

Chapter 1

Introduction

Torture the data, and it will
confess to anything.

Ronald Coase, economist,
Nobel Prize Laureate

1.1 The Bonferroni Principle

There is a concept in statistics that goes like this: even in completely ran-
dom datasets, you can expect particular events of interest to occur, and to
occur in increasing numbers as the amount of data grows. These occur-
rences are nothing more than collections of random features that appear to
be instances of interest, but are not. This bears repeating: even amounts
of random data lead to what seem to be events of interest, and the number
of these seemingly interesting events grows as does the size of the dataset.

Ullman’s example

Let us assume that we want to check how many pairs of people from a
large population meet several times in the same hotel for a selected period
of time. This information may be useful for intelligence services to detect
attempts to conduct illegal activities. Let’s set several parameters:

• N = size of observed population (N = 109)

5

6 CHAPTER 1. INTRODUCTION

• p = probability that a a randomly chosen object spends time in a
hotel in a given day (p = 10−2)

• M = average number of rooms in a hotel (M = 102)

• H = number of hotels

• L = number of days of observation (L = 103)

In a given day approximately N · p spend time in a hotel. The average
number of rooms in hotels is H ·M . Zatem N · p ≈ H ·M . Hence H ≈ Np

M
.

We shall assume that the equality holds.

Let us denote by c the expected number of days the number of days
that the selected person spends in the hotel during the observation period
and appoximate it to a natural number. We have c = L · p (in our example
we have c = 10)

Timetable: a function from a subset o cardinality c of the set {1, . . . , L}
into the set {1, . . . , H}. Then the number of timetables is

(
L
c

)
Hc and the

number of timetable pairsis (
(
L
c

)
Hc)2.

The number of timetable pairs with two or more common localization

is
(
L
2

)
H2
((
L−2
c−2

)
Hc−2)2. Hence the number of 2-collisions:

Pr[2− collision {a, b}] =

(
L
2

)
H2
((
L−2
c−2

)
Hc−2)2

(
(
L
c

)
Hc)2

=(
L
2

) ((
L−2
c−2

))2
(
(
L
c

)
)2

· 1

H2
=

(
L
2

) ((
L−2
c−2

))2
(L(L−1)
c(c−1)

(
L−2
c−2

)
)2
· 1

H2
=

1

2

(c(c− 1))2

L(L− 1)

1

H2
≈ 1

2

(
c2

LH

)2

After substituting the numerical data we get

Pr[2− collision{a, b}] =
1

2
(

10

102105
)2 =

1

2
10−12 .

It is a very small number. It is its interpretation: this is the probability
of the event that two given persons will meet two times in the same hotel.

1.2. TF-IDF 7

Let us calculate the expected number of 2-colliding pairs L2:

E[L2] =

(
N

2

)
Pr[2− collisions{a, b}] ≈ 1

4
N2

(
c2

LH

)2

In our example we have E[L2] ≈ 1
4
101810−12 = 1

4
106 = 250000. This is the

number of random meetings. It comes to them as a result of a purely random
mechanism. These calculations show that the task of catching suspicious
meetings is practically impossible to realize. The number of purely random
meetings is so large that a more accurate analysis of the reasons for these
meetings was very expensive.

These calculations reveal a typical phenomenon for Big Data: if we have
very large sets of data, there are many random dependencies, which should
be interpreted as pure cases and do not testify to the existence of hidden
dependencies or rules.

1.2 TF-IDF

TF-IDF stands for term frequency-inverse document frequency, and the tf-
idf weight is a weight often used in information retrieval and text mining.
This weight is a statistical measure used to evaluate how important a word
is to a document in a collection or corpus. The importance increases pro-
portionally to the number of times a word appears in the document but
is offset by the frequency of the word in the corpus. Variations of the tf-
idf weighting scheme are often used by search engines as a central tool in
scoring and ranking a document’s relevance given a user query.

Definition 1. Let D1, . . . , DN be a collection of documents. Let {w1, . . . , wm}
be the set of words in these documents. Let fij be the number of ocurrences
of word wi in the document Dj. The number

TFij =
fij

maxk=1,...,n(fkj)

term frequency of the word wi in the document Dj.

The code in Scala for the pre-treatment of texts is shown below.

de f f i l e T o S t r (path : S t r ing) : S t r ing = {

8 CHAPTER 1. INTRODUCTION

va l bufor = i o . Source . f romFi l e (path , ”UTF−8”)
va l t e k s t = bufor . mkString

. toLowerCase

. r e p l a c e A l l (” [, . ! : ? ∗ ; ()] ” , ” ”)

. r e p l a c e A l l (”\\n\\ t ” , ” ”)

. r e p l a c e A l l (”\\ s +”,” ”)
bufor . c l o s e
t e k s t

}

A typical example for Big Data program, the equivalent of the ”Hello
World” program in typical programming lectures, is a program that loads
a collection of documents, breaks them into words and calculates for them
indexes TF-IDF. A very usefull resource of data for such analysis are lists
of so called stop-words (i.e. words which are filtered out before or after
processing of natural language text)can be found at page
https://sites.google.com/site/kevinbouge/stopwords-lists

Chapter 2

Similarity of objects

Finding similar objects in large data-sets is an important database opera-
tion. The operation is used in applications like plagiarism detection, finding
mirror or similar pages. Is often a first step in cluster analysis, which goal
is to group observed events into subgrops having some common features.
We start with the definition of metric space.

