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Abstract
We discuss a general framework for determining asymptotics
of the expected value of random variables of the form f(X)
in terms of a function f and central moments of the random
variable X . This method may be used for approximation of
entropy, inverse moments, and some statistics of discrete ran-
dom variables useful in analysis of some randomized algo-
rithms. Our approach is based on some variant of the Delta
Method of Moments. We formulate a general result for an
arbitrary distribution and next we show its specific extension
to random variables which are sums of identically distributed
independent random variables. Our method simplifies previ-
ous proofs of results of several authors and can be automated
to a large extend. We apply our method to the binomial, neg-
ative binomial, Poisson and hypergeometric distribution. We
extend the class of function for which our method is appli-
cable for some subclass of exponential functions and double
exponential function for some cases.
Keywords: Delta Method of Moment, Binomial Sums, en-
tropy, binomial distribution, Poisson distribution, negative-
binomial distribution, hypergeometric distribution

1 Introduction
Let X be a random variable with expected value µ and let
f : R → R be function which is differentiable in some
neighborhood of µ. Our goal is to investigate the expected
value of the random variable Y = f(X), i.e., we want to
control the difference between the expected value of Y and
the number f(µ).

In this paper we extend results from papers [1], [2]
and [3]. A previous approach of two authors of this paper
(see [4]) to the same problems was based on Bernstein
polynomials. The approach from this paper, based on
the Delta Method of Moments, is more general and can
be automated more easily than the previous one. Our
method works, roughly speaking, for function that has an
analytic extensions to a function of a polynomial growth
in a right half-plane of the complex plane. Due to some
algebraic properties of analyzed distributions we extend the
class of applicable function to exponential and even doubly
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exponential functions in some cases (Lemma 3.1, Lemma
3.2).

Our main results presented in this paper are based on
the Delta Method. In many cases this tool turned out to be
very useful for finding approximation of expected value of
functions of random variables in when direct calculations are
hard. The first fairly rigorous formulation of this method was
done by H. Cramer in 1946 [5], who used it for estimation of
moments of functions of samples from populations (see [6]).

Let us note that in [7] during an analysis of some
distributed algorithm for Ad Hoc networks a formula∑
k≥1 log(k)

(
n
k

)
pk(1 − p)k = log n + (p − 1)/(2np) +

O
(
1/n2

)
was used in order to build an estimator for the net-

work size. Using methods presented in this paper this kind
of formulas can be derived without difficulty. This is one of
typical application of methods from this paper for construc-
tion and analysis of algorithms.

1.1 Paper Organization In Section 2 we provide tools
that can be used for estimating the expectation of f(X)
(Theorem 2.1 and Theorem 2.2). In next sections we discuss
its applications for the binomial, Poisson, negative-binomial
and hypergeometric distributions.

1.2 Notations The expected value of a random variable
X is denoted by E [X] and its variance by var [X]. The
kth central moment of a random variable X is denoted by
µk(X), i.e. µk(X) = E

[
(X − E [X])k

]
. We also put

|µk|(X) = E
[
|X − E [X] |k

]
.

We use the abbreviation i.i.d. for “independent and
identically distributed” collection or sequence of random
variables.

By Ber(p) and Geo(p) we denote the Bernoulli and the
Geometric distributions, respectively with parameter p. By
Bin(n, p) we denote the binomial distribution with parame-
ters n and p. Similarly, by NB(k, p) we denote the negative
binomial distribution with parameters k and p.

We denote by HGeo(n, n1, n2) the hypergeometric
distribution with parameters n, n1 and n2. I.e., if X
has HGeo(n, n1, n2) distribution, then Pr(X = k) =(
n2

k

)(
n−n2

n1−k
)/(

n
n1

)
. In applications parameter n denotes the

size of population, n1 denotes the size of a sample, n2 is the
number of marked elements in the population andX denotes
the number of marked elements in the sample.



We denote by f (k)(x) the kth derivative of the function
f at point x. In the case k = 0 we put f (0) = f . For a real
function f and A ⊆ R we put

M
(t)
A (f) = sup{|f (t)(x)| : x ∈ A} .

Observe that M
(0)
A (f) = sup{|f(x)| : x ∈ A}.

