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ON TRANSLATIONS OF SUBSETS OF THE REAL LINE

JACEK CICHOŃ, ANDRZEJ JASIŃSKI, ANASTASIS KAMBURELIS,
AND PRZEMYS LAW SZCZEPANIAK

(Communicated by Alan Dow)

Abstract. In this paper we discuss various questions connected with trans-
lations of subsets of the real line. Most of these questions originate from
W. Sierpiński. We discuss the number of translations a single subset of the
reals may have. Later we discuss almost invariant subsets of Abelian groups.

1. Introduction

We shall use standard set theoretical notation. By |X | we denote the cardinality
of set X . If κ is a cardinal number, then by cf (κ) we denote its cofinality. We
identify the first infinite cardinal number ω with the set of natural numbers. By c
we denote the cardinality of continuum, i.e., c = 2ω. The Continuum Hypothesis
(denoted by CH) is the statement that c = ω1. By MA we denote the Martin’s
Axiom (see [J]).

For any set X and a cardinal number κ let [X ]κ (resp. [X ]<κ) be the family of all
subsets of X of cardinality κ (resp. less than κ). By Ac we denote the complement
of the set A. The real line is denoted by R. Let L be the σ-ideal of Lebesgue
measure zero subsets of R. Also let K be the σ-ideal of first category subsets of R.

If J is an ideal of subsets of a set X we define the following cardinal coefficients:
add(J) = min{|S| : S ⊆ J and

⋃
S /∈ J}, cov(J) = min{|S| : S ⊆ J and

⋃
S =

X}, and non(J) = min{|T | : T ⊆ X and T /∈ J}. If some cardinal number is not
defined, then we assume that this number is ∞, where ∞ > κ for every cardinal
number κ. We write H �G if H is a subgroup of the group G.

We would like to thank the referee for many helpful comments.

2. Preliminaries

Suppose that (G,+) is a group. For A,B ⊆ G and g ∈ G define A± g = {a± g :
a ∈ A} and A ± B = {a ± b : a ∈ A ∧ b ∈ B}. Let J be an ideal of subsets of G.
We say that J is invariant if A+ g ∈ J for every A ∈ J and g ∈ G.

Convention. In what follows, we always assume that G is an Abelian group and
J is an invariant ideal of subsets of G.
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For A ⊆ G define Fix(A, J) = {g ∈ G : (A + g)4 A ∈ J}. Here 4 denotes the
symmetric difference of sets. Then Fix(A, J) is a subgroup of G. Note also that
Fix(Ac, J) = Fix(A, J)

Definition. We say that A is J-almost invariant if Fix(A, J) = G.

Lemma 2.1. Let A ⊆ G. The following conditions are equivalent:
1. A is J-almost invariant, i.e., ∀g ∈ G (A+ g)4A ∈ J ;
2. ∀g ∈ G (A+ g) \A ∈ J ;
3. ∀g ∈ G A \ (A+ g) ∈ J .

Note that the family of all J-almost invariant sets forms a field of subsets of
G. This field is add(J)-complete, i.e., it is closed under taking unions of length
less than add(J). If A ∈ J , then obviously A and Ac are J-almost invariant. We
consider such sets as trivial J-almost invariant sets. Otherwise we say that A is
nontrivial.

Let us note the following easy fact concerning translations.

Lemma 2.2. If G = A ∪ B where A ∩ B = ∅ and T ⊆ G, then either T + g ⊆ B
for some g ∈ G or else A− T = G.

This gives us another simple characterization of J-almost invariant sets.

Lemma 2.3. A is J-almost invariant iff ∀ T ⊆ A if T /∈ J , then A− T = G.

We omit the easy proof. By this lemma A − A = G, if A is J-almost invariant
and A /∈ J . This shows that certain almost invariant subsets of R are destroyed
after forcing a new real.

