
Random Subsets of the Interval and P2P
Protocols ?

Jacek Cichoń, Marek Klonowski, Lukasz Krzywiecki, Bart lomiej Różański, and
Pawe l Zieliński

Institute of Mathematics and Computer Science
Wroc law University of Technology

Poland
{Jacek.Cichon, Marek.Klonowski, Lukasz.Krzywiecki,

Pawel.Zielinski}@pwr.wroc.pl

Abstract. In this paper we compare two methods for generating finite
families of random subsets according to some sequence of independent
random variables ζ1, . . . , ζn distributed uniformly over the interval [0, 1].
The first method called uniform split uses ζi values straightforwardly to
determine points of division of [0, 1] into subintervals. The second method
called binary split uses ζi only to perform subsequent divisions of already
existing subintervals into exact halves. We show that the variance of
lengthes of obtained intervals in the first method is approximately 1

n2

and that the variance of lengthes of obtained intervals in the second
method is approximately 1

n2 (1
ln 2

− 1).

The uniform split is used in the Chord peer-to-peer protocol while the
binary split is used in the CAN protocol. Therefore our analysis applies to
this protocols and shows that CAN has a better probabilistic properties
than Chord. We propose also a simple modification of the Chord protocol
which improves its statistical properties.

1 Introduction

We investigate the problem of splitting a given interval into a finite number of
nonoverlapping subintervals that appears in some peer-to-peer protocols. Split-
ting is done according to a sequence of random values ζ1, . . . , ζn distributed
uniformly in [0, 1], and some fixed split method.

In this paper we present an analysis of two split methods. The first among
them is rather straightforward. The family of subintervals is composed of all
nonoverlapping intervals defined by the set {0, 1} ∪ {ζ1, . . . , ζn}. This method
corresponds to the sequential splitting by adding points – for a new point ζi we
select an interval (ζj , ζk] such that ζj < ζi ≤ ζk and divide it into two parts:
(ζj , ζi] and (ζi, ζk]. We call this method uniform split. It is well known that this
method has significant flaws in terms of subset length uniformity. Note that the

? Partially supported by the EU within the 6th Framework Programme under contract
001907 (DELIS).

uniform split corresponds to the process of adding a nodes in the Chord peer-
to-peer protocol (see [1] and [2]). It is well known, and our calculation confirms
this fact, that the capacity of Chord nodes’ areas (intervals) is a random variable
with large variation. Now let us recall that amount of data and the number of
requests passed via node in Chord is proportional to the length of its area. Hence,
large variation of area size introduces a discrepancy between nodes’ workload.

The second method called binary split is based on the following idea: if ζi

values are used only to determine which existing interval is to be split, the
splitting point is chosen always in the middle of selected interval. We show in
Section 2 that the uniformity of interval lengths is significantly better than in the
uniform split case. Binary split corresponds to a sequential process where each
ζi determines an existing interval to split in two halves. The process starts with
whole interval [0, 1]. ζ1 obviously splits it into [0, 0.5] and (0.5, 1], but ζ2 may
either make it [0, 0.25], (0.25, 0.5] and (0.5, 1] or [0, 0.5], (0.5, 0.75] and (0.75, 1]–
depending on which initial interval ζ2 falls in; and so on for all ζi for 1 < i ≤ n.
The resulting family consists of n+1 nonoverlapping intervals with lengths from
the set { 1

2k : k ≤ n + 1}. The binary split corresponds to the process of adding
nodes in CAN peer-to-peer protocol (see [3]). In the last section of this paper
we shall propose a small modification of the classical Chord protocol which is
based on the binary split and which has better probabilistic properties than the
original one.

The authors wish to express thanks to referees for their helpful suggestions
concerning the presentation of this paper.

1.1 Notation

We denote the real numbers and integers by R and Z, respectively. Let X be a
random variable. We denote its expected value, variance and standard deviation
by E [X], var[X] and std[X], respectively.