2 Delta Method of Moments
The Delta Method is a natural technique for approximating
the moments of functions of random variables based on the
Taylor formula. We prove in this section some variant of
the Delta Method which we found useful for our further
considerations. Another, less specialized, variant of this
method can be found in [8] Sec. 5.3.1.

THEOREM 2.1. Let X be a random variable and let s ≥
1 be a natural number. Let µ = E [X]. Suppose that
µ2(s−1)(X) < ∞. Let −∞ ≤ m ≤ a ≤ µ ≤ b ≤ M ≤ ∞
be such that Pr(m ≤ X ≤ M) = 1. Suppose that f is
s-times differentiable on (a, b). Then

E [f(X)] = f(µ) +

s−1∑
k=2

f (k)(µ)

k!
µk(X) +Rs;a,b,

where |Rs;a,b| ≤ U +W + V and

1. U = |µs|(X)
s! M

(s)
(a,b)(f),

2. W =
√

Pr(X /∈ (a, b))
∑s−1
k=0

(∣∣∣ f(k)(µ)
k!

∣∣∣√µ2k(X)
)
,

3. V = Pr(X /∈ (a, b)) ·M(0)
[m,M ]\(a,b)(f).

Proof. Let A denote the event that a < X < b and let
B = Ω \A. Then

(2.1) E [f(X)] =

∫
A

f(X)dP +

∫
B

f(X)dP ,

and

(2.2)
∣∣∣∣∫
B

f(X)dP

∣∣∣∣ ≤ Pr(B) ·M(0)
[m,M ]\(a,b)(f) .

From the Taylor formula at the point µ with the La-
grange type of the remainder we get

f(x) =

s−1∑
k=0

f (k)(µ)

k!
(x− µ)k +

f (s)(x∗)

s!
(x− µ)s ,

where x∗ = µ+ θ(x−µ) for some θ ∈ (0, 1). Notice that if
x ∈ (a, b) then x∗ ∈ (a, b), too. Hence
(2.3)∫

A

f(X)dP =

s−1∑
k=0

f (k)(µ)

k!

∫
A

(X − µ)
k
dP + Ts;a,b ,

where

|Ts;a,b| ≤
1

s!

∫
A

∣∣∣f (s)(X∗)
∣∣∣ |X − µ|s dP ≤

1

s!
M

(s)
(a,b)(f)

∫
A

|X − µ|s dP ≤

1

s!
M

(s)
(a,b)(f)

∫
Ω

|X − µ|s dP =
1

s!
M

(s)
(a,b)(f) · |µs|(X) .

From the Cauchy inequality we get∣∣∣∣∫
B

(X − µ)kdP

∣∣∣∣ ≤ ∫
Ω

1B |X − µ|kdP ≤(2.4)√∫
Ω

|X − µ|2kdP
√

Pr(B) =
√
|µ2k|(X)

√
Pr(B).

Notice finally that
∫
A

(X − µ)kdP = µk(X) −
∫
B

(X −
µ)kdP . Therefore

s−1∑
k=0

f (k)(µ)

k!

∫
A

(X − µ)
k
dP =(2.5)

s−1∑
k=0

f (k)(µ)

k!
µk(X)−

s−1∑
k=0

f (k)(µ)

k!

∫
B

(X − µ)
k
dP .

Putting equalities (2.1), (2.5) and inequalities (2.2), (2.3),
(2.4) together we obtain the thesis.

Notice that for s = 3 we get from Theorem 2.1

E [f(X)] = f(µ) +
1

2
var [X] f (2)(µ) +R3;a,b ,

therefore in order to apply this theorem we need the knowl-
edge of µ1(X), µ2(X), |µ3|(X), µ4(X), Pr[X ∈ (a, b)]
and we need to estimate |f (3)| on (a, b) and |f | on the set
[m,M ] \ (a, b).

Before we formulate next result we prove one auxiliary
lemma, which gives a bound on even moments of sums of
independent random variables.

LEMMA 2.1. Let s ≥ 1. There exists a constant Cs
such that for every sequence X1, . . . , Xn of i.i.d. random
variables such that E [Xi] = 0 we have

E

( n∑
k=1

Xk

)2s
 ≤ Cs · ns · µ2s(X1) .