The next observation gives a condition on J ensuring that all J-almost invariant
sets are trivial. This was also proved in [L] (Theorem 2).

Proposition 2.4. Suppose that J satisfies the following condition:
If A /∈ J , then there exists T ⊆ A such that T /∈ J and |T | < cov(J).

Then all J-almost invariant sets are trivial.

Proof. Suppose on the contrary that A is a nontrivial J-almost invariant set. Then
so is B = Ac and A,B /∈ J . Since our assumptions are symmetric, we may assume
that B cannot be covered by less than cov(J) sets from J . Choose T ⊆ A such
that T /∈ J and |T | < cov(J). By Lemma 2.3 we have A − T = G. That is,
G =

⋃
g∈T A − g. So B =

⋃
g∈T (A − g) ∩ B. But A is J-almost invariant, so

(A − g) ∩ B ∈ J for every g ∈ G. We have just covered the set B by less than
cov(J) sets from J . A contradiction.

Corollary 2.5. Suppose ω ≤ κ < |G|. Let G = A∪B, A∩B = ∅ and |A| = |B| =
|G|. Then there exists g ∈ G such that |(A+ g) ∩B| ≥ κ.

Proof. Let J = {X ⊆ G : |X | < κ}. Then cov(J) = |G| and J satisfies the condition
from Proposition 2.4. So we conclude that A is not J-almost invariant, so there
exists g ∈ G such that (A+ g) \A = (A+ g) ∩B /∈ J .

3. Translations of subsets of the real line

In this section we discuss some translation properties of subsets of the real line
R. Hence our basic group is the real line and the basic ideal is {∅}. Sierpiński
([S2]) asked how many distinct translations a given set A ⊆ R has, i.e., what the
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cardinality of Tr(A) := {A+ g : g ∈ R} is. It is obvious that |Tr(A)| = 1 iff A = ∅
or A = R. It is also easy to see that |Tr(A)| = c for every bounded nonempty set
A ⊆ R. Recall that Fix(A) = {g ∈ R : A+ g = A} is a subgroup of R. It is easy
to observe that |Tr(A)| = |R/Fix(A)|. But R is a divisible group. Therefore, if
|Tr(A)| ≥ 2, then |Tr(A)| ≥ ω.

For any cardinal number κ such that ω ≤ κ ≤ c one can find G � R such
that |Tr(G)| = κ. To see this, let {xα : α < c} be any Hamel basis and let G =
LSP(xα : α ≥ κ) be the linear space over rationals generated by the set {xα : α ≥ κ}
(note that Fix(G) = G for G� R).

A classical construction yields a Vitali set V ⊆ (0, 1). Then |Tr(V )| = c. But
there exists a Vitali set with only ω translations.1 Just take a Hamel basis H with
1 ∈ H and let V = LSP(H \ {1}).

All the above-mentioned examples used “strange” subsets of R. The following
theorem was proved by Sierpiński (see [S2]) under the additional assumption of the
Continuum Hypothesis.

Theorem 3.1. Suppose that A ⊆ R is Lebesgue measurable or has the Baire prop-
erty. Then |Tr(A)| ∈ {1, c}.
Proof. Let us prove the theorem for the measure case. Let G = Fix(A). If G is a
discrete subgroup of the real line, then |R/G| = c. Hence we may assume that G
is a dense subgroup of the real line. If A = ∅ or A = R, then |Tr(A)| = 1. Hence
we may assume that ∅ 6= A 6= R. We claim that A ∈ L or that Ac ∈ L. Suppose
otherwise. Then, by Steinhaus’ theorem (see [Ox]) the interior of the set A−Ac is
nonempty, so (A−Ac)∩G 6= ∅. Let a ∈ A, b ∈ Ac and g ∈ G be such that g = a−b.
Then b = a− g and this is impossible, since G = Fix(A). Since Fix(A) = Fix(Ac)
we may assume that A ∈ L. Let a ∈ A. Then a + G ⊆ A, so G ∈ L. Let
H = {(x, y) ∈ R2 : x − y ∈ G}. Then H is a Lebesgue measure zero subset of the
plane R2. Hence, by Mycielski’s theorem (see [M2]) there exists a perfect subset P
of the real line R such that P ×P \ {(x, x) : x ∈ R} ⊆ R2 \H . Hence, if t1, t2 ∈ P
and t1 6= t2, then (t1, t2) /∈ H , hence t1 − t2 /∈ G, so G + t1 6= G + t2. Therefore
|R/G| = c.