Definition 2. A pair (X, d) is a metric space if x is an nonempty set and
d : X ×X → [0,∞) is a function such that

1. (∀x, x ∈ X)(d(x, y) = 0↔ x = y)

2. (∀x, y ∈ X)(d(x, y) = d(y, x)) (symmetry)

3. (∀x, y, z ∈ X)(d(x, z) ≤ d(x, y) + d(y, z)) (triangle inequality)

The function d is called a metric of the space X.

A basic example of a metric space is the euclidean space (Rn, de) with
the euclidean metric de defined by formula

de(~x, ~y) =

√√√√ n∑
i=1

(xi − yi)2 ,

where ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn). The proof of the first two
properties of metric for this function is trivial. The proof of the triangle
inequality maybe based on the classical Cauchy inequality.

9

10 CHAPTER 2. SIMILARITY OF OBJECTS

A generalization of euclidean metric space are so-called lp spaces for
p ∈ [0,∞). They consists of pair (Rn, dp) where dp is defined by the formula

dp(~x, ~y) =

(
n∑
i=1

|xi − yi|p
) 1

p

.

The space (Rn, dp) is denoted by lnp . This time, to show that dp satisfies the
triangle inequality we need to use a stronger result than Cauchy inequality
- we need the Holder inequality.

Notice that d2 is the euclidean distance, so lp spaces are generalizations
of euclidean spaces. Quite interesting and often used metric is the limit
case of dp as p → ∞. Namely, this operation gives us a metric defined by
formula

dn∞ = max{|xi − yi| : i = 1, . . . , n} .

Very often in Big Data applications it is necessary to use euclidean
spaces with very high dimension. We shall discuss the problem of reasonable
reduction of dimension in a special chapter of this notes.

Notice that the euclidean metric is unbounded, i.e. sup{de(x, y) : x, y ∈
Rn} = ∞. IIn some applications, it causes great trouble. However, there
are a several techniques of transformation of metrics. We start with a
relatively simple, but vary powerful method.

Theorem 1. Let f : [0,∞)→ [0,∞) be a monotonic and concave function
such that f(0) = 0. Let (X, d) be an arbitrary metric space. Then the
function ρ(x, y) = f(d(x, y)) is also a metric on X.

Proof. Let us fix a monotonic and concave function f : [0,∞)→ [0,∞). It
is left to the reader as an exercise to show that for any a, b ≥ 0 we have
f(a+ b) ≤ f(a) + f(b) (hint: we may assume that że a+ b > 0; notice next
that a = (a+ b) a

a+b
and b = (a+ b) b

a+b
and try to use Jensen inequality for

concave functions). Notice that we need only to show the triangle inequality
for that function ρ. So, let us fix a, b, c ∈ X. The we have

ρ(a, c) = f(d(a, c)) ≤ f(d(a, b) + d(b, c)) ≤
f(d(a, b)) + f(d(b, c)) = ρ(a, b) + ρ(b, c) ,

so the theorem is proved.

2.1. JACCARD SIMILARITY 11

Corollary 1. Suppose that ε ∈ (0, 1) and that d is a metric on X.Then the
function ρ(x, y) = d(x, y)ε is also a metric on X.

Proof. Let 0 < ε < 1 and f(x) = xε. Then f ′(x) = εxε−1 and f ′′(x) =
ε(ε − 1)xε−2, so f ′(x) > 0 and f ′′(x) < 0 for x > 0, so we may apply the
previous theorem.

The next corollary is often used for transformation of a given standard
metric (such as euclidean metric) into a bounded metric.

Corollary 2. Suppose that d is a metric on set X. Then the function

ρ(x, y) =
d(x, y)

1 + d(x, y)

is also a metric on X.

Proof. Let f(x) = x
1+x

. Then f ′(x) = 1
(x+1)2

and f ′′(x) = − 2
(x+1)3

, so

f ′(x) > 0 and f ′′(x) < 0 for x > 0, so we may apply the previous theorem.

Notice that the metric defined in last corollary is bounded by one. More-
over, from strictly mathematical point of view, this metric has a one inter-
esting property: namely, suppose that (X, d) is a metric space and that
ρ(x, y) = d(x, y)/(1 + d(x, y). Consider any sequence (xn)n∈N of elements
of X. Then the following two sentences are equivalent:

1. sequence (xn)n∈N is convergent in metric d

2. sequence (xn)n∈N is convergent in metric ρ

From this easy observation we conclude that both metrics d and ρ generates
the same topology, i.e. that the notions of open and closed sets for ths
metrics coincides.

2.1 Jaccard similarity

Jaccard similarity is a simple method, developed to compare regional floras
in alpiane zone in 1912 by P. Jaccard, is nowadays a popular method for
measuring similarities between finite sets. Let us start with the definition.

12 CHAPTER 2. SIMILARITY OF OBJECTS

Definition 3. Jaccard similarity of two sets A and B is the number

J(A,B) =
|A ∩B|
|A ∪B|

If A = B = ∅ then we put J(A,B) = 1. Jaccard distance between sets A i
B is the number

dJ(A,B) = 1− J(A,B) .

Let us observe that 0 ≤ J(A,B) ≤ 1 and that

dJ(A,B) = 1− |A ∩B|
|A ∪B

=
|A ∪B| − |A ∩B|

|A ∪B|
=
|A4B|
|A ∪B|

where A4B = (A ∩ Bc) ∪ (Ac ∩ B) is the symmetric difference of sets A
and B. Jaccard distance is a metric on family of finite subsets of a fixed
universe.