Proof. From Marcinkiewicz-Zygmund inequality (see [9])
we get

E

( n∑
k=1

Xk

)2s
 ≤ CsE[( n∑

k=1

(Xk)2

)s]
,



where Cs depends only on s. Next we use Hölder inequality
with parameters (s− 1)/s and 1/s and get

n∑
k=1

(Xk)2 ≤

(
n∑
k=1

1

) s−1
s
(

n∑
k=1

(Xk)2s

) 1
s

=

n
s−1
s

(
n∑
k=1

(Xk)2s

) 1
s

,

so
(∑n

k=1(Xk)2
)s ≤ ns−1

∑n
k=1(Xk)2s , and hence

E

( n∑
k=1

Xk

)2s
 ≤ Csns−1E

[
n∑
k=1

(Xk)2s

]
=

Csn
sE
[
(X1)2s

]
.

Now, we formulate a version of Theorem 2.1 for a
random variable that is a sum of i.i.d. random variables.

THEOREM 2.2. Let (Xk) be a sequence of i.i.d. random
variables. Let µ = E [X1] and Sn = X1 + · · · + Xn and
s > 1. Suppose that µ4s(X1) < ∞. Let −∞ ≤ m ≤ a ≤
µ · n ≤ b ≤ M ≤ ∞ be such that Pr(m ≤ Sn ≤ M) = 1.
Suppose that f is 2s-times differentiable on (a, b). Then

E [f(Sn)] = f(µn) +

2s−1∑
k=2

f (k)(µn)

k!
µk(Sn) +R2s;a,b,

where |R2s;a,b| ≤ U +W + V and

1. U = ns ·As ·M(2s)
(a,b)(f),

2. W = Bs,f
√

Pr(Sn /∈ (a, b)),

3. V = M
(0)
[m,M ]\(a,b)(f) Pr(Sn /∈ (a, b))

and As depends only on s. The term Bs,f may be bounded
by

2s−1∑
k=0

Dkn
k
2

∣∣∣f (k)(µn)
∣∣∣ ,

where constants (Dk)k=0...,2s−1 depends only on 2k-th mo-
ment of X1.

Proof. It is clear that we may assume that µ = 0. We shall
apply Theorem 2.1 to the random variable Sn = X1 + · · ·+
Xn. Notice that E [Sn] = nµ = 0. Therefore

E [Sn] =

2s−1∑
k=0

f (k)(µn)

k!
µk(Sn) +R2s;a,b

where |R2s;a,b| ≤ U +W + V and

1. U = µ2s(|Sn|)
(2s)! M

(2s)
(a,b)(f),

2. W =
√

Pr(Sn /∈ (a, b))
∑2s−1
k=0

f(k)(µn)
k!

√
µ2k(|Sn|),

3. V = Pr(Sn /∈ (a, b)) ·M(0)
[m,M ]\(a,b)(f).

From Lemma 2.1 we deduce that there exists a con-
stant Cs, depending only on s such that µ2s(|Sn|) =
E
[
(Sn)2s

]
≤ Csnsµ2s(X1). Therefore

U ≤ Cs
(2s)!

nsµ2s(X1)M
(2s)
(a,b)(f) .

So, if we put As = (Csµ2s(X1))/(2s)!, then we get U ≤
nsAsM

(2s)
(a,b)(f).

Using once again Lemma 2.1 we deduce that there exist
constants (Ck)k=0,...4s−2, depending only on k such that
µ2k(|Sn|) ≤ Cknkµ2k(X1). Therefore

2s−1∑
k=0

∣∣∣∣f (k)(µn)

k!

∣∣∣∣√µ2k(|Sn|) ≤

2s−1∑
k=0

∣∣∣∣f (k)(µn)

k!

∣∣∣∣n k2√Ck√µ2k(X1) .

So, if we put Dk =
√
Ck/k!

√
µ2k(X1), then we get

W ≤
√

Pr(Sn /∈ (a, b))

2s−1∑
k=0

Dkn
k
2

∣∣∣f (k)(µn)
∣∣∣ .

The last term V is in the required form. So the proof is done.