The proof of the second case of the theorem is similar to the one presented. In-
stead of Steinhaus’ theorem for the Lebesgue measure it is necessary to use Stein-
haus’ theorem for the Baire property (see [Ox]) and Mycielski’s theorem for measure
should be replaced by Mycielski’s theorem for the Baire property (see [M1]).

Let us consider the Cantor dyadic group (2ω,+) (where 2 = {0, 1} and + is
the usual pointwise addition modulo 2). Let us fix a natural number n and let us
consider the group Gn = {x ∈ 2ω : ∀i < n x(i) = 0}. Then |2ω/Gn| = 2n. Hence
there are sets A ⊆ 2ω such that 1 < |Tr(A)| < ω.

Lemma 3.2. Let A ⊆ 2ω. Then |Tr(A)| ∈ {2n : n ∈ ω} ∪ {κ : ω ≤ κ ≤ c}. If A
is a Lebesgue measurable set or has the Baire property, then |Tr(A)| ∈ {2n : n ∈
ω} ∪ {c}.
Proof. Let G = Fix(A). Suppose that L = 2ω/G is finite. Then L is a linear space
over the field Z2, hence |L| = 2n for some natural number n. Notice that Steinhaus
and Mycielski’s theorems hold for Lebesgue measurable subsets of 2ω or sets with
the Baire property. Hence we may repeat arguments from the previous theorem for

1This remark is due to J. Pawlikowski.
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the topological group 2ω and show that |Tr(A)| ≤ ω or |Tr(A)| = c for Lebesgue
measurable subsets A ⊆ 2ω or sets with the Baire property.

4. Almost invariant subsets of uncountable groups

For an infinite group G let FG = {A ⊆ G : |A| < |G|} be the Frechet ideal. Note
that FG is invariant and add(FG) = cf (|G|).

Definition. We say that A ⊆ G is almost invariant if A is FG-almost invariant,
i.e., if |(A+ g)4A| < |G| for every g ∈ G.

In this section we consider almost invariant setsA ⊆ G whereG is an uncountable
(Abelian) group. We start our considerations with a technical lemma which extends
the original Sierpiński’s construction.

Lemma 4.1. Suppose that G is an uncountable group. Let |G| = κ. Suppose that
we are given A ⊆ G and a sequence 〈Pα : α < κ〉 of subsets of G such that

∀α < κ ∀B ∈ [G]<κ |
⋂
g∈B

(A− g) ∩ Pα| = κ.

Let 〈Gα : α < κ〉 be an increasing family of subgroups of G such that
⋃
α<κGα = G

and |Gα| < κ for each α < κ (if not specified otherwise we let Gα be the subgroup
of G generated by 〈gβ : β ≤ α〉 where 〈gβ : β < κ〉 is some fixed enumeration of G).

Then there exists a sequence 〈tα : α < κ〉 ⊆ G such that:
1. the sets Gα + tα are pairwise disjoint;
2. Gα + tα ⊆ A for α < κ;
3. (Gα + tα) ∩ Pα 6= ∅ for α < κ;
4. if Z ⊆ κ is cofinal in κ, then

⋃
α∈Z(Gα + tα) is an almost invariant set of

cardinality κ.

