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Abstract. In this paper we study efficiency of fundamental routing protocols in dis-
tributed systems assuming that communication between nodes can fail. Described and
analyzed models are applicable for wide class of systems built of small devices (like sen-
sors) with energetic constrains. We introduce s formal model and present rigorous analysis
of several basic strategies of an oblivious protocol. We show dramatic difference between
efficiency of seemingly similar strategies. Since the real-life systems usually consist of
moderate number of devices, presented analysis is not limited to asymptotic behavior (in
some cases trivial). Instead, where possible exact formulas are given.

We believe that presented results for basic protocols as well as the formal model can
be useful building blocks for analysis of other, more sophisticated strategies adjusted for
specific goals of a given system. In particular, for network of sensors working in an Ad Hoc
radio network in hostile environment which makes the communication channel unreliable.

1 Introduction

In this paper we investigae several basic strategies of transmitting information in a distributed
system with unreliable communication. The aim is to transmit a signal through the path of
intermediate nodes. However, any transmission may fail with some controlable probability de-
pendent on devoted amount of resources (usually energy). Motivated by the growing importance
of extremely constrained devices we restrict our attention to oblivious protocols - in particular,
we assume that devices do not send any acknowledgments confirming successful delivery of a
message. This assumption is supposed to catch that considered devices are very simple, working
in very hard conditions and their behaviour cannot be adjusted after the predeployment phase.

To provide a rigorous analysis of strategies first we introduce a formal model. We assume
that devices spread in an environment are logically sliced into disjoint and totally ordered layers.
This assumption contradicts the very common paradigm of random allocation of devices which
is absolutely unacceptable in most critical applications.

The main goal of the system is to transmit a signal (information) from the first layer to at
least one device in the last layer. Each device in a particular layer can transmit a signal only to
some specified devices in the next layer.

The transmission is successful (i.e. broadcast message is correctly received in the next layer)
with some fixed probability p. This parameter models the risk of failure of a transmission (caused
for instance by interference, impact of environment etc.) and is strongly dependent on the power
of the transmission signal. That is, the more power is used, the more probable a successful
transmission is.
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The problem is that in real world applications devices are powered by an unrechargeable
battery and thus algorithms should be as energy–efficient as possible. Therefore we are look-
ing for a practical trade–off between saving energy and probability of transmitting demanded
information.

In various scenarios a device located in the layer i may transmit to a subset of nodes in the
layer i+ 1. In settings with devices with directional antennae, the number of possible receivers
depends on the angle of transmitting.

Note that the wider the angle the smaller the power density per unit area under the same
Tx power. Thus designing more links between nodes requires higher energy consumption. Or
equivalently, with the wider angle, the range of broadcasting is shorter, which leads to necessity
of distributing more sensors.

In our paper we give an analysis of protocols for basic and most natural structures. However,
it can be also used for investigating more complex systems in order to improve their efficiency by
optimizing parameters. Note that presented results are true already for systems of very moderate
size, what makes them very practical.

In many cases we presented a very precise analysis of some parameters of investigated models,
in order to make it useful as a building block for other, possibly more complex systems. In such
a case very high precision is necessary, since even a very small factor in a single component may
have a significant influence on the overall system.

Some of presented results seems to be simple, however to the best of our knowledge they
cannot be proved (with such precision) in any simpler way. In particular they cannot be obtained
using any standard Cheroff-bound-type method.

1.1 Description of the Model

Let {Xi}i≥1 be a family of finite pairwise disjoint sets representing consecutive layers of devices.
Let V =

⋃
i≥1 Xi. We interpret elements of V as devices. Let E =

⋃
i≥1(Xi × Xi+1). We shall

use the graph (V,E) as an underlying geometric structure of the transmission of signals between
nodes.

Let T : E → [0, 1]. We interpert the number T (e) as the probability of a successful transmis-
sion of the signal from node x to node y, where e = (x, y). We call the triple TC = (V,E, T ) a
Transmission Channell.