2.1 Example We will show one simple example of ap-
plication of Theorem 2.2 for the binomial distributions.
Namely, let us consider the function f(t) = log(t). We put
f(t) = 0 if t ≤ 1. Let X1, . . . , Xn be a sequence of i.i.d.
random variables with Bernoulli distribution Ber(p), where
0 < p < 1. Then Sn follows the Binomial distribution with
parameters n and p. Notice that

E [f(Sn)] =

n∑
k=1

log(k)

(
n

k

)
pk(1− p)n−k .

We put m = 0, M = n, a = np/2 and b = n. Then
m ≤ Sn ≤ M and m < a < E [Sn] = np < b = M . We
apply Theorem 2.2 for s = 2 and we get the approximation

E [f(Sn)] = log(np)− 1− p
2np

+
(1− p)(1− 2p)

3n2p2
+R4;a,b.

We shall estimate the error term. Notice that Pr(Sn /∈
(a, b)) = Pr(Sn ≤ np/2) = O

(
n−4

)∗, hence
M

(0)
[m,M ](f) Pr(Sn /∈ (a, b)) = O

(
log(n)n−4

)
= O

(
n−3

)
∗In fact, Chernoff bounds gives a much stronger result



and n2 Pr(Sn /∈ (a, b)) = O
(
n−2

)
. Notice that f (4)(x) =

(−6)x−4 on the interval (a, b), so

n2M
(4)
(a,b)(f) = n2 6

(np/2)4
= O

(
n−2

)
,

hence R4;a,b = O
(
n−2

)
. Therefore

n∑
k=1

log(k)

(
n

k

)
pk(1−p)n−k = log(np)−1− p

2np
+O

(
1

n2

)
.

We get this way the first order approximation of the fourth
formula from Proposition 1 of [2].

2.2 Remarks Suppose that we consider a function f
which has an analytic continuation on a half-plane Γa =
{z ∈ C : <(z) ≥ a} for some fixed a. Assume that the func-
tion f is of polynomial growth, i.e., that |f(z)| = O (|z|α)
when |z| → ∞ in region Γa, where α is some fixed real
number. Let (Xk) be a sequence of i.i.d. random variables
such that E [X1] = µ > 0 and let Sn = X1 + . . . + Xn.
Then E [Sn] = nµ. We deduce that if x ≈ nµ, then
f (k)(x) = O

(
nα−k

)
. This observation allows us to use The-

orem 2.2 for a large class of functions of polynomial growth.
We will illustrate this method in next sections.

3 Binomial Distribution
Let f : R → R be real valued function and let p ∈ (0, 1).
Let Zn be random variable with Bin(n, p). Then Zn may be
represented as a sum Zn = X1 + . . . + Xn of sequence of
independent Bernoulli trials with success probability p. Let
B (f ;n, p) = E [f(Zn)].

Let ε > 0 be such that (1 − ε)p > 0 and (1 + ε)p < 1.
If we apply Theorem 2.2 for a = (1 − ε)np, b = (1 + ε)np
and s = 3, then we get the following slightly complicated
formula:

E [Zn] =
∑
k

f(k)

(
n

k

)
pk(1− p)n−k = f(np)+

1

24
n2(p− 1)2p2

(
3f (4)(np) + 2(1− 2p)f (5)(np)

)
−

1

120
n(p− 1)p

(
− 24p3f (5)(np) + 30p2f (4)(np)+

36p2f (5)(np)− 30pf (4)(np)− 14pf (5)(np)+

(20− 40p)f (3)(np) + 5f (4)(np)+

f (5)(np) + 60f ′′(np)
)

+

R6;a,b

The error term R6;a,b is divided into three parts. The
part M

(0)
[0,n](f) Pr(Sn /∈ (a, b)) is exponentially small if

the function f is of a polynomial growth. The term
n3
√

Pr(Sn /∈ (a, b)) is also exponentially small. Hence,

if we are able to show that M
(6)
(a,b)(f) = O

(
nβ
)
, then for

the last term we get the estimation of E [Zn] with precision
O
(
nβ+3

)
.