Let f be a complex function. We denote the residuum of the function f(z)
at the point a by Res [f(z)|z = a] (see [4]). The imaginary unit is denoted by i,
the real and imaginary parts of the complex number z are denoted by <(z) and
=(z), respectively.

1.2 Arbitrary Split Method

Let Pn be any randomized method of generating a random set of n points
from the interval [0, 1]. The set Pn(ω) defines a sequence (xPn(ω)

1 , . . . , x
Pn(ω)
n+1)

of lengths of consecutive intervals. By definition x
Pn(ω)
1 + . . .+x

Pn(ω)
n+1 = 1, hence

1
n+1 (xPn(ω)

1 + . . . + x
Pn(ω)
n+1) = 1

n+1 . Let

var[Pn] = E

[
1

n + 1

n+1∑
i=1

(xPn
i − 1

n + 1
)2
]

and std[Pn] =
√

var[Pn]. We may treat the number std[Pn] as a measure
of non-uniformity of distribution of points from a random set of cardinality n
generated by process Pn. It is easy to check that

var[P] =
1

n + 1

(
E

[
n+1∑
i=1

(xPn
i)2

]
− 1

n + 1

)
. (1)

Let us fix some subset a = {a1, . . . , an} of [0, 1], and let us now choose some
random point ζ ∈ [0, 1] according to the uniform distribution in [0, 1]. Then there
exists an unique subinterval I generated by points of a such that ζ ∈ I. We call
this interval a randomly uniformly chosen interval. Let us recall the following
basic fact:

Theorem 1. Let Pn be an arbitrary method of generation of a random subset
{a1, . . . , an} of the interval [0, 1] . Then the number

ELRI[Pn] = E

[
n+1∑
i=1

(xPi)2
]

(2)

is the expected value of the length of randomly chosen interval.

Proof. Let I1(ω), . . . In+1(ω) be the sequence of intervals generated by the set
P(ω). Let ζ be a random number from the uniform distribution on [0, 1] and let
L(ω, ζ) be the length of this interval Ii(ω) that ζ ∈ Ii(ω). Then we have

ELRI[Pn] =
∫

Ω×[0,1]

L(ω, x)(dP × dλ)(ω, x) =

=
∫

Ω

(∫ 1

0

L(ω, x)dx

)
dP (ω) =

∫
Ω

(
n+1∑
i=1

|Ii(ω)| · Pr(x ∈ Ii(ω))

)
dP (ω) =

∫
Ω

(
n+1∑
i=1

|Ii(ω)|2
)

dP (ω) = E

[
n+1∑
i=0

(xPi)2
]

.

ut

1.3 The Uniform Split

Let us consider a sequence X1, . . . , Xn of independent uniformly distributed in
[0, 1] random variables. They generate a random subset {X1, . . . , Xn} of the
interval [0, 1] and we denote this method by unifn and call it uniform split (see
[5]). The set {X1, . . . , Xn} induces a partition of [0, 1] into n subintervals whose
lengths, taken in proper order, will be denoted by x1, . . . , xn+1. Then for any
t1 ≥ 0, . . . , tn+1 ≥ 0 we have

Pr(x1 ≥ t1, . . . , xn+1 ≥ tn+1) = (1− (t1 + . . . + tn+1))n
+ , (3)

where (a)+ = max{a, 0} (see Feller [6]).

Let us consider the random variable x1, i.e. the length of the first interval.
From equation (3) we see that Pr(x1 ≥ t) = (1− t)n for t ∈ [0, 1]. Therefore the
density of the variable x1 equals ϕ(t) = (1− (1− t)n)′ = n(1− t)n−1. Notice also
that the remaining variables x2, . . . , xn+1 have the same density as x1.

