$\mathrm{F}=\mathbf{O}(\mathbf{G})$

JACEK CICHOŃ

Abstract

In this note I discuss the basic properties of the notion $f=O(g)$ and explain how in many cases the problem of proving that $f=O(g)$ can be reduced to an easy problem of a calculation of a limit of a sequence, which any student should know from lectures on Mathematical Analysis.

1. BASIC DEFINITIONS

The notion $f=O(g)$ was introduced by L. Landau. It is very useful in mathematics and in Computer Science specially in the analysis of algorithms. Let us recall its definition:

Definition 1. Let $f, g: \mathbf{N} \rightarrow \mathbf{R}$. We say ${ }^{1}$ that $f=O(g)$ if

$$
(\exists C)(\exists N)(\forall n>N)(|f(n)| \leq C|g(n)|) .
$$

We shall translate this definition in this note into the standard language of mathematical Analysis. Namely let us recall the definition of the upper limit of a sequence:

Definition 2. Let $f: \mathbf{N} \rightarrow \mathbf{R}$. We say that $\alpha=\lim \sup _{n \rightarrow \infty} f(n)$ if the following two conditions holds:
(1) $(\forall \varepsilon>0)(\exists N)(\forall n>N)(f(n)<\alpha+\varepsilon)$,
(2) $(\forall \varepsilon>0)(\forall N)(\exists n>N)(f(n)>\alpha-\varepsilon)$.

This definition may seems to be sligtly complicated, but the following simply observation should clarify a lot:

Lemma 1. If the sequence $(f(n))_{n \geq 0}$ is convergent and $\lim _{n} f(n)=\alpha$ then

$$
\limsup _{n \rightarrow \infty} f(n)=\alpha
$$

[^0]Proof. Suppose that the sequence $(f(n))_{n \geq 0}$ is convergent and $\lim _{n} f(n)=$ α. This means that for each $\varepsilon>0$ we can find N such that for all $n>N$ we have $|f(n)-\alpha|<\varepsilon$. Hence each $\varepsilon>0$ there exists N such that for all $n>N$ we have $f(n)<\alpha+\varepsilon$. This proves the first part of the claim. Once again, let us fix $\varepsilon>0$ and let us additionally fix N. Let M be such that $(\forall n>M)|f(n)-\alpha|<\varepsilon$. Let $n_{0}=\max \{N, M\}+1$. Then $n_{0}>M$, $n_{0}>N$, so $\left|f\left(n_{0}\right)-\alpha\right|<\varepsilon$, so $f\left(n_{0}\right)>\alpha-\varepsilon$.

As we know there are a lot of sequences which are not convergent (in fact we can prove in a very precise sense that there are very few convergent sequences). But every bounded sequence $]^{2}$ of reals has an upper limit. Before proving this fact we need one additional notion from elementary Analysis:

Definition 3. Let $a \subseteq \mathbf{R}$. We say that te real number α is an infimum of A ($\alpha=\inf (A)$) if the following two conditions holds:
(1) $(\forall x \in A)(\alpha \leq x)$,
(2) $(\forall \varepsilon>0)(\exists x \in A)(x<\alpha+\varepsilon)$.

Every subset A of reals bounded from below has an infimum - you can treat this property as an axiom of real numbers.

Lemma 2. Suppose that $(f(n))_{n \geq 0}$ is bounded by a number $C>0$. Then the exists an upper limit of this sequence and $\limsup _{n \rightarrow \infty} f(n) \leq C$.

Proof. Assume that $-C \leq f(n) \leq C$ for all $n \geq 0$. Let

$$
A=\{x \in(-\infty, C]:(\exists N)(\forall n>N)(f(n) \leq x\}
$$

Note that $C \in A$, so $A \neq \emptyset$. Moreover, if $t<-C$ then $t \notin A$. Therefore $A \subseteq[-C, C]$. Hence there exists an infimum of A. Let $\alpha=\inf (A)$.

Let us fix $\varepsilon>0$. Let us take $a \in[\alpha, \alpha+\varepsilon) \cap A$. The there exists N such that for all $n>N$ we have $f(n) \leq a$. Hence, for all $n>N$ we have $f(n)<\alpha+\varepsilon$.

Let us fix once again $\varepsilon>0$. Then $\alpha-\varepsilon \notin A$. Hence

$$
\neg(\exists N)(\forall n>N)(f(n) \leq \alpha-\varepsilon)
$$

Using twice de Morgan laws we get

$$
(\forall N)(\exists n>N)(f(n)>\alpha-\varepsilon)
$$

[^1]
2. EQUivalent formulation

We are ready to translate the big \mathbf{O} notation into the language of mathematical analysis We shall use the following convention $\frac{0}{0}=1$ which is common in analysis.

