## On Symmetries of Non-Plane Trees in a Non-Uniform Model

Jacek Cichoń, Abram Magner, Wojciech Szpankowski, and Krzysztof Turowski

JCI: Wrocław University of Science and Technology, Poland
AMA: University of Illinois at Urbana-Champaign, USA
WSZ: Purdue University, USA
KTU: Gdańsk University of Technology, Poland

SODA/ANALCO,January, 2017

## Considered Objects

## Class of trees

- We consider non-plane unlabeled binary trees (each node has either zero or exactly two children) [Otter trees]
- Wedderburn-Etherington numbers:

$$
a_{n} \sim 0.3188 \frac{1}{n^{3 / 2}}\left(\frac{1}{0.4027}\right)^{n}
$$

- W-E numbers count the number of Otter trees with $n$ leaves

Remark: The numbers $b_{n}$ of binary plane trees with $n$ leaves satisfy

$$
b_{n} \sim \frac{1}{2 \sqrt{\pi}} \frac{1}{n^{3 / 2}} 4^{n}
$$

## Plane and Non-Plane Trees

## Each of this plane trees corresponds with one Non-Plane tree



- $T_{n}$ - set of binary plane trees with $n$ leaves
- $S_{n}$ - set of binary non-plane trees with $n$ leaves
- $[s]_{\sim}=\left\{t \in T_{n}: t \sim s\right\}$, for $s \in S_{n}$


## Probability

## Generation of plane trees



## Basic formula

For $t \in T_{n}$ we have

$$
\operatorname{Pr}\left[T_{n}=t\right]=\prod_{v \in t^{o}} \frac{1}{\Delta(v)-1}
$$

where $t^{\circ}$ is the set of interval nodes of $t, \Delta(v)$ is the number of leaves of a tree rooted at $v$.

## Probability - II

Remark: generate randomly binary search tree from random permutation, make "de-labelization"; we get the same probability model.

## Recurrence

If $t=t_{1} \star t_{2} \in T_{n}$, then

$$
\operatorname{Pr}\left[T_{n}=t\right]=\frac{1}{n-1} \operatorname{Pr}\left[T_{\Delta\left(t_{1}\right)}=t_{1}\right] \operatorname{Pr}\left[T_{\Delta\left(t_{2}\right)}=t_{2}\right]
$$

where $\Delta(s)$ is the number of leaves in $s$

Connection between $S$ and $T$

$$
\operatorname{Pr}\left[S_{n}=s\right]=\operatorname{card}\left([s]_{\sim}\right) \cdot \operatorname{Pr}\left[T_{n}=t\right], \quad t \in[s]_{\sim}
$$

## Symmetries

## Definition

$\operatorname{sym}(t)=$ the number of non-leaf (internal) nodes $v$ of tree $t$ such that the two subtrees stemming from $v$ are isomorphic.

## Basic property

$$
\operatorname{card}\left([s]_{\sim}\right)=2^{n-1-\operatorname{sym}(s)}
$$

## Basic recurrence

$$
\operatorname{sym}\left(s_{1} \star s_{2}\right)= \begin{cases}\operatorname{sym}\left(t_{1}\right)+\operatorname{sym}\left(t_{2}\right)+1 & : t_{1}=t_{2} \\ \operatorname{sym}\left(t_{1}\right)+\operatorname{sym}\left(t_{2}\right) & : t_{1} \neq t_{2}\end{cases}
$$

## Generating functions

Two basic generating functions

- $F(u, z)=\sum_{t \in T} \operatorname{Pr}[T=t] u^{\text {sym }(t)} z^{|t|}$
- $B(u, z)=\sum_{t \in T} \operatorname{Pr}[T=t]^{2} u^{\text {sym }(u)} z^{|t|-1}$


## Theorem

Let $f(u, z)=\frac{F(u, z)}{z}$. Then

$$
\frac{\partial f(u, z)}{\partial z}=f(u, z)^{2}+(u-1) B\left(u^{2}, z^{2}\right)
$$

(Riccati differential equation)

## Number of symmetries

## Definition

$$
\mathcal{E}(z)=\sum_{n \geq 1} \mathbb{E}\left[\operatorname{sym}\left(S_{n}\right)\right] z^{n}
$$

## Theorem

Let $B(z)=\sum_{t \in T} \operatorname{Pr}[T=t]^{2} z^{|t|-1} \quad\left(=\sum_{n} b_{n} z^{n}\right)$. Then

$$
\mathcal{E}^{\prime}(z)=\frac{2 \mathcal{E}(z)}{z(1-z)}+B\left(z^{2}\right)
$$