The above formula for E [Zn] without the error term can
be easily manipulated by symbolic computation packages.
Using this method we can automatically derive all examples
from [2]. In a similar way we can derive a formula from
Corollary 2 from [3] for negative moments of the binomial
distribution. In a completely automated way (see Sec. 3.1)
we may also derive the formula for entropy of the binomial
distribution Bin(n, p):
(3.6)

H = log
√

2πnepq +
1

12n

(
4−

(
1

p
+

1

q

))
+ O

(
1

n2

)
,

where q = 1− p.
The second term of expression (3.6) is in a closed

form. The same term from [1] (Theorem 2) for the entropy
of the binomial distribution contains a complicated infinite
sum containing coefficients of the expansion of the function
exp(x ln(1 + λ(ey − 1))− λxy) as an infinite double series
of variables x and y. In [2] the entropy of the binomial
distribution is calculated with accuracy of order O(n−1).

3.1 Mathematica Code The following listing shows a
session with Mathematica package during which the entropy
for the binomial distribution was calculated.
C e n t r a l moment g e n e r a t i n g f u n c t i o n
f o r t h e b i n o m i a l d i s t r i b u t i o n
CMGFBin [ t_ , n_ , p_ ] : = (1−p + p E^ t ) ^ n / Exp [ n p t ]

C e n t r a l a t h moments o f t h e b i n o m i a l d i s t r i b u t i o n
CMBin [ n_ , p_ , a_ ] : = S i m p l i f y [D[CMGFBin [ t , n , p ] ,

{ t , a } ] / . t−>0]

Approx ima t ion Formula
AppBin [ f_ , n_ , p_ , s_ ] : =

Sum[ S i m p l i f y [ D e r i v a t i v e [ a ] [ f ] [ n p ] , n >1]
CMBin [ n , p , a ] / a ! , { a , 0 , 2 s −1}];

En t ropy of t h e b i n o m i a l d i s t r i b u t i o n
H=AppBin [

Funct ion [ x,−Log [Gamma[ n + 1 ] / (Gamma[ x +1]Gamma[ n−x + 1 ] )
p^x (1−p ) ^ ( n−x ) ] ] ,
n , p , 3 ] ;

S i m p l i f i c a t i o n
S i m p l i f y [ S e r i e s [H, { n , \ [ I n f i n i t y ] , 2 } ,

Assumptions−>0<p <1] ,0 < p<1&&n >1]

1 / 2 (1+ Log[−2 n (−1+p ) p \ [ Pi ] ] ) +
(1−2 p ) ^ 2 / ( 1 2 (−1+p ) p n )+
(−13+64 p−126 p ^2+124 p^3−62 p ^ 4 ) /
(24 (−1+p )^2 p ^2 n ^2)+O[ 1 / n ] ^ ( 5 / 2 )

Making second te rm more human r e a d a b l e
Apart [(1−2 p )^2/ ( (−1+ p ) p ) ] / . (−1 + p)−>−q
4−1/p−1/q

This code may be easily reused for other functions —
for this purpose, it is sufficient to change the line containing
the formula for entropy of the binomial distribution. The
calculation of central moments of the binomial distribution
can be speeded up if we use the following recursive formula



µn,p;a+1 = p(1 − p)
(
dµn,p;a
dp + naµn,p;a−1

)
for central

moments.
It is also clear that the above code can be easily con-

verted to work with other distributions — it is sufficient to
replace the first line by the proper formula for generating
function of the central moments of considered distribution.

3.2 Extensions The method described above may be ex-
tended to function of the form f(z) = w(z) · az , where
a > 0 and w is a real function for which the Delta Method
from Theorem 2.2 works.

LEMMA 3.1. Let a > 0, f(z) = w(z) · az , x ∈ (0, 1) and
xa = ax

ax+1−x . Then xa ∈ (0, 1) and

B (f ;n, x) = (1 + x(a− 1))nB (w;n, xa) .

Proof. Let a > 0 and x ∈ (0, 1). The condition xa ∈ (0, 1)
is easy to be checked. We have

1

(ax+ 1− x)n
B (f ;n, x) =

1

(ax+ 1− x)n

n∑
k=0

w(k)ak
(
n

k

)
xk(1− x)n−k =

n∑
k=0

w(k)

(
n

k

)(
ax

ax+ 1− x

)k (
1− x

ax+ 1− x

)n−k
=

n∑
k=0

w(k)

(
n

k

)
(xa)k (1− xa)

n−k
= B (w;n, xa) ,

so the lemma is proved.