Theorem 2. Let Ω be a fixed nonempty set. Then the Jaccard distance dJ
is a metric on the set Pfin(Ω) = {X ⊂ Ω : |X| <∞}.

We shall begin with a proof of additional result about modification of
metrics.

Lemma 1 (Sheinhaus). Suppose that (X, d) is a metric space and let a ∈ X.
Let

ρ(x, y) =
2d(x, y)

d(x, a) + d(y, a) + d(x, y)
.

Then ρ is a metric on X.

Proof. Let us observe that if 0 < p ≤ q and r ≥ 0 to p
q
≤ p+r

q+r
.

Let p = d(x, y), q = d(x, y) +d(x, a) +d(y, a) and r = d(x, z) +d(y, z)−
d(x, y). To finish the proof it is sufficient to substitute this numbers into for-
mula for ρ(x, z) and use the above inequality to prove the trangle inequality
for ρ.

From Steinhauss Lemma we easily deduce that the function ρ(A,B) =
1−J(A,B) is a metric on the family of all non-empty subsets of a given finite
set (put a = ∅ in this Lemma and as the original metric d take the Ham-
ming distance d(A,B) = |A4B|). It is called the Jaccard distance. This
is a very important observation, because all notions of similarity which a

2.2. SHINGLES 13

constructed by transformation s(x, y) = 1−d(x, y) from metrics have useful
properties.

The Jaccard similarity between two sets can be generalized into multi-
sets. This is its natural generalization:

Definition 4. Jaccarda similarity between two multi-sets A i B is the num-
ber

J(A,B) =

∑
i min{ai, bi}∑
i max{ai, bi}

2.2 Shingles

One of the classical way of transformation of any text into objects which
are easy to compare is based on the notion of shingles.

Definition 5. k - shinge of a sequence a1 . . . an is an arbitrary block of the
form al . . . al+k−1, where 1 ≤ l ≤ n− k + 1.

Notice that there are approximately n shingles of length k, so the list of
all shingles occupies m ·k of bytes of memory. So, this lists is not a compact
representation of the original sequence. But, in fack we are interested in
the set of all k - shingles of a given string, i.e. our goal is to consider the
set

Sk(A) = {[A[i..i+ k − 1] : 1 ≤ i ≤ length(A)− k + 1}

Notice that set do no contain repeated elements, so the size of the set Sk(A)
can be much smaller than the original string A. The following very compact
code written in the language Scala transform any string into the set of its
shingles:

de f t o S h i n g l e s (S : Str ing , k : Int) : Set [S t r ing] = {
S . s l i d i n g (k) . toSet

}

The classical way of dealing with large collections of texts is to transform
them to sets of shingles and then to apply Jaccard similarity to cluster them
into similarity classes.

14 CHAPTER 2. SIMILARITY OF OBJECTS

2.3 Min-hash

MinHash is a technique for approximating the Jaccard Similarity between
two different sets. The scheme was invented by Andrei Broder in 1997.
The simplest version of the minhash scheme uses k different hash functions
with values in some bounded set of integers, where k is some fixed integer
parameter, and represents each set A by the k values of hmin(A) for these
k functions.

The estimate of Jaccard Similarity J(A,B) using this version is calcu-
lated as follows: we calculate the number y of hash functions for which
hmin(A) = hmin(B), and use y

k
as the estimate. This estimate is the

average of k different 0 − 1 random variables, each of which is one when
hmin(A) = hmin(B) and zero otherwise, and each of which is an unbiased
estimator of J(A,B).

Permutation similarity

In order to understand the correctness of the MinHas scheme presented
above, we will begin with an idealized version consisting in selecting random
permutations.

Let us fix a number n and let A ∈ {0, 1}n. For any permutation π of
the set [n] = {1, . . . , n}we put

hπ(A) = min{k : A(π(k)) = 1} .

Theorem 3. Let us consider the probability space on the set Sn of all permu-
tations of the set [n] equipped with the uniform probability (i.e. Pr[π = 1

n!

for each π ∈ Sn. Then

Pr
π

[hπ(A) = hπ(B)] = J(A,B)

Here, Prπ denotes the probability in the space of all permutations with
uniform distribution.

Proof. Niech x = |{i : A[i] = B[i] = 1}|, y = |{i : A[i] 6= B[i]}| i z = |{i :
A[i] = B[i] = 0}|. Then x + y + z = n oraz J(A,B) = x

x+y
. It is sufficient

now to calculate the probability of the set

K = {π ∈ Sn : min{k : π(k) ∈ A ∪B} ∈ A ∩B}

2.3. MIN-HASH 15

This can be done as follows: suppose that we are observing the process of
generation a random permutation choosing one element at each time. Let
k be the first moment when we choose some element from the set A ∪ B.
Then independently on k the probability that we choose en element from
A ∩B is x

x+y
. Summing over all possible choices of k ∈ [1, . . . , n− (x+ y)]

we get the desired result.

Quick min-hashing algorithm

Solutions described in previous section work correctly, but they are abso-
lutely too slow - he generation of random permutation is a difficult process.
We need to construct the full matrix, and we need to permute it k times.
A faster way is proposed by the Min-Hash algorithm.