Theorem 2. ELRI[unifn] = 2
n+2

Proof. The result follows from the following direct calculations:

ELRI[unifn] = E

[
n+1∑
i=1

x2
i

]
= (n + 1)E

[
x2

1

]
= (n + 1)

∫ 1

0

x2ϕ(x)dx =

(n + 1)n
∫ 1

0

x2(1− x)n−1dx =
2

n + 2
.

ut

Remark 1. We used the identity
∫ 1

0
x2(1 − x)n−1dx = 2

n(n+1)(n+2) which can
be proved by induction on n or can be evaluated by the use of the Euler beta
function

∫ 1

0
xa−1(1− x)b−1dx = Γ (b)Γ (b)

Γ (a+b) .

From Theorem 1, Theorem 2 and Equation (1) we get:

Corollary 1. var[unifn] = n
(1+n)2(2+n) .

2 The Binary Split

Let us fix a natural number n. Let us consider the following method of generation
of a random subset of [0, 1] of cardinality n. We start from an empty set of points.
Suppose we already have set Ak of points from [0, 1] and a new point ak+1 is to
be added. We choose a random point y ∈ [0, 1] and select an interval I generated
by points from the set Ak such that y ∈ I. Then we define ak+1 as the the middle
point of the interval I and put Ak+1 = Ak∪{ak+1}. We stop this process after n
steps. We call this method the binary split and we denote this method by binn.

Our goal is to calculate the value of var[binn]. Let us start with putting
f0 = 1 and fn = ELRI[binn] for n > 0.

Lemma 1. For all n ∈ N we have

fn+1 =
1

2n+1

n∑
k=0

(
n

k

)
fk . (4)

Proof. Let us consider the sequence (ξ1, . . . , ξn, ξn+1) of independent random
variables uniformly distributed in the interval [0, 1] defined on a probabilistic
space Ω and let ω ∈ Ω. At the beginning the number ξ1(ω) splits [0, 1] into two
equal parts: [0, 0.5] and (0.5, 1]. Let us now define A = {i > 1 : ξi(ω) ≤ 0.5}
and B = {i > 1 : ξi(ω) > 0.5}. Then the variables {ξi : i ∈ A} can only split

the [0, 0.5] interval while variables from the set {ξi : i ∈ B} can only split the
(0.5, 1]. Note that {2ξi : i ∈ A} split the interval [0, 1], hence E[(2ξi)i∈A] = f|A|.
A similar observation is true for the sequence (2ξi − 1)i∈B . Therefore we have

fn+1 =
∑

A⊆{2,...,n+1}

(
1
4
f|A| +

1
4
f|B|

)(
1
2

)n

=

=
1

2n+2

n∑
k=0

(
n

k

)
(fk + fn−k) =

1
2n+1

n∑
k=0

(
n

k

)
fk .

ut

Let

Ln =
∞∏

j=n

(1− 1
2j

) .

It is easy to calculate that L1 ' 0.2888 and easy estimations shows that the
inequalities 1 − 4

2n < Ln < 1 − 1
2n holds for each n ≥ 1. We shall express

numbers fn in terms of numbers Ln.

Lemma 2. fn =
∑

m≥0(1
2)m(1− (1

2)m)nLm+1 .

Proof. Let us consider the exponential generating function

x(t) =
∑
n≥0

fn
tn

n!

of the sequence (fn)n≥0. From equation (4) we get

x′(t) =
∑
n≥0

fn+1
tn

n!
=
∑
n≥0

1
2n+1

n∑
k=0

(
n

k

)
fk

tn

n!
= (5)

1
2

∑
n≥0

(
n∑

k=0

(
n

k

)
fk

)
(t/2)n

n!
, (6)

hence the function x(t) satisfies the following functional equation

2x′(2t) = x(t)et ,

i.e. x′(t) = 1
2x(t

2)e
t
2 . If we put X(t) = x(t)e−t then we obtain a slightly simpler

equation

X ′(t) =
1
2
X

(
t

2

)
−X(t) .

which can be solved explicitly. Namely we have

X(t) =
∑
n≥0

tn

n!
(−1)n

n∏
k=1

(
1−

(
1
2

)k
)

.