Proof. First note that (B + t)∩C 6= ∅ iff t ∈ C −B. Moreover t ∈
⋂
g∈B(A− g) iff

B + t ⊆ A. Build 〈tα : α < κ〉 by induction. Suppose that β < κ and 〈tα : α < β〉
has been defined. Then, it is possible to choose tβ such that

tβ ∈
⋂
g∈Gβ

(A− g) ∩ Pβ

and
(Gβ + tβ) ∩

⋃
α<β

(Gα + tα) = ∅

(note that |Gα + tα| = |Gα| ≤ |Gβ | < κ). The sequence 〈tα : α < κ〉 is the
required one. Conditions 1, 2 and 3 are satisfied. Let Z ⊆ κ be cofinal in κ and
S =

⋃
α∈Z(Gα+ tα). Fix g ∈ G and let β < κ be such that g ∈ Gα for every α ≥ β.

Then Gα + tα + g = (Gα + g) + tα = Gα + tα. Hence

(S + g) \ S ⊆
⋃
α<β

(Gα + g)

and this last union has cardinality less than κ. In the end it suffices to observe that
|S| = |Z| · supα∈Z |Gα| = κ.

It follows easily from Lemma 4.1 that nontrivial almost invariant sets exist in
every uncountable group. The following observation extends Sierpiński’s result from
[S1].
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Proposition 4.2. Suppose that G is an uncountable group and 2 ≤ λ ≤ |G|. Then
there exists a decomposition of G into λ nontrivial almost invariant sets.

Proof. Let κ = |G|. We apply Lemma 4.1 (with A = Pα = G) and obtain a
sequence 〈tα : α < κ〉. Write κ =

⋃
α<κ Zα where Zα’s are pairwise disjoint sets of

cardinality κ. Put Sα =
⋃
β∈Zα(Gβ + tβ). It follows from Lemma 4.1 that Sα’s are

pairwise disjoint almost invariant sets of cardinality κ.
Suppose first that 2 ≤ λ < cf (κ). Then the set

⋃
α<λ Sα is almost invariant

because cf (κ) = add(FG). Therefore the remainder R = G\
⋃
α<λ Sα is also almost

invariant. Hence {Sα : α < λ} ∪ {R} is the required decomposition (if λ is finite
then just glue R with S0).

Suppose now that cf (κ) ≤ λ ≤ κ. The remainder R = G \
⋃
α<λ Sα has car-

dinality at most κ. Write R =
⋃
α<λRα where Rα’s are pairwise disjoint sets of

cardinality less than κ (some of them may be empty). Put Tα = Sα ∪Rα. Clearly
{Tα : α < λ} works.

We can ask whether a given set A ⊆ G with |A| = |G| can be decomposed into
many nontrivial almost invariant sets. Of course this is not always possible (note
that a nontrivial almost invariant subset of R must be unbounded). But if A itself
is almost invariant, then we can repeat the construction from Lemma 4.1 inside A.
It follows in particular that there are no almost invariant “atoms”. In fact we can
prove a bit more. Recall that two sets A,B ⊆ G are almost disjoint if |A∩B| < |G|.
Proposition 4.3. Suppose that G is an uncountable group and A is an almost
invariant subset of G such that |A| = |G|. Then A contains cf (|G|)+ nontrivial
almost invariant sets which are pairwise almost disjoint.

Proof. Let κ = |G| and let A be almost invariant and |A| = κ. Assume first that
κ is a regular cardinal. Then |

⋂
g∈B(A − g)| = κ for every B ∈ [G]<κ. Let us

apply Lemma 4.1 for the set A (with Pα = G). Let F ⊆ [κ]κ be a family consisting
of pairwise almost disjoint sets such that |F| = κ+. For each X ∈ F we put
X∗ =

⋃
α∈X(Gα + tα). Then {X∗ : X ∈ F} is the required family.

Assume now that κ is singular and λ = cf (κ). Fix an increasing sequence of
infinite cardinals 〈κα : α < λ〉 less than κ and cofinal in κ. Also fix an increasing
sequence 〈Hα : α < λ〉 of subgroups of G such that |Hα| ≤ κα and G =

⋃
α<λHα.