And here’s the main fantastic trick. Let’s assume that we have an ideal
hash function h : Σ∗ → R for our disposal. Then the sequence of values
(h(a) : a ∈ A) from the order point of view we obtain a random ordering of
the set {h(a) : a ∈ A}. So we may try to use this observation for generation
of random permutations. However there are two problems. The first one
is a quality of real hash functions. It occurs that this is not a serious
problem - such hash functions like MurmurHash (a non-cryptographic hash
function suitable for general hash-based lookup, created by Austin Appleby
in 2008) behaves wery well in all practical situations. The second problem
is connected with granuality - real hasa never produce infinite sequences,
so we must deal will collisions. But here comes the Birthday Paradox with
help. Namely, we know that if we randomly throw k balls into n urns, where
k <
√
n then the probability of a collision is very small. So this is the idea.

And now more concrete its realization.

Let N = |E|. We fix k random hashing mappings {h1, h2, . . . , hk} such
that hj : E → [N]. We initialize k counters {c1, c2, . . . , ck} by setting
ci =∞. The pseudo-code is given in listing Algorithm 2.3.

This solution works well. Namely, the following , almost obvious after
the above discussion, theorem holds:

Theorem 4. Let h : Ω → {0, . . . , L} be a random hash function. For
A ⊆ Ω such that, że |A| ≤

√
L we put

h∗(A) = min{h(a) : a ∈ A}

16 CHAPTER 2. SIMILARITY OF OBJECTS

Algorithm 1 Min Hash on the set S

for i = 1 to N do
if S(i) = 1 then

for j=1 to k do
if hj(i) < cj then

cj ← hj(i)
end if

end for
end if

end for

Then

Prh[h
∗(A) = h∗(B)] ∼ |A ∩B|

|A ∪B|
(= s(A,B)) .

Chapter 3

Streaming

Perfect is the enemy of good.

Voltair

3.1 Bloom filters

A Bloom filter is a space-efficient probabilistic data structure, that is used
to test whether an element is a member of a set. They were discovered by
Burton Howard Bloom in 1970 ([1]). False positive matches are possible,
but false negatives are not – in other words, a query returns either ”possibly
in set” or ”definitely not in set”. In the basic version of this filters elements
can be added to the set, but not removed. A specific property of this
filters is that the more elements that are added to the set, the larger the
probability of false positives.

The main purpose of Bloom filters is to build a space-efficient data struc-
ture for set membership. Indeed, to maximize space efficiency, correctness
is sacrifized: if a given key is not in the set, then a Bloom filter may give
the wrong answer (this is called a false positive), but the probability of such
a wrong answer can be made small.

A typical application of Bloom filters is web caching. An ISP may
keep several levels of carefully located caches to speed up the loading of
commonly viewed web pages, in particular for large data objects, such as
images and videos. If a client requests a particular URL, then the service
needs to determine quickly if the requested page is in one of its caches.

17

18 CHAPTER 3. STREAMING

False positives, while undesirable, are acceptable: if it turns out that a
page thought to be in a cache is not there, it will be loaded from its native
URL, and the “penalty” is not much worse than not having the cache in
the first place.

Informal description

We want to represent n-element sets S = {s1, . . . , sn} from a very large
universe U , with |U | = u� n. We may think of U as the set of URLs, n as
the cache size, and S as the URLs of those web pages that are currently in
the cache. We want to support insertions and membership queries (“Given
x ∈ U , is x ∈ S?”) so that:

1. If the answer is No, then x /∈ S.

2. If the answer is Yes, then x may or may not be in S, but the probability
that x /∈ S (false positive) is low.

Both insertions and membership queries should be performed in constant
time.

Simple, noneffective solution

Suppose that we have a bit vector B = [b0, . . . , bm−1] of m bits and one hash
function h : Σ∗ → {0, . . .m− 1}]. Suppose that initially all entries of B are
set to 0. Let D ⊆ Σ∗ and let n = |D|. For each d ∈ D we put B[h(d)] = 1.

After processing all elements from D the array B is fulfilled with 0 and
1. We want to use the following procedure

check(x) : Bool = { return B[h(x)] == 1;}

for checking whether an element x ∈ Σ∗ belongs to D. Clearly, if x ∈ D then
check(x)==True. But it may happen, that x /∈ D and check(x)==True.
We call this phenomenon a false-positive event. We want to estimate the
probability of the false-positive event.

First of all let us estimate the number of bits set to 1 in the table B.
Let us fix i ∈ {0, . . . ,m− 1}. Then

Pr[B[i] = 0] =

(
m− 1

m

)n
=

(
1− 1

m

)n
,

3.1. BLOOM FILTERS 19

so the expected number of entries in B with value 0 is m
(
1− 1

m

)n
. So, the

expected number of entries in B with value 1 is m−m
(
1− 1

m

)n
. Thus the

probability of the event ”for a randomly chosen element from {0, . . . ,m−1}
we have B[i] = 1” is 1−

(
1− 1

m

)n
. Thus

Pr[false-positive] ≈ 1−
(

1− 1

m

)n
= 1−

((
1− 1

m

)m) n
m

≈ 1− e−
n
m .

Our goal is to check when for a given ε > 0 we have Pr[false-positive] < ε.
Notice that

(1− e−
n
m < ε) ≡ m >

n

ln 1
1−ε
≈ n

ε
.

Therefore, say, if we would like to reduce the false-positive events to 2% we
should use a table B of length at least m = n

0.02
= 50 · n of bits. We shall

see that if we use Bloom filters, them the number m can be significantly
reduced.