We should know the behavior of $B(z)=\sum_{n} b_{n} z^{n}$. We can calculate $b_{1}, b_{2}, b_{3}, \ldots$ :

$$
1,1, \frac{1}{2}, \frac{2}{9}, \frac{13}{144}, \frac{7}{200}, \frac{851}{64800}, \frac{13}{2700}, \frac{1199}{691200}, \frac{2071}{3359232}
$$

## Extraction of coefficients of function $B(z)$

We put

$$
C(z)=z B(z)
$$

## Differential equation

$$
C(z)-z C^{\prime}(z)+z^{2} C^{\prime \prime}(z)=C^{2}(z)
$$

## Recurrence

$$
c_{n}=\frac{1}{(n-1)^{2}} \sum_{k=1}^{n-1} c_{k} c_{n-k}
$$

## Solution of recurrence

## Recurrence

$$
c_{n}=\frac{1}{(n-1)^{2}} \sum_{k=1}^{n-1} c_{k} c_{n-k}
$$

Numerical computations: $b_{n}=c_{n+1} \approx\left(\frac{1}{3.14}\right)^{n} \cdot 6 n$

## Solution of recurrence

## Recurrence

$$
c_{n}=\frac{1}{(n-1)^{2}} \sum_{k=1}^{n-1} c_{k} c_{n-k}
$$

Numerical computations: $b_{n}=c_{n+1} \approx\left(\frac{1}{3.14}\right)^{n} \cdot 6 n$

## SOLUTION !!!

H-H Chern, M. Fernández-Camacho, H-K. Hwang, and C. Martinez, Psi-series method for equality of random trees and quadratic convolution recurrences, 2012:

$$
b_{n}=\rho^{n}\left(6 n-\frac{22}{5}+O\left(n^{-5}\right)\right)
$$

where $\rho=0.3183843834378459 \ldots$

## Solution of differential equation

- we defined: $\mathcal{E}(z)=\sum_{n \geq 1} \mathbb{E}\left[\operatorname{sym}\left(S_{n}\right)\right] z^{n}$
- we know that: $\mathcal{E}^{\prime}(z)=\frac{2 \mathcal{E}(z)}{z(1-z)}+B\left(z^{2}\right)$
- we know a lot about $B(z)=\sum_{n} b_{n} z^{n}$


## Theorem

$$
\mathrm{E}\left[\operatorname{sym}\left(S_{n}\right)\right]=n \sum_{k=1}^{\left\lfloor\frac{n+1}{2}\right\rfloor} \frac{b_{k}}{(2 k-1) k(2 k+1)}+(-1)^{n+1} b_{\left\lfloor\frac{n+1}{2}\right\rfloor}
$$

hence

$$
\mathrm{E}\left[\operatorname{sym}\left(S_{n}\right)\right]=n \cdot\left(0.3725463659 \pm 10^{-10}\right)
$$

## Application - compression

We know that $\mathrm{E}\left[\operatorname{sym}\left(S_{n}\right)\right] \approx 0.3725 \cdot n$

## Simple compression algorithm

If you find a symmetric inner node, replace one of its sub-trees by a pointer. Let $\operatorname{size}\left(S_{n}\right)$ denote the size of generated
 structure.

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{size}\left(S_{n}\right)\right]= & n \sum_{k=1}^{\left\lfloor\frac{n+1}{2}\right\rfloor} \frac{b_{k}}{(2 k-1)(2 k+1)} \\
& \approx 0.4190 \cdot n
\end{aligned}
$$



## Application - entropy

We know that

- $H\left[S_{n}\right]=H\left[T_{n}\right]-H\left[T_{n} \mid S_{n}\right]$
- $H\left[T_{n}\right]=\log _{2}(n-1)+2 n \sum_{k=2}^{n-1} \frac{\log _{2}(k-1)}{k(k+1)}$
- $2 \sum_{k=2}^{n-1} \frac{\log _{2}(k-1)}{k(k+1)} \approx 1.736$ (for $n \geq 10^{5}$ )
- $H\left[T_{n} \mid S_{n}\right]=\ldots=\sum_{s \in S_{n}} \operatorname{Pr}\left[S_{n}=s\right] \log _{2}\left(\operatorname{card}\left([s]_{\sim}\right)\right)=$ $\ldots n-1-E\left[\operatorname{sym}\left(T_{n}\right)\right]$

Theorem

$$
\lim _{n \rightarrow \infty} \frac{H\left[S_{n}\right]}{n}=1.109 \ldots
$$

## This is the end



Figure 1: Phylogenetic (evolutionary) Tree

## Thank You