We have to be more careful in the proof of the Lemma 4.1. Let Jα = {B ⊆ G :
|B| ≤ κα}. Then Jα is an invariant ideal. Put Gα = Fix(A, Jα) ∩ Hα. Then
Gα � G and G =

⋃
α<λGα. Now we can repeat the construction of the sequence

〈tα : α < λ〉 exactly as in the proof of Lemma 4.1 (letting Pα = G). To see this note
that

⋂
g∈Gα(A− g) has cardinality κ. Again, fix an almost disjoint family F ⊆ [λ]λ

such that |F| = λ+ and for X ∈ F put X∗ =
⋃
α∈X(Gα + tα). Then {X∗ : X ∈ F}

is as required.

Previous results imply that there are a lot of nontrivial almost invariant subsets
of the real line. However, we shall show that none of them can be a Borel set.

Proposition 4.4. Suppose that A,B are two disjoint Borel subsets of the real line
such that R = A ∪ B and |A| = |B| = c. Then there exists a real number x such
that |(A+ x) ∩B| = c.

Proof. Suppose first that CH is false. Let us use Corollary 2.5 for G = R and
κ = ω1. Let x ∈ R be such that |(A+ x) ∩B| > ω. But (A+ x) ∩B is a Borel set,
hence |(A+ x) ∩B| = c.



1838 J. CICHOŃ ET AL.

Suppose now that CH is true. Let us consider any generic extension V ′ of the
universe V in which CH is false. Then

V ′ |= (∃x)(∃P )(P ∈ Perf ∧(∀t)(t ∈ P → t ∈ (A+ x) ∩B))

where Perf denotes the space of all perfect subsets of the real line. Observe that
this property of the universe V ′ is a Σ1

2-sentence with parameters from the ground
universe V , so by Shoenfield’s absoluteness theorem (see [J]) it holds also in the
universe V . Hence the theorem is proved.

With some additional assumptions we can extend the above proposition to the
case when A is an analytic set.

Proposition 4.5. Suppose that A ⊆ R is an uncountable analytic set such that its
complement contains a perfect subset. Then A is not almost invariant.

Proof. Let B = Ac. Both A and B have the Baire property. If A,B /∈ K, then we
can find nonempty open intervals I, J and a set F ∈ K such that I \ F ⊆ A and
J \ F ⊆ B. Let x ∈ R be such that (I + x) ∩ J 6= ∅. Then |(A + x) ∩ B| = c and
hence A is not almost invariant.

Therefore, we can assume that A ∈ K or B ∈ K. For both sets there exists a
canonical decomposition into ω1 Borel sets (constituents), which is absolute for ω1

preserving generic extensions. Say A =
⋃
α<ω1

Aα and B =
⋃
β<ω1

Bβ . If CH is
false, then we add a single Cohen real c to the universe V and we work in V [c].
Assume that B ∈ K (the case when A ∈ K is similar). Note that if x ∈ R ∩ V ,
then the number x + c is a Cohen real over V . Therefore R ∩ V + c ⊆ A∗, where
by A∗ we denote the set A encoded in V [c]. Hence R ∩ V ⊆ A∗ − c and so
B∗ ∩ V ⊆ (A∗ − c)∩B∗. As |B∗ ∩ V | = c > ω1 (by absoluteness B∗ ∩ V is just the
set B in V ) we can find α, β < ω1 such that |(A∗α− c)∩B∗β | = c. Thus V [c] models
the absolute sentence “(∃x)((A∗α − x) ∩B∗β is uncountable)” and we conclude that
(in V ) there exists x such that (A− x) ∩B is uncountable.

If CH is true we first extend the universe by adding ω2 Sacks reals either to the
set A (if A ∈ K) or to the set B (if B ∈ K). In both cases it is possible because A
and B contain perfect subsets. Then we can argue as we did previously.