Formal description

A Bloom filter (see [5]) is a bit vector B = [b0, . . . , bm−1] of m bits, with k
independent hash functions H = (h1, . . . , hk) that map each key in U to the
set Rm = {0, 1, . . . ,m− 1}. We assume that each hash function hi maps a
uniformly at random chosen key x ∈ U to each element of Rm with equal
probability. Since the hash functions are independent, it follows that the
vector (h1(x), . . . , hk(x)) is equally likely to be any of the mk k-tuples of
elements from the set Rm. Initially all m bits of B are set to 0.

• Insert x into S: compute h1(x), . . . , hk(x) and set

B[h1(x)] = B[h2(x)] = . . . = B[hk(x)] = 1

• Query if x ∈ S. Compute h1(x), . . . , hk(x). If

B[h1(x)] = B[h2(x)] = . . . = B[hk(x)] = 1

then answer Yes, else answer No.

The running times of both operations depend only on the number k of
hash functions (we will later see how to choose a suitable value for k in order

20 CHAPTER 3. STREAMING

to minimize the probability of false positives). The space requirement of the
data structure is m bits, and we will later see that a reasonable value for m
is, say, 8 · n. Note that any non-randomized data structure that represents
n-element subsets of U must use Ω(n · log u) bits.

Formal analysis

We start with computations of the probability of a false positive. The
probability that one hash fails to set a given a bit is 1 − 1

m
. Hence, after

all n elements of S have been inserted into the Bloom filter, the probability
that a specific bit is still 0 is(

1− 1

m

)kn
≈ e−

kn
m .

Notice that we uses the assumption that the hash functions are independent
and perfectly random (hence our arguments are only estimations).

The probability of a false positive is the probability that a specific set
of k bits are 1, which is(

1−
(

1− 1

m

)kn)k

≈
(

1− e−
kn
m

)k
= (1− p)k

where p = e−
kn
m .

This shows that there are three performance metrics for Bloom filters
that can be traded off: computation time (corresponds to the number k of
hash functions), size (corresponds to the number m of bits), and probability
of error, which corresponds to the false positive rate

f(n,m, k) = (1− p)k =
(

1− e−
kn
m

)k
.

Suppose now that we are given the ratio m
n

. Our goal is to optimize the
number k of hash functions to minimize the false positive rate f . Note that
more hash functions increase the precision but also the number of 1’s in
the filter, thus making false positives both less and more likely at the same
time. We can find the minimum by taking the derivative of f . To simplify
the math, we minimize the logarithm of f with respect to k (we can do it
because log is a monotonic function). Let

g(k) = ln(f(k)) = k · ln(1− p) = k · ln
(

1− e−
kn
m

)
.

3.1. BLOOM FILTERS 21

Figure 3.1: Plot of f(n, 8 · n, k) for k ∈ [1, 15]

Now we have
∂g

∂k
= ln

(
1− e−

kn
m

)
+

kne−
kn
m

m
(

1− e− kn
m

) .

This formula does not look nice. However, it is quite easy to check that for
fixed parameters m i n it has exactly one global minimum. What’s more,
you can easily check that at point k = ln(2)m

n
the derivative is equal to

zero. Namely, k = ln(2)m
n

for we have

e−
kn
m = e−k

n
m = e− ln 2 =

1

2
,

so
∂g

∂k
((ln 2)

m

n
) = ln

1

2
+ ln 2 = 0

Therefore at this point, we have a a global minimum.Notice that

f(n,m, ln(2)
m

n
) =

(
1

2

)ln(2)m
n

=

((
1

2

)ln(2)
)m

n

Therefore for the optimal value of k, the false positive rate is

f ≈ (0.618503)
m
n

22 CHAPTER 3. STREAMING

m/n false-positive k
3 23.66 % 2
4 14.63 % 3
5 9.051 % 3
6 5.598 % 4
7 3.463 % 5
8 2.142 % 6
9 1.325 % 6
10 0.819 % 7

Table 3.1: False - positive of Bloom filters for different proportion of pa-
rameters m/n and optimal number of hash functions k

Observe that as m grows in proportion to n, the false positive rate decreases.
Already m = 8 ·n reduces the chance of error to roughly 2%, and m = 10 ·n
to less than 1%. In Table 3.1

Implementation details

Bloom filters are easy to implement in any reasonable programming lan-
guage. However, some details should be explained.

The first detail is connected with the choice of hash functions. Mur-
MurHash is the proven choice. It is an example of non-cryptographic hash
function and in most languages there are 64 and 128 bits variants of this
functions. So we may use k copies of MurMuhHash functions intialized with
k independent seeds (initial values).

It is worth to remember that calculations of hash functions is costly.
And in some situations this may be a problem. So, let us analyze a specific
case more detail. Suppose that we have an upper bound on number of items
n. Let n = 106. Let m = 8 · 106. So we will need approximately 1 Mb
of memory for storing the Bloom filter. Moreover log2(m) ≈ 23 � 32. So
we can use one 128 bits MurMurHash for generation of four 32 bits hash
functions - simply split the sequence of 128 bits into four sequences of 32
bits. So we see that instead of 6 copies of MurMurHash, we need only 2
copies. Hence we obtained 3-times speed up.

3.2. RESERVOIR SAMPLING 23

3.2 Reservoir Sampling

In this chapter we will discuss the basic method of generating random sam-
ples from data streams of any length. We will start our discussion by
discussing the method of selecting a random element of the observed data
stream in accordance with the uniform distribution. The basic algorithm is
surprisingly simple:

Algorithm 2 Uniform sampling

1: procedure int
2: n=0
3: sample = nil
4: index = nil
5: end procedure
6: procedure onGet(x)
7: n++
8: if (random() < 1

n
) then

9: sample = x
10: index = n
11: end if
12: end procedure

Let Ln be the random variable pointing on the index selected after nth
call of the procedure onGet. Clearly, 1 ≤ Ln ≤ n.