As an example of application of Lemma 3.1 we consider
the formula from Section 2.1) for B (ln;n, x) and from
Lemma 3.1 get∑

k≥1

log(k)2k
(
n

k

)
xk(1− x)n−k =

(1 + x)n
(

log

(
2nx

1 + x

)
− 1− x

4xn
+ O

(
1

n2

))
.

By a double exponential function we mean a function of
the form f(z) = a(bz). Let us recall that for each a, b > 1
and c > 0 we have cn = o

(
a(bn)

)
, when n tends to infinity.

LEMMA 3.2. Let a, b > 1, x ∈ (0, 1), f(z) = w(z) · a(bz),
where w(z) function such that 0 < c < |w(n)| ≤ Cn for
sufficiently large n. Then

B (f ;n, x) = a(bn)xnw(n)

(
1 + O

(
Dn

d(bn)

))
,

for some constant D and d = a1− 1
b .

Proof. Let us fix constants C > 1, c > 0 such that 0 < c <
|w(n)| ≤ Cn for sufficiently large n ∈ N. Then

n∑
k=0

a(bk)w(k)

(
n

k

)
xk(1− x)n−k =

a(bn)xnw(n)

(
1 +

n−1∑
k=0

ab
k−bn w(k)

w(n)

(
n

k

)(
1− x
x

)n−k)
.

Let y = max{1, 1−x
x }. Then

(
1−x
x

)n−k ≤ yn for each
k ∈ {0, n− 1}. Hence, for sufficiently large n, we have∣∣∣∣∣

n−1∑
k=0

ab
k−bn w(k)

w(n)

(
n

k

)(
1− x
x

)n−k∣∣∣∣∣ ≤
n−1∑
k=0

ab
k−bn C

k

c
2nyn ≤ 1

c

n(2yC)n

abn−bn−1 =

1

c

n(2yC)n

(a1−1/b)bn
= O

(
Dn

d(bn)

)
,

where d = a1−1/b and D is any real number bigger than
2yC.

3.3 Bernstein Polynomials The Bernstein approximation
Bfn to a function f : [0; 1] → R (see, e.g., [10]) is the
polynomial

Bfn(x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k .

It is clear thatBfn(x) is the expected value of the random
variable f

(
Xn
n

)
, where Xn is a random variable with the

binomial distribution with parameters n an x. A direct
application of Theorem 2.2 applied to Bernoulli trials and
the function g(x) = f( xn ) shows the following result, proved
by S. Bernstein in [11]: if f (2s) is bounded in (0, 1) and
µa denotes ath central moment of a random variable with
Bin(n, x) distribution, then

Bfn(x) = f(x) +

2s−1∑
a=2

f (a)(x)

a!na
µa + O

(
1

ns

)
.

This formula was used in [4] in order to give alternative,
but longer than based on the Delta Method, proofs of results
from papers [1], [2] and [3].

4 Probabilistic Poissonization
Let f : R→ R and let X be a random variable with Poisson
distribution with parameter λ. We put P (f ;λ) = E [f(X)],
i.e., P (f ;λ) = e−λ

∑∞
k=0 f(k)λk/k! (see [12]).

The central moments of Poisson distribution with pa-
rameter λ satisfies the following recurrence µk+1 =



λ
(
dµk
dλ + kµk−1

)
. From this recurrence we deduce that µk

is a polynomial in λ of order bk/2c. A direct application of
Theorem 2.1 with s = 3, m = 0, a = λ/2, b = M = ∞
gives us the following formula:

P (f ;λ) = f(λ)+

λ

(
1

2
f (2)(λ) +

1

6
f (3)(λ) +

1

24
f (4)(λ) +

1

120
f (5)(λ)

)
+

λ2

(
1

8
f (4)(λ) +

1

12
f (5)(λ)

)
+R6;λ2 ,∞

,

where

|R6;λ2 ,∞
| ≤ AM

(6)

(λ2 ,∞)
(f) +B

√
Pr(X <

λ

2
)+

M
(0)

[0,λ2 ]
(f) Pr(X <

λ

2
).