Corollary 4.6. Assume that every co-analytic set B ⊆ R of cardinality c contains
a perfect subset (this assumption follows e.g. from the negation of CH or from the
existence of a measurable cardinal). Then all analytic almost invariant subsets of
R are trivial.

Note that the proof of Proposition 4.5 breaks down when B is a co-analytic set
such that all its constituents are countable. Then it is impossible to force new
elements to B without collapsing ω1.

The next theorem, due to A. Miller,2 shows that such sets are possible in the
constructible universe L.

Theorem 4.7 (A. Miller). If V = L, then there exists a nontrivial almost invari-
ant Π1

1 subset of R. Similarly, there is such a subset of 2ω.

Proof. To see that a given transfinite construction of a set of reals can be converted
into the construction of a Π1

1 set under V = L, what must be seen is that the
construction itself can be coded into each real which is appearing at a given stage.

2We would like to thank Arnold Miller for his kind permission to include his result.
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In the transfinite construction of the sets 〈tα + Gα : α < ω1〉 it is enough to see
that each u ∈ tα + Gα can code up an arbitrary real z ∈ 2ω. (In the proof below
z will be recursive in each u ∈ tα + Gα, but more generally it would be enough
for z to be ∆1

1 in each u.) The real z in turn can code up the construction of
〈tβ + Gβ : β < α〉 as well as the initial part of the L hierarchy, i.e., some Lγ , in
which it appears. This makes every real entering the set “self-constructible” and
hence we can make our set

⋃
β<ω1

tβ + Gβ into a Π1
1 set. (We suppose we can

guarantee it is nontrivial by taking only the even β’s.) If we also take z not to be
recursive in any u ∈

⋃
β<α tβ + Gβ , then this also automatically guarantees that

tα +Gα is disjoint from
⋃
β<α tβ +Gβ .

The coding argument is easier for the Cantor group (2ω,+) so we do it first.

Lemma 4.8. Given G ⊆ 2ω countable and z ∈ 2ω there exists t ∈ 2ω such that
z ≤T t+ g for each g ∈ G. The proof shows that such t can be found recursive in z
and any enumeration of G.

Proof. Let G = {gn : n ∈ ω} be any enumeration. Let 〈An : n ∈ ω〉 be a recursive
partition of ω into infinite sets and for each n let An = {kn0 < kn1 < kn2 < . . . }.

Define t ∈ 2ω by
t(knm) + gn(knm) = z(m).

Then we have z ≤T t+ gn as required.

Lemma 4.9. Given G ⊆ R countable and z ∈ 2ω there exists t ∈ R such that
z ≤T t+ g for each g ∈ G. The proof shows that such t can be found recursive in z
and any enumeration of G.

Proof. Let {gn : n ∈ ω} and 〈An : n ∈ ω〉 be as in the proof above. Define εn = 6−n

for n ∈ ω and let Jnm be the closed intervals of length εn defined by

Jnm = [mεn, (m+ 1)εn] for m ∈ Z.

For each n these intervals cover R and overlap only on their endpoints.
We will construct a sequence 〈In : n ∈ ω〉 of closed intervals such that |In| ≥ 1

2εn.
The t we want will be in the intersection of the In’s.

Let I0 = R. Suppose that n + 1 = kji ∈ Aj . Given In with |In| ≥ 1
2εn, since

εn+1 = 1
6 εn we know that |In| ≥ 3εn+1 and therefore gj + In covers at least two

consecutive intervals of length εn+1, say

Jmn+1 ∪ Jm+1
n+1 ⊆ gj + In.

Now choose m̂ ∈ {m,m+ 1} so that m̂ is even iff z(i) = 0. Next choose In+1 ⊆ In
with length at least 1

2εn+1 and so that

gj + In+1 ⊆ interior(Jm̂n+1).