Theorem 5. (∀n)(∀1 ≤ i ≤ n)(Pr[Ln = i] = 1
n
)

Proof. We have L1 = 1. Suppose that this theorem is true for the number
n. Let m = n+1 The the value of index is changed with probability 1/(m),
so Pr[Lm = m] 1

m
. Let us fix a number i ∈ {1, . . . , n}. Then Lm = i if

Ln = 1 and the index is not changed. Therefore

Pr[Lm = i] = Pr[Ln = i] · (1− 1

m
) =

1

n

(
1− 1

n+ 1

)
=

1

n+ 1
.

24 CHAPTER 3. STREAMING

3.3 The Heavy Hitters Problem

In the heavy hitters problem, the input is an array A of length n, and also
some parameter k. We should think of n as very large (in the hundreds of
millions, or billions), and k as modest (10, 100, or 1000). The goal is to
compute the values that occur in the array at least n

k
times.

Note that there can be at most k such values; and there might be none.
The problem of computing the majority element corresponds to the heavy
hitters problem with k ≈ 2− δ for a small value δ > 0, and with the addi-
tional promise that a majority element exists. The heavy hitters problem
has lots of applications. We’ll be more specific later when we discuss a
concrete solution, but here are some high-level examples

1. Computing popular products. For example, A could be all of the page
views of products on https://allegro.pl/ yesterday. The heavy hitters
are then the most frequently viewed products.

2. Computing frequent search queries. For example, A could be all of
the searches on Google yesterday. The heavy hitters are then searches
made most often.

3. Identifying heavy TCP flows. Here, A is a list of data packets passing
through a network switch, each annotated with a source-destination
pair of IP addresses. The heavy hitters are then the flows that are
sending the most traffic. This is useful for, among other things, iden-
tifying denial-of-service attacks.

Heavy Hitters in Data Streams

Consider the goal of finding all frequent elements in a data stream. In
particular consider finding a majority element i.e., an element x such that
fx > n

2
, where fx is a number of times the element x occurs in a data

stream, i.e.

fx = |{i ∈ [1 . . . n] : A[i] = x} .

The code of algorithm analyzed in this section in in listing Algorithm 3.

Theorem 6. If fx >
n
2

then the output of the Algorithm 3 the output will
be x.

3.3. THE HEAVY HITTERS PROBLEM 25

Algorithm 3 Majority Algorithm

1: procedure int
2: c=0
3: best = nil
4: end procedure
5: procedure onGet(x)
6: if c==0 then
7: best = x
8: end if
9: if x==best then

10: c++
11: else
12: c–
13: end if

return best
14: end procedure

Proof. Observe that while c > 0, the value of j does not change. We
can therefore divide the input into segments based on when c = 0, and let
j1; j2; ::: be the values of j during those segments. It is also clear that during
the i− th segment, the value of ji appears precisely 1

2
the time among the

inputs. Therefore if fj >
n
2
, the last segment must end with c > 0 and the

value must be j.

What happens if there is no x such that fx >
n
2
? The value of x might

be any input value. It might even occur only once in the input. One could
verify this using a second pass over the input.

Misra-Gries Summary

Misra and Gries generalized that majority algorithm above to a more gen-
eral method that we can think of in this form. They published their algo-
rithm in paper ”Finding repeated elements” in 1982 (see [3]). The code of
algorithm analyzed in this section in in listing Algorithm 4. In this code
we use associative arrays.

For x ∈ A.keys we put f̂x = A[x] and f̂x = 0 otherwise. Let n be
an upper bound on the length of observed stream. Note that we need

26 CHAPTER 3. STREAMING

Algorithm 4 Misra-Gries Algorithm

1: procedure int
2: A=[]
3: end procedure
4: procedure onGet(x)
5: if x ∈ A then
6: A[x] + +
7: else
8: if A.length < k then
9: A[x] = 1
10: else
11: for x ∈ A.keys do
12: A[x]- -
13: end for
14: for x ∈ A.keys do
15: if A[x]==0 then
16: remove x from A
17: end if
18: end for
19: end if
20: end if
21: end procedure

log2 n+ 1 bits for binary representation of any number from the range 0..n.
For example, if n = 1010 then we need 34 bits, i.e 5 bytes is sufficient. Let
m denotes an upper bound (in bits) on the observed values.

Theorem 7. The Misra-Gries algorithm with parameter k uses one pass
and O (k(log n+m)) bits of space and provides for any token x an estimate
f̂x, satisfying

fx −
n

k
≤ f̂x ≤ fx .

Proof. Let us pretend that A consists of n key/value pairs, with A[j] = 0
whenever j is not actually stored in A by the algorithm. Notice that the
counter A[j] is incremented only when we process an occurrence of j in the
stream. Thus, f̂j ≤ fj. On the other hand, whenever A[j] is decremented
(observe that if A[j] is incremented from 0 to and A store mode than k keys

3.3. THE HEAVY HITTERS PROBLEM 27

then of then immediately decremented back to 0), we also decrement k− 1
other counters, corresponding to distinct tokens in the stream. Thus, each
decrement of A[j] is “witnessed” by a collection of k distinct tokens (one of
which is a j itself) from the stream. Since the stream consists of m tokens,
there can be at most m/k such decrements. Therefore, f̂j ≥ fj − m

k
.