Let us assume that f(x) = O (xa) for some a > 0. Then
the last two terms of this estimation are exponentially small
when λ grows to infinity (more precisely, Pr[X < λ/2] =

O
(√

2/e
λ
)

).
Let us apply this formula for entropy of the Poisson

distribution. Hence, we consider the function h(x) =
− log(e−λ λx

Γ(x+1) ). Clearly h(x) = O
(
x2
)
. Therefore, the

last two terms from error term are exponentially small, hence
they are of order O

(
λ−2

)
. We have h(6)(x) = ψ(5)(x+ 1),

where ψ(5)(x) denotes the polygamma function of order 5.
Hence sup{|h(6)(x)| : x > λ/2} = O

(
1
λ5

)
. Therefore,

E [h(X)] = log
√

2πeλ− 1

12λ
+O

(
1

λ2

)
+O

(
1

λ5

)
O
(
λ3
)
.

Hence we get the formula

Hλ = log
√

2πeλ− 1

12λ
+ O

(
1

λ2

)
for the entropy of Poisson distribution (see [13]). More
precise approximation of Hλ can be derived in a similar
way and the computation can be completely automated. In a
similar way we can derive a formula from Corollary 3 from
[3] for negative moments of Poisson random variables.

The next observation allows us to extend the class of
functions for which we may use the Delta Method for the
Poisson distribution.

LEMMA 4.1. Let a > 0 and f(z) = w(z) · az . Then

P (f ;λ) = eλ(a−1)P (w;λa) .

Proof. Let a > 0 and λ > 0. Then

P (f ;λ) = e−λ
∑
k≥0

w(k)ak
λk

k!
=

e−λ
∑
k≥0

w(k)
(λa)k

k!
= e−λeλaP (w;λa) .

Let us observe that there is no analogous version of
Lemma 3.2 for Poisson distribution. Namely, if a > 1 and
λ > 0, then

∑
k≥0 a

ak λk

k! =∞.

5 Negative Binomial Distribution
If X is a random variable with NB(n, p) distribution and
f : R→ R is any function, then we put

NB (f ;n, p) = E [f(X)] =
∑
k≥n

f(k)

(
k − 1

n− 1

)
pn(1−p)k−n .

Let us recall that if X ∼ NB(n, p), then there are indepen-
dent random variables Z1, . . . , Zn with Geo(p) distributions
such that X = Z1 + . . .+ Zn.

A direct application of Theorem 2.2 with parameters
s = 3, a = n

2p and b =∞ gives us the following formula:

NB (f ;n, p) = f

(
n

p

)
+

n2(1− p)2

24p5

(
3pf (4)

(
n

p

)
+ 4f (5)

(
n

p

)
− 2pf (5)

(
n

p

))
+

n(1− p)

120p5

(
60p3f ′′

(
n

p

)
+ 40p2f (3)

(
n

p

)
− 20p3f (3)

(
n

p

)
+

30pf (4)

(
n

p

)
− 30p2f (4)

(
n

p

)
+ 5p3f (4)

(
n

p

)
+

24f (5)

(
n

p

)
− 36pf (5)

(
n

p

)
+

14p2f (5)

(
n

p

)
− p3f (5)

(
n

p

))
+

R6; n√
p
,∞.

The Chernoff bound adjusted to the vari-
ables with negative binomial distribution gives us
Pr
(
X /∈

(
n√
p ,∞

))
= O ((Ap)

n) for some Ap < 1.

Hence both terms n3B

√
Pr
(
X /∈

(
n√
p ,∞

))
and

M
(0)
[0, n√p ](f) Pr

(
X /∈

(
n√
p ,∞

))
are negligible for a

function f of at most polynomial growth. Therefore

R6; n√p ,∞ = O
(
n3M

(6)
[0, n√p ](f)

)
.

