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ABSTRACT. In this note I discuss the basic properties of the notion
f = O(g) and explain how in many cases the problem of proving that
f = O(g) can be reduced to an easy problem of a calculation of a limit
of a sequence, which any student should know from lectures on Mathe-
matical Analysis.

1. BASIC DEFINITIONS

The notion f = O(g) was introduced by L. Landau. It is very useful
in mathematics and in Computer Science specially in the analysis of algo-
rithms. Let us recall its definition:

Definition 1. Let f, g : N→ R. We say1 that f = O(g) if

(∃C)(∃N)(∀n > N)(|f(n)| ≤ C|g(n)|) .

We shall translate this definition in this note into the standard language
of mathematical Analysis. Namely let us recall the definition of the upper
limit of a sequence:

Definition 2. Let f : N → R. We say that α = lim supn→∞ f(n) if the
following two conditions holds:

(1) (∀ε > 0)(∃N)(∀n > N)(f(n) < α + ε),
(2) (∀ε > 0)(∀N)(∃n > N)(f(n) > α− ε).

This definition may seems to be sligtly complicated, but the following
simply observation should clarify a lot:

Lemma 1. If the sequence (f(n))n≥0 is convergent and limn f(n) = α then

lim sup
n→∞

f(n) = α

1N denotes the set of natural numbers and R denotes reals
1
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Proof. Suppose that the sequence (f(n))n≥0 is convergent and limn f(n) =

α. This means that for each ε > 0 we can find N such that for all n > N

we have |f(n) − α| < ε. Hence each ε > 0 there exists N such that for
all n > N we have f(n) < α + ε. This proves the first part of the claim.
Once again, let us fix ε > 0 and let us additionally fix N . Let M be such
that (∀n > M)|f(n)− α| < ε. Let n0 = max{N,M}+ 1. Then n0 > M ,
n0 > N , so |f(n0)− α| < ε, so f(n0) > α− ε. �

As we know there are a lot of sequences which are not convergent (in fact
we can prove in a very precise sense that there are very few convergent se-
quences). But every bounded sequence2 of reals has an upper limit. Before
proving this fact we need one additional notion from elementary Analysis:

Definition 3. Let a ⊆ R. We say that te real number α is an infimum of A
(α = inf(A)) if the following two conditions holds:

(1) (∀x ∈ A)(α ≤ x),
(2) (∀ε > 0)(∃x ∈ A)(x < α + ε).

Every subset A of reals bounded from below has an infimum - you can
treat this property as an axiom of real numbers.

Lemma 2. Suppose that (f(n))n≥0 is bounded by a number C > 0. Then
the exists an upper limit of this sequence and lim supn→∞ f(n) ≤ C.

Proof. Assume that −C ≤ f(n) ≤ C for all n ≥ 0. Let

A = {x ∈ (−∞, C] : (∃N)(∀n > N)(f(n) ≤ x} .

Note that C ∈ A, so A 6= ∅. Moreover, if t < −C then t /∈ A. Therefore
A ⊆ [−C,C]. Hence there exists an infimum of A. Let α = inf(A).

Let us fix ε > 0. Let us take a ∈ [α, α + ε) ∩ A. The there exists N
such that for all n > N we have f(n) ≤ a. Hence, for all n > N we have
f(n) < α + ε.

Let us fix once again ε > 0. Then α− ε /∈ A. Hence

¬(∃N)(∀n > N)(f(n) ≤ α− ε) .

Using twice de Morgan laws we get

(∀N)(∃n > N)(f(n) > α− ε) .
2A sequence (an) of real numbers is bounced if there exists C ≥ 0 such that |an| ≤ C

for all n ≥ 0
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2. EQUIVALENT FORMULATION

We are ready to translate the big O notation into the language of math-
ematical analysis We shall use the following convention 0

0
= 1 which is

common in analysis.