Since x(t) = X(t)et we obtain

fn =
n∑

k=0

(
n

k

)
(−1)k

k∏
j=1

(
1−

(
1
2

)j
)

.

The above formula is hard to be calculated accurately because it contains
large coefficients with alternating signs. Therefore we need to transform it into
a more suitable form. We put into the Euler partition formula (see [7])

∞∏
k=0

1
1− qkz

=
∑
n≥0

zn∏n
k=1(1− qk)

values z = qa+1 and q = 1
2 , and get

1∏∞
k=a+1(1− (1

2)k)
=
∑
n≥0

(1
2)(a+1)n∏n

k=1(1− (1
2)k)

.

After multiplying both sides of this equality by L1 we get
a∏

j=1

(
1− 1

2j

)
=
∑
n≥0

(
1
2

)(a+1)n

Ln+1 .

and hence we obtain

fn =
n∑

k=0

(
n

k

)
(−1)k

∑
m≥0

(
1
2

)(k+1)m

Lm+1 =

=
∑
m≥0

Lm+1

(
1
2

)m n∑
k=0

(
n

k

)
(−1)k

((
1
2

)m)k

=

=
∑
m≥0

(
1
2

)m(
1−

(
1
2

)m)n

Lm+1 ,

which proves the lemma. ut

Remark 2. From Lemma 2 we may deduce that fn+1 < fn for each n.

Let us consider now the following function

ϕn(x) =
(

1
2

)x(
1−

(
1
2

)x)n

defined on the interval [0,∞). The function ϕn has the global maximum at point
log2(n+1) and ϕn(log2(n+1)) = 1

ne +o(1
n). Notice that

∑
m≥0(1

2)m(1−(1
2)m)n =∑

m≥0 ϕn(m). Moreover,
∫∞
0

ϕn(x)dx = 1
(1+n) ln 2 . From these observations we

deduce that ∑
m≥0

(
1
2

)m(1− (
1
2

)m)n = O(
1
n

) . (7)

Lemma 3. fn =
∑

m≥0
1

2m (1− 1
2m)n + o(1

n).

Proof. The proof is done by a simple estimation. Let us first show the following
approximation

log2
√

n∑
m=0

1
2m

(1− 1
2m

)n = o(
1
n

) .

This fact follows immediately from monotonicity of the function ϕn on the in-
terval [0, log(n + 1)]. Namely,

ϕn(log2

√
n) <

1
√

ne
√

n
,

so
log2

√
n∑

m=0

1
2m

(1− 1
2m

)n ≤ log2

√
n

√
ne
√

n
≤ 1

e
√

n

and 1
e
√

n = o(1
n).

Observe that if k > log2

√
n then Lk > 1− 4√

n
, so we have

(1− 4√
n

)
∑

m>log2
√

n

1
2m

(1− 1
2m

)n ≤
∑

m>log2
√

n

1
2m

(1− 1
2m

)nLm+1

and from equation (7) we obtain∣∣∣∣∣∣
∑

m>log2
√

n

1
2m

(1− 1
2m

)n −
∑

m>log2
√

n

1
2m

(1− 1
2m

)nLm+1

∣∣∣∣∣∣ ≤ C

n
√

n
= o(

1
n

) ,

which proves the lemma. ut

Lemma 4.
∑

k≥0
1
2k (1− 1

2k)n =
∑n

k=0

(
n
k

)
(−1)k 1

1−(1
2)1+k

Proof. The proof follows from following transformations:∑
k≥0

1
2k

(1− 1
2k

)n =
∑
k≥0

(
1
2k

)
n∑

l=0

(
n

l

)
(−1)l 1

2kl
=

n∑
l=0

(
n

l

)
(−1)l

∑
k≥0

(
1
2

)kl+k =
n∑

l=0

(
n

l

)
(−1)l 1

1− (1
2)1+l

.

ut

Theorem 3. The sequence fn satisfies

fn =
1

n + 1

(
1

ln 2
+ ω(log2(n + 1)) + η(n)

)
+ O(

1
n2

) ,

where ω is a periodic function with period 1 such that |ω(x)| < 1.42602 · 10−5

and |η(x)| < 6.72 · 10−11.