Count-Min Sketch

The Count–Min Sketch algorithm was invented in 2003 by Graham Cor-
mode and S. Muthu Muthukrishnan and published in 2005 in paper ”An
Improved Data Stream Summary: The Count-min Sketch and Its Applica-
tions” (see [2]).

The algorithm is parametrized by two natural numbers b and k. We fix a
sequence (h(0, ∗), . . . , h(b−1, ∗)) of independent hash functions with values
in the set {0, . . . , L− 1}. We reserve a matrix A[0 . . . b− 1][0 . . . L− 1]. We
fill this matrix with zeros at the initialization phase.

Here is the surprisingly simple pseudo-code of the algorithm. It consists
with two procedures: the first used after receiving new element x from a
stream and the second for final counting prequency of elements.

procedure add (x){
f o r i=0 to b−1 do A[i , h (i , x)]++

}

f unc t i on count (x){
r e turn min {A[i , h (i , x)] : i = 0 . . . b−1}

}

Let x be an element occurring in the considered stream. We denote, as
before, by fx the number of times the element x occurs in stream. Observe
that each time when x is observed the procedure add increases all counters
A[i, h(i, x)] where i = 0, . . . , L − 1. Therefore after observing this stream
we have count(x) ≥ fx.

We will prove the following theorem which confirms that with a high
and controlled probability we have fx ≤ count(x) ≤ fx(1 + e

L
).

Theorem 8. If b = ln(1
δ
) and L = e

ε
then

Pr[count(x) ≥ fx + εn] ≤ δ .

28 CHAPTER 3. STREAMING

Proof. Let n denotes the length of the stream. Let us fix index i ∈ {0, . . . , b−
1} and an element x from the stream. Let b = h(i, x) Let Z denotes the
content of the cell A[i, b] Then

Z = fx +
∑
y∈C

fy

where C = {y ∈ S : y 6= x ∧ h(i, y) = b}. This sum may be written in the
following way:

Z = fx +
∑

y∈S;y 6=x

fy‖h(i, y) = b‖ .

Therefore

E[Z] = fx +
∑

y∈S;y 6=x

E[fy‖h(i, y) = b‖] = fx +
∑

y∈S;y 6=x

fy
1

L
≤ fx +

n

L
,

so
E[Z − fx] ≤

n

L
Let us recall the Markov inequality, which holds for any random variable
X with positive values and a number a > 0:

Pr[X ≥ a] ≤ E[X]

a

We apply this inequality for random variable Z−fx and for a = ne
L

and get

Pr[Z − fx ≥
ne

L
] ≤ n

L

L

ne
=

1

e
.

If we repeat this inequality for each row i, then we get

Pr[count(x)− fx
ne

L
] ≤

(
1

e

)b
.

Putting L = e
ε

and b = ln 1
δ

we finally get

Pr[count(x) ≥ fx + εn] ≤ δ ,

so the theorem is proved.

Putting ε = 10−3 and δ = 10−6 we get L = 2719 and b = 14, hence our
table A has 38066 entries. We should store in entries of the table A 8 bytes
integers, so a memory requirements are of order 300 kB, hence are relatively
small. And what is interesting is that this memory is independent on the
size of observed data stream.

3.3. THE HEAVY HITTERS PROBLEM 29

Proper use of Count-Min-Sketch

Let us fix two parameters:

1. number ε determining the precision of heavy hitter detector (typical
use ε = 10−3; ε = 10−4)

2. number δ bounding the probability of error (typical setting: δ = 10−4)

Calculate

1. b =
⌈
ln(1

δ

⌉
2. L =

⌈
e
ε

⌉
Using parameters b and L use Min-Count-Algorithm with b hash func-

tions with values in the set {0, . . . , L− 1} and two dimensional array A of
size [0, . . . , b− 1]× [0, . . . , L− 1].

Chapter 4

Model Map-Reduce

MapReduce is a programming model and an associated implementation for
processing and generating large data sets. Users specify a map function
that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate values associated
with the same intermediate key. More precisely, Map-Reduce consists of
two basic functions:

1. MAPPER - read an input (usually line after line), transform the input
into a pair (key,value) and sends this pair to a server h(key), where h
is some hash function with values in the set {0, ldots, n} where n is a
number of servers

2. REDUCER - a function which works on each servers and reduce the
list of all obtained pairs of the form (key,val) to one pair (key, val);
before the reduction this function groups all items into sub-lists with
the same key and the reduction is done within this sublist.

From pure formal point of view Map-Reduce is the composition of two
functions: map ◦ reduce. Good introduction to implementation details of
his methodology may be found in [4].

Example 1. Suppose that in the memory of MAPPERS we store a large
vector X = [xi, . . . , xn] Our goal is to multiply a large matrix A of size n×n
by this vector. We also assume that MAPPER will obtain entries of matrix
A in the form (i, j, aij). The following code will do the job:

1. MAPPER (i, j, a)→ (i, a · xi)

31

32 CHAPTER 4. MODEL MAP-REDUCE

2. REDUCER (i, L)→ (i, sum(L))

Let us explain the job done by REDUCER. Namely, assume that n = 3 and
suppose that it got after the end of MAPPERS job the following list

[(1, a1,3x3), (3, a3,2x2), (1, a1,2x2), (1, a1,1x1), (3, a3,1x1), (3, a3,3x3)]

It starts from grouping elements by key - the key if the element of each pair.
So it get

[

[(1, a1,3x3), (1, a1,2x2), (1, a1,1x1)],

[(3, a3,2x2), (3, a3,1x1), (3, a3,3x3)]

]

This list has two lists. For each of this sub-lists the function sum is applied,
so it transform this list to list

[(1, a1,3 · x3 + a1,2 · x2 + a1,1 · x1), (3, a3,2 · x2 + a3,1 · x1 + a3,1 · x1)]
So we see that it calculated entries y1 and y3 of the vector ~y = A · ~x. The
remaining entry 2 was calculated by other mapper. The final result of the
work of reducer is a file containing two lines:

1, y1

3, y3

Usually it is a plain text file. So we finally obtain one file from each reducer.