Theorem 3. Let f, g : N→ R. Then

(f = O(g))⇐⇒ lim supn→∞
|f(n)|
|g(n)| <∞

Proof. Suppose that f = O(g). Let us fix C and N such that |f(n)| ≤
C|g(n)| for all n > N . So let us consider n > N . If g(n) 6= 0 then

|f(n)|
|g(n)|

≤ C .

If g(n) = 0 then also f(n) = 0 and in accordance with the convention
0
0

= 1 we have |f(n)||g(n|) = 1. So in both cases for n > N we have

|f(n)|
|g(n)|

≤ max{C, 1} = C∗ .

This means that the sequence
∣∣∣f(n)g(n)

∣∣∣ is bounded from above by the number
C∗, hence from Lemma 2 we obtain

lim sup
n→∞

|f(n)|
|g(n)|

≤ C∗ <∞ .

Suppose now that lim supn→∞
|f(n)|
|g(n)| ≤ C. We put ε = 1 into the first

condition from Definition 2 and find N such that for all n > N we have

|f(n)|
|g(n)|

< C + 1 .

Hence for all n > N we have

|f(n)| ≤ (C + 1)|g(n)| .

�
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3. APPLICATIONS

Let us recall that if lim an = a then lim |an| = |a|. From Lemma 1 and
Theorem 3 we deduce that the following implications holds:(

f(n)

g(n)
is convergent

)
=⇒

(
|f(n)|
|g(n)|

is convergent
)

=⇒(
lim sup
n→∞

|f(n)|
|g(n)|

<∞
)

=⇒ (f = O(g))

This is a very usefull observation: in order to show that f = O(g) we
should try to prove that the seguence (f(n)/g(n))n≥o is convergent and if
we succeed then the goal is achieved.

Example 1. Consider the polynomial w(n) = a0 + a1n+ . . .+ akn
k where

ak 6= 0 then

lim
n→∞

w(n)

nk
= lim

n→∞

(a0
nk

+
a1
nk−1 + . . .+

ak−1
n

+ ak

)
= ak .

Therefore w = O(nk). It is worth to remark that we also have

lim
n→∞

w(n)

nk
=

1

ak
,

hence we also have nk = O(w).

Now let us introduce a notion directly related to the Big O concept:

Definition 4. Let f, g : N → R. We say that f = Θ(g) if f = O(g) and
g = O(f).

Example 2. For any polynomial w of rank k we have w = Θ(nk). This was
shown. in fact, in the previous example.

Example 3. Let f(n) = nlnn and g(n) = 2n. Then

f(n)

g(n)
=
nlnn

2n
=
e(lnn)2

en ln 2
=

1

en ln 2−(lnn)2

Using twice the l’Hôpital’s (at points marked by *) rule we get

lim
n→∞

n ln 2

(lnn)2
=∗ lim

n→∞

ln 2

2 · lnn · 1
n

= lim
n→∞

n ln 2

lnn
=∗

lim
n→∞

ln 2
1
n

= lim
n→∞

n ln 2 =∞
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so limn→∞(n ln 2 − (lnn)2) = ∞, so limn→∞
1

en ln 2−(lnn)2
= 0, so finally

we get limn→∞
f(n)
g(n)

= 0, i.e. we have shown that nlnn = O(2n).

4. REMARKS

To check how well you understand the concept of Big O notation you
should prove yourself a few of its basic property. Prove, for example, that

(1) If f = O(g) and g = O(h) then f = O(h)

(2) f = O(1) if and only if f is bounded
(3) If f1 = O(g1) and f2 = O(g2) then f1 + f2 = O(g1 + g2).

and

(1) Show that the relation (f ≡ g) ⇔ (f = Θ(g)) is an equivalence
relation.

(2) Compare functions n
√
n and (

√
n)n

Final remarks:

(1) In mathematical analysis a slightly different version of the Big O
notion is widely used: it is defined for an arbitrary point from ex-
tended real line. We have considered there the point +∞

(2) There are serious errors in the Polish version of Wikipedia in the
article on Big O notation (15.05.2010)

(3) This document may be used without any limitations.
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