This finishes the construction of the sequence 〈In : n ∈ ω〉.
Let t be the unique real in the intersection of all the In. We claim that z ≤T gj+t

for each j. To calculate z(i) let n + 1 = kji . By our construction there exists a
unique m such that gj + t ∈ Jmn+1 (we are assuming that our coding of real numbers
is such that we can effectively find this m). Then z(i) = 0 iff m is even.

Theorem 4.7 follows from these two lemmas using an argument similar to that
of [M] (Lemma 7.22 and Theorem 7.21).
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Let us go back to Proposition 4.4 (Borel set case). We shall finish this section
with a few comments. It is not true in general that given two perfect sets P and Q
one can find x ∈ R such that (P + x)∩Q is uncountable. To see this just take two
disjoint perfect sets P and Q which are subsets of the perfect set of algebraically
independent reals. Then |(P + x) ∩Q| ≤ 1 for every x ∈ R.

The trick with a Cohen real from Proposition 4.5 gives the following alternative
proof of Proposition 4.4. We can assume that B ∈ K. Assume that (A − x) ∩ B
is countable for every x ∈ R. From Lusin-Novikov Uniformization Theorem (see
[K]) there exists a sequence of Borel measurable functions fn : R → R such that
(A − x) ∩ B ⊆ {fn(x) : n < ω}. For y ∈ B we have A − y ⊆

⋃
n f
−1
n (y). So

there exists n < ω such that f−1
n (y) /∈ K for uncountably many y ∈ B. But this is

impossible because the Boolean algebra Borel(R)/K satisfies the countable chain
condition.

5. Almost invariant subsets of countable groups

Here we assume that G is an Abelian group and |G| = ω. We shall write FIN
for the Frechet ideal FG.

It is easy to see that Lemma 4.1 generalizes to the case when G can be written
as a chain of finite subgroups (this simply means that every element of G has finite
order). This works e.g. for Cp∞ or for the group of rational rotations of the unit
circle.

Now consider (Z,+). It is easy to see that almost invariant subsets of Z are of
four types. They are equal (modulo FIN) to either ∅ or Z or P := {n : n > 0} or
N := {n : n < 0}. Thus P and N are nontrivial. But the next lemma shows that
Lemma 4.1 cannot be generalized to all countable groups.

Lemma 5.1. Almost invariant subsets of (Z×Z,+) are trivial. Similarly, almost
invariant subsets of (Q,+) are trivial.

Proof. Let A ⊆ Z × Z. Suppose on the contrary that A and B := Ac are almost
invariant and |A| = |B| = ω. Consider (horizontal) sections Am = {n : 〈n,m〉 ∈ A}.
Each such section must be almost invariant in Z and therefore equal (modulo FIN)
to ∅, Z, P or N . But observe that all sections must be of the same type. Thus (by
passing to the complement if necessary) we may assume that all nonempty sections
have the greatest element. Moreover, infinitely many sections must be nonempty.
To obtain a contradiction it suffices to shift A by 〈1, 0〉.

The case of (Q,+) is left as an exercise.

6. Almost invariant sets modulo an ideal

In this section we consider J-almost invariant subsets of the real line R, where
J is an ideal of subsets of R with a Borel base. Recall that an ideal J ⊆ P(R) has
a Borel base, if for every X ∈ J there exists a Borel set B ∈ J such that X ⊆ B.
Well-known examples of such ideals are the σ-ideals L and K. Recall also that a
set X ⊆ R is called a Bernstein set if X ∩P 6= ∅ 6= Xc ∩P for every perfect set P .

Theorem 6.1. Suppose that J is a proper invariant ideal on R with a Borel base
such that non(J) = c. Then there exists a nontrivial J-almost invariant set which
is also a Bernstein set.