4.1 Basic set - theoretic operations

We shall see that basic set theoretic operations can be performed on large
sets in the model map reduce. Let us assume that we analyze two set A and
B. Input will be organized as follows: elements x from A will be marked
as (’a’,x) and elements y from B as (’b’,y)

Sum

The following functions calculate sum A ∪B:

1. MAPPER (a, x)→ (x, 1); MAPPER (b, x)→ (x, 2);

2. REDUCER (a, L) : return a

4.2. DATA BASE OPERATIONS 33

Intersection

The following functions calculate intersection A ∩B:

1. MAPPER (a, x)→ (x, 1); MAPPER (b, x)→ (x, 2);

2. REDUCER (a, L) : if (|L| = 2) then a else nop

Difference

The following functions calculate difference A \B:

1. MAPPER (a, x)→ (x, 1); MAPPER (b, x)→ (x, 2);

2. REDUCER (a, L) : if (L = [1]) then a else nop

4.2 Data base operations

The join R(a, b) ./b S(b, c) can be implemented as follows:

1. MAPPER ((a, b) ∈ R)→ (b, (1, a)), MAPPER ((b, c) ∈ S)→ (b, (2, c)),

2. REDUCER (b, L): sort L according first coordinate, transform Lto
the form

[(1, a1), (1, a2), . . . , (1, an)] || [(2, c1), (2, c2), . . . , (2, cm)]

and generates n ·m pairs

{(ai, cj) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Another data-base operations operations such as projections or mappings
can be implemented in a truvioal way.

4.3 Combiners

A Combiner, also known as a semi-reducer, is an optional class that operates
by accepting the inputs from the Map class and thereafter passing the
output key-value pairs to the Reducer class.

34 CHAPTER 4. MODEL MAP-REDUCE

The main function of a Combiner is to summarize the map output
records with the same key. The output (key-value collection) of the com-
biner will be sent over the network to the actual Reducer task as input.

It can be implemented if the operation θ applied to lists is associative
and commutative. For example, the average value is does not have his
properties (it is not associative). But can be implement be the operation

(n, s)⊕ (m, t) =

(
n+m,

ns+mt

n+m

)

4.4 Matrix multiplication

Suppose that we want to multiply two larde matrices A = (aij) and B =
(bjk).

Method I

1. MAPPER ((A, i, j, aij)) → (j, (1, i, aij)), MAPPER ((B, j, k, bjk)) →
(j, (2, k, bjk))

2. REDUCER ((j, L)) transform it to list (i, j, k, aijbjk) : i, k = 1, . . . , n

This method requires the re-use of MapReduce.

Method II

1. MAP (A, i, j, aij)→ ((i, k), (1, j, aij), k = 1 . . . , n and MAPPER ((B, j, k, bjk))→
((i, k), (2, j, bjk), i = 1 . . . , n

2. REDUCER (((i, k), L))→ (i, j,
∑
L)

4.5 Grouping similar objects

Our input consist of pairs (i, Ai), where Ai is an object; we fix some number
g; we simulate distribution into {0, . . . , g−1}2 groups; we kate an additional
hash function h : Z→ {0, . . . , g − 1} and

1. MAPi,Ai → {({h(i), v}, (i, Ai)) : v ∈ {0, . . . , g − 1}, v 6= h(v)}

2. implementation of REDUCER () depends on contex.

Bibliography

[1] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, July 1970.

[2] Graham Cormode and S. Muthukrishnan. An improved data stream
summary: The count-min sketch and its applications. J. Algorithms,
55(1):58–75, April 2005.

[3] J. Misra and David Gries. Finding repeated elements. Science of Com-
puter Programming, 2(2):143 – 152, 1982.

[4] Anand Rajaraman, Jure Leskovec, and Jeffrey D. Ullman. Mining Mas-
sive Datasets. 2014.

[5] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. Theory and practice
of bloom filters for distributed systems. IEEE Communications Surveys
Tutorials, 14(1):131–155, 2012.

35

Index

Birthday Paradox, 15
Bloom filter, 17

combiner, 33
Count-Min Sketch, 27

data base, 33
denial-of-service attacks, 24
difference, 33

euclidean metric, 9

false-positive, 18

hash function, 15, 31
heavy hitter, 23

intersection, 33

Jaccard distance, 12
Jaccard similarity, 12
join, 33

key/value pair, 31

majority element, 24
mapper, 31
MapReduce, 31
Markov inequality, 28
matrix multiplication, 34
metric, 9

metric space, 9
min-hash, 14
Misra-Gries Summary, 25
multi-sets, 13
MurmurHash, 15

permutations, 14

random permutation, 15
reducer, 31
reservoir sampling, 22
Ronald Coase, 5

Scala, 13
shingle, 13
Steinhaus theorem, 12
sum, 32

TF-IDF, 7

37