In the proof of this theorem we use a method of the treatment of oscillating
sums attributed to S.O. Rice by D.E. Knuth (see [7]).

Proof. Let us, for simplicity, denote

sn =
n∑

k=0

(
n

k

)
(−1)k 1

1− (1
2)1+k

and let us consider the following function

f(z) =
1

1− (1
2)1−z

with complex argument z. Then f is a meromorphic function with single poles
at points

zk = 1 +
2πk

ln 2
i ,

where k ∈ Z, i is the imaginary unit and

sn =
n∑

k=0

(
n

k

)
(−1)kf(−k) .

Let B(x, y) = Γ (x)Γ (y)/Γ (x + y) be the Euler beta function. The function
B(n + 1, z) has single poles at points 0,−1, . . . ,−n and

Res [B(n + 1, z)|z = −k] = (−1)k

(
n

k

)
.

(see [7] for details). Notice that the function f is holomorphic on the half-plane
<(z) < 0.5. Therefore

sn =
n∑

k=0

Res [B(n + 1, z)f(z)|z = −k] . (8)

Let us consider a big rectangle Ck with end-point ±k±(2k+1)πi/ ln 2, where
k is a natural number. It is quite easy to check that

lim
k→∞

∮
Ck

B(n + 1, z)f(z)dz = 0

(in proof of this fact the equality f(1 + (2k + 1)πi/ ln 2) = 1/2 plays a crucial
role). Therefore, using Cauchy Residue Theorem (see [4]), we get

sn = −
∑

{Res [B(n + 1, z)f(z)|z = zk] : k ∈ Z} . (9)

Further, it can be easily checked that

Res [B(n + 1, z)f(z)|z = 1] = − 1
(n + 1) ln 2

. (10)

-

6

ss
ss
ss
ss
ss
ss
ss
ss
s

s s s s s

�

? -

6

1

11·π
ln 2 i

Fig. 1. Singular points of the function B(4, z)f(z) and the contour of integration C5

This first residue gives us the first part of the approximation of the number sn.
Generally, we have

Res [B(n + 1, z)f(z)|z = zk] = −
Γ (1 + n)Γ (1 + 2kπi

ln 2)
Γ (2 + n + 2kπi

ln 2) ln 2
.

Notice that if x ∈ R then∣∣∣∣Γ (n + 1)Γ (1 + ix)
Γ (2 + n + ix)

∣∣∣∣ =
n!√

(12 + x2)(22 + x2) · · · ((n + 1)2 + x2)
≤

1
n + 1

· 1√
(1 + x2

12)(1 + x2

22) · · · (1 + x2

n2)
.

Let a = 2π
ln 2 . It can be checked numerically that

∞∑
k=2

1√∏100
m=1(1 + (ka/m)2)

≈ 2.32781 · 10−11 .

Therefore

|
∑

{Res [B(n + 1, z)f(z)|z = zk] : |k| ≥ 2}| ≤ 6.72 · 10−11

n + 1
(11)

for all n ≥ 100. Next, we use the following well known approximation formula

Γ (z + a)
Γ (z + b)

= za−b

(
1 +

(a− b)(a + b− 1)
2z

+ O(
1
z2

)
)

,

which holds when |z| → ∞ and | arg(z + a)| < π to expressions

Γ (1 + n)
Γ (1 + n + 1± 2πi

ln 2)
,

and we obtain

Γ (1 + n)
Γ (1 + n + 1± 2πi

ln 2)
=

(2π2 + iπ ln 2 + (n + 1) ln2 2)
(

cos 2πi ln(n+1)
ln 2 ∓ i sin 2πi ln(n+1)

ln 2

)
(n + 1)2 ln2 2

+ O(
1
n2

) .