Proof. Let Z ⊆ c be such that |Z| = |Zc| = c and let 〈Pα : α < c〉 be an
enumeration of all perfect subsets of R such that each perfect set has an index
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both in Z and Zc. We use Lemma 4.1 (with A = R) and obtain a sequence
〈tα : α < c〉. Put X =

⋃
α∈Z(Gα + tα). It is easy to see that X is a Bernstein set.

From Lemma 4.1 we know that X is almost invariant. Therefore X is J-almost
invariant because non(J) = c. It suffices to show that X /∈ J and Xc /∈ J . It
follows from the fact that X (and also Xc) is a Bernstein set. Assume e.g. that
X ∈ J . Then there exists a Borel set B ∈ J such that X ⊆ B. Its complement
Bc is an uncountable Borel set and therefore it contains a perfect set P ⊆ Bc. But
X ∩ P 6= ∅. A contradiction.

It is a well-known fact that Martin’s Axiom implies that add(L) = non(L) = c
and also add(K) = non(K) = c (see [J]). Thus we have

Corollary 6.2. Martin’s Axiom implies that there are nontrivial L-almost invari-
ant sets and nontrivial K-almost invariant sets. In fact under MA there is a set
which is simultaneously nontrivial L-almost invariant and nontrivial K-almost in-
variant.

We3 show that this cannot be proved in the theory ZFC alone.

Theorem 6.3. Let M be a transitive model of ZFC+CH. Add ω2 random reals to
M (by measure algebra). Then in the generic extension M [rα : α < ω2] there exists
a nontrivial K-almost invariant set but there are no nontrivial L-almost invariant
sets.

Proof. Let N = M [rα : α < ω2]. It is well known that in the model N we have
cov(L) = ω2 = c. By Rothberger’s theorem also non(K) = c in N . Hence by
Theorem 6.1 there exists a nontrivial K-almost invariant set.

To show that there are no nontrivial L-almost invariant sets we shall use Propo-
sition 2.4 for the σ-ideal L. We have to show that in N the following is true:

if X = {xα : α < ω2} /∈ L, then {xα : α < β} /∈ L for some β < ω2.
This fact is probably less known but it is also a part of folklore (see [LM], Lemma 8).
Let us sketch the main idea of the proof. We slightly abuse the notation by treating
an object from N as a name for it. The required β will be the limit of an increasing
sequence of ordinals {βδ : δ < ω1}. Put β0 = ω and use limits at limit steps. Having
βδ look at the set Bδ of all Borel sets from L coded in the submodel M [rα : α < βδ].
Then |Bδ| = ω1 because this submodel satisfies CH. As X /∈ L it is possible to find
βδ+1 > βδ such that for all B ∈ Bδ there exists α < βδ+1 such that xα /∈ B and
xα ∈M [rα : α < βδ+1]. Put Y = {xα : α < β} and M ′ = M [rα : α < β]. It follows
that Y ∈M ′ and M ′ |= Y /∈ L. But the complementary extension, from M ′ to N ,
is also by a measure algebra and it is known that it preserves the Lebesgue outer
measure. It follows that N |= Y /∈ L.

The above proof can be dualized for the Baire category.

Theorem 6.4. Let M be a transitive model of ZFC+CH. Add ω2 Cohen reals to
M (by product forcing). Then in the generic extension M [cα : α < ω2] there exists
a nontrivial L-almost invariant set but there are no nontrivial K-almost invariant
sets.

We don’t know any model where there are no nontrivial L-almost invariant sets or
nontrivial K-almost invariant sets. Surprisingly, in the iterated ω2 Sacks model we

3 This was also proved in [L] (see Theorem 8).
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have the same effect as in Corollary 6.2: there exists4 a set which is simultaneously
nontrivial L-almost invariant and nontrivial K-almost invariant. Namely, it follows
from the Covering Property Axiom (CPA; see [CP]) that there exists a Hamel
basis which consists of ω1 closed sets. It is possible then to repeat Sierpiński’s
construction.
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