Let (X(e))e∈E be a family of independent 0− 1 random variables such that Pr[X(e) = 1] =
T (e). This random variable models if the message is successfully transmitted over the edge e.
In this case we call the edge an active edge.

We define recursively a random variable Y : V → {0, 1} in the following way: Y (x) = 1
for all x ∈ X1 and Y (x) = max{Y (y) · X((y, x)) : y ∈ Xi} for x ∈ Xi+1. We say that a node
x is active if Y (x) = 1, what is interpreted as an event that the information was successfully
delivered to the node x. In other words, the node x is active if and only if there is a directed
path of active edges from any node in the first layer to the node x. Finally, we define the last
layer with an active node as:

L = min{i : (∀x ∈ Xi+1)(Y (x) = 0)} .

Our goal is to investigate the expected value E[L] of the random variable L for various Trans-
mission Channels.

In the model considered above the transmitted message may be transported through the net-
work in multiple copies. For some reasons (to be explained in the section 4) it is useful to consider
also protocols wherein the message is sent through exactly (possibly partially overlapping) paths.
In such case we define a transmission path in a transmission channel as a pl = (x(l)

1 , x
(l)
2 , . . . , x

(l)
n )

such that x(l)
i ∈ Xi. Usually there are more than one paths in the transmission channel.



1.2 Previous and Related Work

Randomization in the context of routing protocols for sensor networks has already appeared in
many papers. To the best of our knowledge, most of them aim at deliberate usage of randomiza-
tion in order to improve the efficiency (in terms of time and energy usage) of analyzed protocols.
In many cases they are particularly useful for ad hoc radio networks with huge number of devices
[15,16].

The last protocol, considered in the section 4 with random transmitting paths is similar
to idea of onion routing [10]. This paper, however, randomization of routing was a tool for
hiding information about communication patterns in order to provide privacy of users. Another
anonymity paper with sending a message in several copies is [11]. Of course there is also a long
list of distributed algorithms wherein randomization is used to determine the routing path to
improve communication. One of notable examples is the Valiant’s scheme [12]. There connections
have limited capacity and randomization is used to avoid their overloading. In that model
connections are reliable - i.e sent message is always delivered.

Described model resembles some of problems often met in reliability theory. On the other
hand some of the investigated processes can be seen as a model of a special kind of percola-
tion phenomenon (e.g. [3]). To the best of our knowledge, however, none of the results can be
directly applied as a usefull (non-asymptotic and precise) mathematical foundation for systems
of constrained devices.

1.3 Notations and Basic Facts

Let [k] = {1, . . . , k}. We denote by [[X]] a function equal 1 if the formula X is true and 0
otherwise (the indicator functions). If f and g are two real functions then we say that f(x) ∼ g(x)
if x → x0 if limx→x0 f(x)/g(x) = 1. By i we denote the imaginary unit and by <(z) we denote
the real part of the complex number z. We write [zn]f(x) = an if f(x) =

∑
aix

i

The harmonic number Hn is defined as Hn =
∑n
i=1 1/i. Let us recall that Hn = lnn+ γ +

O(1/n), where γ = 0.5772 . . . is the Euler-Mascheroni constant.
Random variable X has a geometric distribution with parameter p (X ∼ Geo(p)) if Pr[X =

a] = (1− p)a−1p for a = 1, 2, . . .. If X ∼ Geo(p) then E[X] = 1/p and var[X] = (1− p)/p.
By B(x, y) we denote the Euler beta function defined as B(x, y) = Γ (x)Γ (y)/Γ (x+ y). We

will use the fact that the function B(n+1, z) is analytic everywhere except for z = 0,−1,−2, . . .
and that its residue at z = −k is equal to (−1)k

(
n
k

)
.

2 Long Transmission Channel

Let us fix k ≥ 1 and let Xi = {1, . . . , k} × {i}. We call the structure ({Xi}i≥1, T ) a Long
Transmission Channell (LTC). In this section we shall discuss properties of two kinds of LTC:
the first one consists of independent lines and the second consists of fully dependent blocks.