After noticing that Γ (1± 2πi
ln 2) ≈ 3.1766 · 10−6∓ 3.7861 · 10−6 · i and some simple

calculations we finally get∑
{Res [B(n + 1, z)f(z)|z = zk] : |k| = 1} = (12)

10−6

n + 1
(a · cos(2π log2(n + 1))− b · sin(2π log2(n + 1))) + O(

1
n2

) ,

where a ≈ 9.166 and b ≈ 10.924. Putting together Equations (9), (10), (11) and
(12) we obtain the thesis of the theorem. ut

From the last Theorem and Equation (1) we obtain

Corollary 2.

var[binn] =
1

(n + 1)2

(
1

ln 2
− 1 + ω(log2(n + 1)) + η(n)

)
+ O(

1
n3

) ,

where ω and η are the function from Theorem 3.

Notice that 1
ln 2 − 1 ≈ 0.4427, therefore std[binn] ≈ 0.665

n , hence std[binn] is
significantly smaller than the value std[unifn] ≈ 1

n (see Corollary 1). From this
we conclude that the binary split process generates a more uniform distribution
of random points in the interval [0, 1] than the uniform one.

Remark 3. The main influence on the asymptotic behavior of the sequence (fn)
is played by the three main poles of the function f(z) = (1− (1

2)1−z)−1: z0 = 1,
z1 = 1 + 2πi

ln 2 and z−1 = 1− 2πi
ln 2 . The first one, located at point 1, is responsible

for the component 1
(n+1) ln 2 . The next two poles are responsible for relatively

small oscillations of the sequence fn. The size of oscillations is relatively small
because =(1 + 2πi/ ln 2) ≈ 10 and the function Γ decreases rapidly when the
imaginary part of a number grows.

Remark 4. Some aspects of the binary split model, namely the properties of the
length of the first node, were investigated P. Flajolet (see [8]) and later by P.
Kirchenhofer and H. Prodinger (see [9]) in their analyses of properties of the R.
Morris probabilistic counter (see [10]). In their investigations a fluctuation factor
of the form ω(log2 n) appears, too.

3 Discussion

Let Pn be any randomized method of generating random subsets of interval [0, 1]
of cardinality n. Let

CV[Pn] =
std[Pn]
E [Pn]

denotes the coefficient of variation of Pn. The number CV[Pn] is a measure of
dispersion of lengths of intervals generated by the method Pn. We have proved
that CV[unifn] ' 1 and CV[binn] ' 0.665. Therefore the random subsets gen-
erated by the binary split methods has smaller dispersion than subsets generated
by the uniform method.

The length of intervals in the uniform split with n elements varies between
1

n2 and ln(n)
n . To be more precise let us consider the following two random vari-

ables min(Pn) = min{xPn
i , . . . , xPn

n+1}, max(Pn) = max{xPn
i , . . . , xPn

n+1}. It fol-
lows almost directly from Equation (3) that E [min(unifn)] = 1

n2 . Moreover
E [max(unifn)] ∼ ln n

n + γ
n (see [11]). These observations were done by several

authors working with P2P protocols–see e.g. [12].
Let mo = M0 = 1 and mn = E [min(binn)] and Mn = E [max(binn)] for

n > 0. Using similar arguments as in Lemma 1 we may show that

mn+1 =
1

2n+1

n∑
i=0

(
n

i

)
min(mi,mn−i) ,

Mn+1 =
1

2n+1

n∑
i=0

(
n

i

)
max(Mi,Mn−i) .

Numerical calculations show that 0.4
ln ln n

1
n ≤ mn < Mn ≤ 2.2 ln ln n

n for each n ≥ 5,
however we do not have a precise mathematical proof of this fact. This shows
that the length of intervals in the binary split is much better concentrated near
its medium value 1

n than in the uniform split.