Theorem 3. Let $f, g: \mathbf{N} \rightarrow \mathbf{R}$. Then

$$
(f=O(g)) \Longleftrightarrow \lim \sup _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}<\infty
$$

Proof. Suppose that $f=O(g)$. Let us fix C and N such that $|f(n)| \leq$ $C|g(n)|$ for all $n>N$. So let us consider $n>N$. If $g(n) \neq 0$ then

$$
\frac{|f(n)|}{|g(n)|} \leq C
$$

If $g(n)=0$ then also $f(n)=0$ and in accordance with the convention $\frac{0}{0}=1$ we have $\frac{|f(n)|}{\mid g(n \mid)}=1$. So in both cases for $n>N$ we have

$$
\frac{|f(n)|}{|g(n)|} \leq \max \{C, 1\}=C^{*}
$$

This means that the sequence $\left|\frac{f(n)}{g(n)}\right|$ is bounded from above by the number C^{*}, hence from Lemma 2 we obtain

$$
\limsup _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|} \leq C^{*}<\infty
$$

Suppose now that $\lim \sup _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|} \leq C$. We put $\varepsilon=1$ into the first condition from Definition 2 and find N such that for all $n>N$ we have

$$
\frac{|f(n)|}{|g(n)|}<C+1
$$

Hence for all $n>N$ we have

$$
|f(n)| \leq(C+1)|g(n)|
$$

3. Applications

Let us recall that if $\lim a_{n}=a$ then $\lim \left|a_{n}\right|=|a|$. From Lemma 1 and Theorem 3 we deduce that the following implications holds:

$$
\begin{gathered}
\left(\frac{f(n)}{g(n)} \text { is convergent }\right) \Longrightarrow\left(\frac{|f(n)|}{|g(n)|} \text { is convergent }\right) \Longrightarrow \\
\left(\limsup _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}<\infty\right) \Longrightarrow(f=O(g))
\end{gathered}
$$

This is a very usefull observation: in order to show that $f=O(g)$ we should try to prove that the seguence $(f(n) / g(n))_{n \geq o}$ is convergent and if we succeed then the goal is achieved.

Example 1. Consider the polynomial $w(n)=a_{0}+a_{1} n+\ldots+a_{k} n^{k}$ where $a_{k} \neq 0$ then

$$
\lim _{n \rightarrow \infty} \frac{w(n)}{n^{k}}=\lim _{n \rightarrow \infty}\left(\frac{a_{0}}{n^{k}}+\frac{a_{1}}{n^{k-1}}+\ldots+\frac{a_{k-1}}{n}+a_{k}\right)=a_{k} .
$$

Therefore $w=O\left(n^{k}\right)$. It is worth to remark that we also have

$$
\lim _{n \rightarrow \infty} \frac{w(n)}{n^{k}}=\frac{1}{a_{k}},
$$

hence we also have $n^{k}=O(w)$.

Now let us introduce a notion directly related to the Big O concept:
Definition 4. Let $f, g: \mathbf{N} \rightarrow \mathbf{R}$. We say that $f=\Theta(g)$ if $f=O(g)$ and $g=O(f)$.

Example 2. For any polynomial w of rank k we have $w=\Theta\left(n^{k}\right)$. This was shown. in fact, in the previous example.

Example 3. Let $f(n)=n^{\ln n}$ and $g(n)=2^{n}$. Then

$$
\frac{f(n)}{g(n)}=\frac{n^{\ln n}}{2^{n}}=\frac{e^{(\ln n)^{2}}}{e^{n \ln 2}}=\frac{1}{e^{n \ln 2-(\ln n)^{2}}}
$$

Using twice the l'Hôpital's (at points marked by *) rule we get

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{n \ln 2}{(\ln n)^{2}}={ }^{*} \lim _{n \rightarrow \infty} \frac{\ln 2}{2 \cdot \ln n \cdot \frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n \ln 2}{\ln n}=* \\
\lim _{n \rightarrow \infty} \frac{\ln 2}{\frac{1}{n}}=\lim _{n \rightarrow \infty} n \ln 2=\infty
\end{gathered}
$$

so $\lim _{n \rightarrow \infty}\left(n \ln 2-(\ln n)^{2}\right)=\infty$, so $\lim _{n \rightarrow \infty} \frac{1}{e^{n \ln 2-(\ln n)^{2}}}=0$, so finally we get $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$, i.e. we have shown that $n^{\ln n}=O\left(2^{n}\right)$.

4. REMARKS

To check how well you understand the concept of Big O notation you should prove yourself a few of its basic property. Prove, for example, that
(1) If $f=O(g)$ and $g=O(h)$ then $f=O(h)$
(2) $f=O(1)$ if and only if f is bounded
(3) If $f_{1}=O\left(g_{1}\right)$ and $f_{2}=O\left(g_{2}\right)$ then $f_{1}+f_{2}=O\left(g_{1}+g_{2}\right)$.
and
(1) Show that the relation $(f \equiv g) \Leftrightarrow(f=\Theta(g))$ is an equivalence relation.
(2) Compare functions $n^{\sqrt{n}}$ and $(\sqrt{n})^{n}$

Final remarks:
(1) In mathematical analysis a slightly different version of the Big O notion is widely used: it is defined for an arbitrary point from extended real line. We have considered there the point $+\infty$
(2) There are serious errors in the Polish version of Wikipedia in the article on Big O notation (15.05.2010)
(3) This document may be used without any limitations.

[^0]: ${ }^{1} \mathbf{N}$ denotes the set of natural numbers and \mathbf{R} denotes reals

[^1]: ${ }^{2} \mathrm{~A}$ sequence $\left(a_{n}\right)$ of real numbers is bounced if there exists $C \geq 0$ such that $\left|a_{n}\right| \leq C$ for all $n \geq 0$