2.1 Independent Lines

Let T ((x, i), (y, i + 1)) = p · [[x = y]]. We call the structure SLTCk,p = ({Xi}i≥1, T ) a Simple
Long Transmission Channell of width k. In the simplest case this structure may be a model of a
network of devices with directional antennas and very small transmission angle. Depending on
physical features such devices may have relatively long range of transmission for a fixed energy.
Moreover they are usefull in the radio networks with risk of interference between broadcasting
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Fig. 1. Simple long transmission channel

stations.

We begin our consideration with some facts about geometric distributions and harmonic
numbers. We give a precise formula for an extreme statistic (see e.g. [8]) for geometric distribu-
tion and later we prove an asymptotic of this formula for p tending to 1.

Lemma 1. Let X1, . . . , Xk be independent random variables with distribution Geo(p). Let Yk,p =
max{X1, . . . , Xk}. Then

E[Yk,p] =
k∑
i=1

(
k

i

)
(−1)i+1

1− qi
,

where q = 1− p.

Proof. Notice that for arbitrary a ≥ 1 we have Pr[Yk < a] = (Pr[X1 < a])k, therefore Pr[Yk ≥
a] = 1− (1− qa−1)k. Hence E[Yk] =

∑
a≥0(1− (1− qa)k). Let us fix A > 1. Then

A−1∑
a=0

(1− (1− qa)k) = A−
A−1∑
a=0

(1− qa)k =

A−
k∑
i=0

(
k

i

)A−1∑
a=0

(−1)iqai = −
k∑
i=1

(
k

i

)
(−1)i

A−1∑
a=0

qai =
k∑
i=1

(
k

i

)
(−1)i+1 1− qAi

1− qi
.

Therefore

E[Yk] = lim
A

k∑
i=1

(
k

i

)
(−1)i+1 1− qAi

1− qi
=

k∑
i=1

(
k

i

)
(−1)i+1

1− qi
.ut

Let us come back to the structure SLTCk,p. In this case all transmission goes independently
through lines {(i, 1), (i, 2), (i, 3), . . .}, where i ∈ [k]. Hence the random variable L

(S)
k denot-

ing the number of the last layer that received information, follows the same distribution as
max{Z1, . . . , Zk}, where Zi’s are independent and Zi ∼ Geo(1 − p). Therefore, from Lemma 1
we get

E[L(S)
k ] =

k∑
i=1

(
k

i

)
(−1)i+1

1− pi
.

From this formula we get the following equalities:

1. E[L(S)
1 ] = 1

1−p ,

2. E[L(S)
2 ] = 3

2
1

1−p −
1

2(1+p) ,

3. E[L(S)
3 ] = 11

6
1

1−p −
3

2(1+p) + 2+p
3(1+p+p2) .



We will establish now an alternative formula for E[L(S)
n ] for n > 2 and for fixed p < 1 which

allow us to obtain good approximations for arbitrary values of the parameter p.

Theorem 1. Suppose that n > 2 and 0 < p < 1. Then

E[L(S)
n ] =

1
2

+
Hn

log(1/p)
+

2
log(1/p)

∞∑
k=1

<
[
B
(
n+ 1,

2kπi
log(p)

)]
.

Proof. Let f(z) = 1
1−p−z be a complex function for z ∈ C. It is analytic except for zk = 2kπi

log(p) ,
k ∈ Z. If n > 2 then using S. O. Rice method (e.g. [13]) we get

n∑
k=1

(
n

k

)
(−1)k

1
1− qk

= −
∞∑

k=−∞

Res
z=zk

B(n+ 1, z)f(z) .

It is easy to check that

Res
z=zk

B(n+ 1, z)f(z) =

{
1
2 −

Hn
log(p) : k = 0 ,

B(n+ 1, zk) 1
log(p) : k 6= 0 ,

from which we get the required formula. ut

Directly from the definition of the Beta function we deduce that B(n+1, x) = (1+x/n)−1B(n, x).
Using this recurrence several times we get

B(n+ 1, x) =
1
x

n∏
a=1

1
1 + x

a

.