4 Conclusions

Our mathematical analysis was motivated by the problems arising in in computer
science. It is well known that the capacity of Chord (see [1] and [2]) nodes’ areas
(intervals) is a random variable with large variation. Our calculation of σ(unifn)
confirms this fact. Now let us recall that amount of data and number of requests
passed via node in Chord is proportional to the length of its area. Hence, large
variation of area size introduces a discrepancy between nodes’ workload.

This problem can be partially solved by a very simple modification of the
original Chord protocol. The modification is based on binary split method which
can be easily embedded into Chord’s protocol. Namely, we need to modify only
one of Chord’s procedure, namely the procedure join. The original ,,join” proce-
dure accepts a new node at an arbitrarily chosen position ζi. In the modification

we can use ζi only to determine which interval the new node P will split upon
arrival. Then the target interval is slitted into two halves and the node currently
responsible for the interval will keep roughly half of the resources and P takes
over the responsibility for the rest. In other words, instead of using random
protocol address, the new node randomly and uniformly picks an interval and
joins the Chord protocol precisely in the middle of this interval. The method de-
scribed above can be treated as Chord protocol with a one dimensional CAN’s
split method (see [3]).

We propose the modification of the Chord protocol only in one point, namely
in the ,,join” procedure. In reality Chord is a dynamic structure; nodes both leave
and join the network. It is possible to modify the structure of remaining nodes
after a single node leaves the system in such a way that after this modification
we shall obtain a division generated by the binary split method, however, this
is a quite complicated procedure. Our proposition is to ignore this fact.

We have made a lot of numerical experiments for checking what happens
when we use the binary split only in the ,,join” procedure. Figure 2 contains a
summary of one experiment. In this experiment we have build a Chord structure

0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps T = 1 ... 300 000

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Fig. 2. Experiment with 105 nodes

based on the binary split method with 105 nodes and later we successively re-

moved one randomly chosen node in the ,,normal way” and add one node using
the binary split regime 2 · 105 times. We observed that afer the initialization
phase the variable CV[P] increase, but later its value stabilize and in the stable
regime we have CV[P] ≈ 0.85. This coefficient of variation is bigger than the
coefficient of variation of the binary split but it is less than the coefficient of
variation of the uniform split. However, this behavior requires and still awaits
for precise theoretical explanation.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the ACM SIGCOMM ’01 Conference, San Diego, California, USA (2001)

2. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: 21st ACM Symposium on Principles of Distributed Computing
(PODC), Monterey, CA (2002)

3. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proceedings of the ACM SIGCOMM ’01 Conference, San
Diego, California, USA (2001)

4. Cartan, H.: Elementary Theory of Analytic Functions of One or Several Complex
Variables. Herman, Paris (1973)

5. Kopociński, B.: A random split of the interval [0, 1]. Aplicationes Mathematicae
31 (2004) 97–106

6. Feller, W.: An Introduction to Probability Theory and Its Applications. Volume II.
John Wiley and Sons Inc, New York (1965)

7. Knuth, D.E.: Sorting and Searching. Third edn. Volume 3 of The art of computer
programming. Addison-Wesley, Reading, Massachusetts (1997)

8. Flajolet, P.: Approximate counting: A detailed analysis. BIT 25 (1985) 113–134
9. Kirschenhofer, P., Prodinger, H.: Approximate counting: an alternative approach.

Informatique Theorique et Applications 25 (1991) 43–48
10. Morris, R.: Counting large numbers of events in small registers. Communications

of The ACM 21 (1978) 161–172
11. Devroye, L.: Laws of the iterated logarithm for order statistics of uniform spacings.

The Annals of Probability 9(5) (1981) 860–867
12. King, V., Saia, J.: Choosing a random peer. In: Proceedings of the 23rd Annual

ACM Symposium on Principles of Distributed Computing. (2004) 125–130