Let us apply this formula for entropy of negative bino-
mial distribution. We have to consider the function h(x) =

− log
((

x−1
n−1

)
pn(1− p)x−n

)
. Since h(6)(x) = ψ(5)(x +

1 − n) − ψ(5)(x), where ψ(5)(x) denotes the fifth order
polygamma function, we have sup{|h(6)(x)| : x > n√

p} =

O
(

1
n5

)
. Therefore R6; n√p ,∞ = O

(
1
n2

)
and the entropy of

the negative binomial distribution is

HNB(n,p) = log

√
2πe

n(1− p)
p2

− (2− p)2

12n(1− p)
+ O

(
1

n2

)
.



Using the symbolic calculation packages and calculat-
ing the ath central moment of the negative binomially dis-
tributed random variable from its central moments generat-
ing function or from the recurrence relation for the central
moments (µa = q ∂µa−1

∂q + an q
p2µa−2, where q = 1− p, see

[14]) one can obtain an approximation of HNB(n,p) with an
arbitrary required precision.

The next observation allows us to extend the class of
functions for which we may extend the Delta Method for the
negative binomial distributions.

LEMMA 5.1. Let 0 < a < 1
1−p and f(z) = w(z) · az . Then

NB (f ;n, p) =

(
ap

1− a(1− p)

)n
NB (w;n, 1− a(1− p)) .

Proof. Let q = 1− p. Then(
ap

1− a(1− p)

)n

NB (w;n, 1− a(1− p)) =(
ap

1− aq

)n ∑
k≥n

w(k)

(
k − 1

n− 1

)
(1− aq)n(aq)k−n =

∑
k≥n

w(k)ak

(
k − 1

n− 1

)
pn(1− p)k−n .

Remark. If a ≥ 1
1−p and f(z) = az , then the series

NB (f ;n, p)=
∑
k≥n a

k
(
k−1
n−1

)
pn(1− p)k−n is divergent.

6 Hypergeometric Distribution
A random variableX has a hypergeometric HGeo(n, n1, n2)
distribution with parameters n, n1 and n2 if Pr(X = k) =(
n2

k

)(
n−n2

n1−k
)/(

n
n1

)
. The random variable X counts the num-

ber of successes in n1 draws without replacement from a fi-
nite population of size n containing n2 success states.

We fix two parameters p, q ∈ (0, 1) and consider a
random variable X with distribution HGeo(n, pn, qn). Note
that E [X] = npq. Without loss of generality we assume
that p ≤ q and p + q ≤ 1 (one can show correctness of
the result without the additional assumptions, by separately
considering the remaining cases or by taking into account
symmetries of hypergeometric distribution). Our goal is
to derive an asymptotic formula for the entropy of random
variable X , when n tends to infinity. We apply Theorem 2.1
to the function h(k) = − log

((
qn
k

)(
n−qn
pn−k

)/(
n
pn

))
. We have

h(a)(x) = ψ(a−1)(1 + x) + ψ(a−1)(1 + (1− p− q)n+ x)

+(−1)aψ(a−1)(1 + pn− x) + (−1)aψ(a−1)(1 + qn− x).

We set m = 0, M = pn, a = 1
2pqn and b = 1+q

2 pn.
As probability Pr(X /∈ (a, b)) is exponentially small (see,
e.g., [15]), we focus on the first part of remainder. We have
µ2s(X) = O (ns) and M

(2s)
(a,b)(h) = O

(
n−2s+1

)
. Thus, in

order to obtain result up to O
(

1
n2

)
term, we take s = 3 and

after some calculations we get

HHGeo(n,pn,qn) = log
√

2πnep∗q∗+

1

12n

(
− 10 +

4

p∗
+

4

q∗
− 1

p∗q∗

)
+ O

(
1

n2

)
,

where p∗ = p(1− p) and q∗ = q(1− q).

7 Conclusions
Properly formulated Delta Method like theorems can accel-
erate and simplify determination of approximations of prob-
ability sums for the distributions that are well concentrated
near its mean value for large class of functions. Methods
presented in this paper can be automated to a large extent.

References

[1] P. Jacquet, W. Szpankowski, Entropy computations via an-
alytic depoissonization, IEEE Transactions on Information
Theory 45 (4) (1999) 1072–1081.

[2] P. Flajolet, Singularity analysis and asymptotics of bernoulli
sums, Theor. Comput. Sci. 215 (1-2) (1999) 371–381.
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