Therefore if n > 2 then∣∣∣∣∣
∞∑
k=1

B(n+ 1, zk)

∣∣∣∣∣ ≤
∞∑
k=1

1
|zk|

n∏
a=1

1
|1 + zk/a|

≤
∞∑
k=1

1
|zk|

1
|zk|

1
|zk/2|

=
∞∑
k=1

2
|zk|3

.

Let

rn =
2

log(1/p)

∞∑
k=1

<
[
B
(
n+ 1,

2kπi
log(p)

)]
.

Therefore for n > 2

|rn| ≤
4

log(1/p)

∞∑
k=1

| log p|3

(2πk)3
< 0.02| log p|2 .

Hence we get the following two corollaries:

Corollary 1. Suppose that n > 2 and 0 < p < 1. Then

E[L(S)
k ] =

1
2

+
Hk

log(1/p)
+ rk

where |rk| < 0.02| log(p)|2.

Corollary 2. If p→ 1 then

E[L(S)
k ] =

Hk

1− p
+

1
2

(1−Hk) +O(1− p) .



For n > 2 the last corollary follows directly from the previous one and for n ∈ {1, 2} it
follows from the explicate formulas for E[L(S)

k ]. The last corollary can be also deduced directly
from Lemma 1 and the classical equality

∑k
i=1

(
k
i

) (−1)i+1

i = Hk.

Let us formulate a special case of the previous corollary:

Corollary 3. If p = 1
2 then

E[L(S)
k ] = 1/2 +

1
ln 2

Hk + rk ,

where |rk| < 0.01.

Notice that 1/ ln 2 = 1.4427.... More precise calculus shows that in this case (p = 1
2 ) we have

|rk| < 0.0021 for all k > 2.

3 Fully Dependent Lines

Let T ((x, i), (y, i + 1)) = p. We call the structure FLTCk,p = ({Xi}i≥1, T ) a Full Long Trans-
mission Channell of width k. Such structure represents for example settings with directorial
antennas with wide range of broadcasting or can model the sensor networks deployed in long
channels (e.g. in the mines). By the analogy to previous sections, the random variable L

(F )
k

denotes the number of the last layer with an active node.
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Fig. 2. Symmetric long transmission channel

We may look on the routing in the transmission channel in this case as on the Markov chain
with states {0, 1, . . . , k}, where a state i denotes the event that precisely i nodes are active. The
probability of transitions are given by the formula

pa,b =
(
k

b

)
(1− qa)b(qa)k−b .

where, as usual, q = 1 − p. We shall show upper and lower bounds for the expected length
E[L(F )

k ] of the transmission range in this model.

Theorem 2.

E[L(F )
k ] ≤ 1

(2− qk)k

(
1
q

)k2

.

Proof. As before, let q = 1 − p be the probability that that the signal are not transmitted
between two particular vertices (x, i) and (y, i + 1) for i > 0 and x, y ∈ [k]. Let N in

x,i de-
notes an event that none of links entering the node on the level x in the time i is active.
i.e. N in

x,i =
⋂
y∈[k]{X((y, i− 1), (x, i)) = 0}. Similarly, Nout

x,i denotes the event that none of links



departing from x is active, i.e. Nout
x,i =

⋂
y∈[k]{X((x, i), (y, i+ 1)) = 0}. Let Nx,i = N in

x,i ∪Nout
x,i .

Noting that the the events that all links entering the x are not active and the event that all links
outcoming from x are not active are independent, one can easy see that Pr[Nx,i] = qk(2− qk).
Finally let us define Ni =

⋂
x∈[k]Nx,i - event, that in the i-the layer each node is cut-off from next

or previous layer. Since, Nx,i and Ny,i are independent for x 6= y, thus Pr[Ni] = qk
2
(2− qk)k.

r r r r

r r r r

r r r rj
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Fig. 3. Possible realization of N3 event

Observe that if the i-th layer is cut-off then L
(F )
k ≤ i, i.e. {L(F )

k > t} ⊂
⋂
i<tNi

′ and that
Ni
′ and Nj

′ are independent if |i− j| ≥ 2. Thus

Pr[L(F )
k > 2t] ≤ Pr

[⋂
i<2t

Ni
′

]
≤ Pr

 ⋂
i<2t,2|i

Ni
′

 = Pr[N1
′]t ≤ (1− qk

2
(2− qk)k)t.

From the above formula one can easily get that 2 · Lk is stochastically dominated by geometric
distribution with the success parameter qk

2
(2− qk)k. In particular

E[L(F )
k ] ≤ 1

2
E[Geo(qk

2
(2− qk)k)] =

1
2(2− qk)k

(
1
q

)k2

as stated in the theorem. ut

We shall use in next considerations the following simple but usefull lemma:

Lemma 2. Let (X(n)) be a Markov chain with a state space S, let A ⊆ S and let r > 0 be such
that

Pr[X(1) ∈ A|X(0) ∈ A] > r.

Let W = min{n : X(n) /∈ A}. Then

E[Wn|X(0) ∈ A] ≥ 1
1− r

.

Theorem 3.

E[L(F )
k ] >

1√
2

√
k

2k

(
1
q

) 1
4k(k+2) (

1 +O(qk/2)
)



Proof. We shall use in the proof the following inequality
(
n
k

)
≤ 2n/

√
n/2 which holds for all

n ≥ 1 and all k. Let us fix k ≥ 1 and let k∗ =
⌈
n
2

⌉
. Then for a fixed a we have∑

b<k∗

pa,b =
∑
b<k∗

(
k

b

)
qa(k−b)(1− qa)b <

∑
b<k∗

(
k

b

)
qa(k−b) <

√
2

2k√
k

∑
b<k∗

qa(k−b) =
√

2
2k√
k
qka

∑
b<k∗

(
1
qa

)b
<

√
2

2k√
k
qka

(
1
qa

)k∗
− 1

1
qa − 1

<
√

2
2k√
k
qka

(
1
q

)ak∗
1
qa − 1

=
√

2
2k√
k

qa(1+k−k
∗)

1− qa
.

Therefore, if a ≥ k∗ then∑
b<k∗

pa,b <
√

2
2k√
k

qa(1+k−k
∗)

1− qa
≤
√

2
2k√
k

qk
∗(1+k−k∗)

1− qk∗
.

It is easy to check that k∗(1 + k − k∗) ≥ 1
4k(k + 2) and k∗ ≥ k−1

2 for each k ≥ 1. Hence

∑
b<k∗

pa,b <
√

2
2k√
k

q
1
4k(k+2)

1− q(k−1)/2
.

Let A = {k∗, k∗ + 1, . . . , k}. From the above equation we get

Pr[X(1) ∈ A|X(0) ∈ A] > 1−
√

2
2k√
k

q
1
4k(k+2)

1− q(k−1)/2
,

hence from Lemma 2 we get

E[L(F )
k ] >

1√
2

√
k

2k
1− q(k−1)/2

q
1
4k(k+2)

=
1√
2

√
k

2k
1

q
1
4k(k+2)

(
1 +O(qk/2)

)
.

ut

Let us look once again at the Markov chain considered in this section. Notice that state 0
is absorbing one and that due to our assumptions state k is the initial state. Let Wa be the
expected time of a run from the state a to the absorbing state 0. Notice that E[L(F )

k ] = Wk. Let
Q = (pa,b)a,b∈[n] be the fundamental matrix of this Markov chain. Then

(Wa)a=1,...,n = (I −Q)−1[1, . . . , 1]T .

where I is the identity matrix of dimension k×k. This matrix can be computed explicitly using
symbolic calculation tools for small values of k. From this one can easily get

Theorem 4. For all k ≤ 6 and p→ 1

E[L(F )
k ] =

1
2k − 1

(
1
q

)k2

+
(

k

2k − 1

)2(1
q

)k2−1

+O

(
1
q

)k2−2

. (1)

These results are obviously consistent with bounds for E[L(F )
k ] from Theorems 2 and 3.

Moreover, confirmed by numerical expermiments, we state the following conjecture.

Conjecture 1. Equation 1 is true for all k ≥ 1.



Fig. 4. The plot of a sequence E[L(F )
k ]/2k(k−1) for fully dependent lines and p = 1

2

3.1 Special case p = 1
2

The hypothesis formulated by use of equation (1) deals with the case when p → 1. In order
to check the reliability of the fully dependent lines for interferences in a realistic but strongly
difficult conditions we calculate the numbers E[L(F )

k ] for p = 1
2 and for all k ≤ 50. The results

for k ≤ 7 are summarized in the following table:

k 1 2 3 4 5 6 7
E[L(F )

k ] 2 7 48.6806 1647.78 326 751 3.12466× 108 1.30655× 1012

At Fig. 4 we show the sequence E[Lk]/2k(k−1) for p = 1
2 for k ≤ 50. We can read from it

that for all values from this region and this figure suggests that limk→∞ E[L(F )
k ]/2k(k−1) = 1 for

p = 1
2 . We state the following conjecture:

Conjecture 2. If p = 1
2 then E[L(F )

k ] ∼ 2k(k−1).

3.2 Forking Propagation Strategy

In this subsection we consider an intermediate model that can be regarded as a hybrid of the
simple long transmission channel and the fully long transmission channel. The idea is simple.
There are k lines. Each station broadcasts to its successor in the same line and except that to
r neighboring nodes above and below (if exist). Thus, each node may have at most l = 2r + 1
successors. Note however that for example, nodes in the first line broadcast just to r+ 1 nodes.
More formally, let T ((x, i), (y, i + 1)) = p if and only if |x − y| ≤ r. Otherwise T (e) is set to 0.
We call the structure a l-Forking Long Transmission Channel ForkLTCl,k,p = ({Xi}i≥1, T ). We
assume that 2r + 1 = l ≤ k. Such model is a natural representation for devices with directorial
antennas with moderate angle of transmission or limited range allowing to reach only closer
nodes. Similarly as in previous sections L(Fork,l)

k denotes the number of the last layer with an
active node.

Theorem 5. Let k ≥ l.

E[L(Fork,l)
k ] ≤ 1

2k

(
1
q

)lk− 1
2 l

2+l− 1
4

The proof of this theorem is very similar to the proof of the Theorem 2.
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Fig. 5. 3-forking long transmission channel for for k = 3

4 Random Walk of Two Processes on k Fully Dependent Lines

In this section we consider the model wherein k transmission paths are passed through a fully
dependent lines. Let us fix a number n > 0 and let X1 = {(0, 1)}, Xi = {0, 1} × {i} for
i = 2, . . . , n− 1 and Xn = {(0, n)}. We define k transmission paths as a pl = (x(l)

1 , x
(l)
2 , . . . , x

(l)
n )

such that x(l)
i ∈R Xi for l ∈ [k]. That is, hops in consecutive layers are chosen uniformly at

random. To model such a system we simply assume that T ((x, y)) = 0 for every pair (x, y) that
is not a subsequence of any transmission path. Otherwise, T ((x, y)) = p. Let us consider the
structure MTCn = ((Xi)i∈[k], T ). Similarly as in previous subsections let L(2,i)

k denotes the last
layer with an active node.
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Fig. 6. Symmetric long transmission channel

Theorem 6. Let n ≥ 2. Then there are 4n−1 pairs of routes from the root (0, 1) to the sink
(0, n). The expected number of common hops C(2,i)

n,k in a random pair of routes of length n is
1
4n+ 1

2 .

Proof. When two packages are transmitted through the structure MTCn then at each step there
are four possible positions for the packages: both of them are at the lower strip (we denote this
situation by 00), both of them are at the upper strip (we denote this situation by 11) and there
are two other possibilities, marked by 01 and 10 when they are at different strips. Let Lxy denote
the combinatorial class of all paths starting from xy. We weight these classes by the length of
path and we add one additional norm measuring the number of hops through the same edge
of the graph. We consider the simple generating functions Lxy(z, u) for this class, where z is a
variable marking the length of the path and u is used for counting the number of common hops.
Then we have:

L00 = 1 + zuL00 + zL01 + zuL11 + zL10,
L10 = zL10 + zL00 + zL11 + zL01,
L01 = zL01 + zL00 + zL11 + zL10,
L11 = zuL11 + zuL00 + zL10 + zL01

After solving this system of linear equations, extracting [zn]L00(z, 1) and [zn]∂L00(z,u)
∂u |u=1 (see

e.g. [14]) we obtain required results. ut



Theorem 7. E[L(2,i)
2 ] = 11

8
1

1−p −
3
8

1
1+p

Proof. The result is a consequence of Theorem 6 and formulas for L1 and L2 from Sec. 2.1. ut

Let us now discuss impact of extending the approach described above to the model with
k ≥ 2 fully dependent lines. More exactly, we investigate expectation of L(2,i)

k i.e. the maximal
number of layers that is reached by at least of two independently sent processes on the structure
of fully depend channel. We show that increasing the parameter k does not help much.

Theorem 8.

11
8

1
1− p

− 3
8

1
1 + p

= E[L(2,i)
2 ] ≤ E[L(2,i)

3 ] ≤ . . . ≤ E[L(S)
2 ] =

3
2

1
1− p

− 1
2(1 + p)

.

Proof. First, let us note that probability of having an active node in the n-th layer depends
only on the number of common edges chosen by both processes before reaching the n-th layer.
Moreover, one can easily see that we can assume that the first process is streamed through
first (upper) strip and the second (called a free process) is independent - it does not change
distribution of number of common edges. Indeed, we just cyclically shift both nodes chosen in
consecutive layers. In such representation, the number of common edges in the system with
k+ 1 nodes in each layer is stochastically dominated by number of common edges in the system
with k nodes in each layer. More precisely, one easy see that the free process can be identified
with the sequence of numbers from [k] (or [k + 1] respectively) representing the chosen nodes
in consecutive layers. The free process uses the same edge as the first process in the i-th step
if and only if the free process is represented by two consecutive 1’s in the i-th and the i+ 1-th
positions. Now, applying a standard coupling argument we get the stochastic domination. ut

Note that for practical values (p > 1/2) Theorem 8 means that extending parameter k does
not improve substantially the reliability of the considered system.

5 Summary and Open Problems

We showed in this paper a very big difference between transmission by independent k lines and
fully dependent k lines in a hostile environment: in the first case the expected length of the
transmission is Hk/ log(1/p) and in the second one we get a range of order 2−k(1/(1−p))k2

. We
also check basic properties of a number of other intermediate models.

We believe that presented analysis may be used as a building block for careful investigation
of other, more complex systems. From practical point of view, it seems to be very important to
analyze the case wherein different connections may fail with different probabilities (e.g accord-
ing to different physical distances between nodes). However, such analysis as well as creating a
realistic model seem to be hard. Our result can also be applied to evaluate reliability some other
protocols – including schemes providing anonymous communication (e.g [11])

There are a lot of problems connected with models investigated in this paper such as: does
the conjectures 1 and 2 are true?; what is the variance of considered random variables?; what
are the limit distributions of adequately standardized considered variables?



References

1. Arnold, B., Balakrishnan, N., Nagaraja, H.: A First Course in Order Statistics. John Wiley & Sons,
New York (1992)

2. Cai, Z., Lu, M., Wang, X.: Distributed initialization algorithms for single-hop ad hoc networks with
minislotted carrier sensing. IEEE Trans. Parallel Distrib. Syst. 14(5) (2003) 516–528

3. Bollobás B., Riordan. O.: Cambridge University Press, 2006
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