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Abstract. We consider the problem of efficient alarm protocol for ad-hoc radio
networks consisting of devices that try to gain access for transmission through
a shared radio communication channel. The problem arise in tasks that sensors
have to quickly inform the target user about an alert situation such as presence of
fire, dangerous radiation, seismic vibrations, and more. In this paper, we show a
protocol which uses O(logn) time slots and show that Ω(logn/ log log n) is a
lower bound for used time slots.
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1 Introduction

We consider wireless sensor networks (WSNs) consisting of small progra-
mmable devices equipped with radio-enabled sensing capabilities and have been
applied in information gathering ranging from the environment temperature, ra-
diation, the presence of fire, seismic vibrations, and more. WSNs compared with
wired networks provide many advantages in deployment, cost and size. Wireless
technology enables users to set up a network quickly, more it enables them to set
up a network where it is inconvenient or impossible to wire cables. Moreover,
common WSNs can consist of up to several hundreds of those small devices.

The most straightforward application of a WSN is to monitor remote or
hostile environments. For example, a remote forest area can be monitored by
deploying hundreds of sensors that configure themselves to form a network and
immediately report upon detection of any event such as fire. Moreover, such
networks can be easily extended by simply adding more devices without any
rework or complex reconfiguration. The sensor nodes can ideally run for over a
year on a single set of batteries. Given the cost of these sensor nodes, it is not
feasible to discard dead sensor nodes, and it is also not possible to replace the
batteries on these sensor nodes. Hence, there is a great need for energy-efficient
protocols that can greatly reduce power consumption and increase the lifetime
of wireless sensor nodes.

In this paper, we address the problem of designing protocol for an alert
situation observed by the sensor nodes in a WSN and sending this information



toward the sink that acts as a collector and an interface to the external world.
The traffic is usually forwarded over multi-hops, that is, each node acts as a
relay/router for some nodes farther away to the sink. However, in this paper
we restrict our attention to a quarter size sensors e.g. MICA2DOT. We even
assume that such sensors cannot listen to the channel or receive messages of
any kind, also they have a very limited energy supply. Due to this restriction
sensors are incapable of forwarding messages. Therefore, we have to assume
that the network of such sensors is single-hop or we have two classes of wireless
sensors; the first class of sensors are devices equipped with full communication
features such as receiving, sending and forwarding messages, and the second
class of sensors are our very weak tiny devices, capable only of sensing and
sending information in a single-hop fashion. For the first class of sensors, which
is the backbone of the network, we can use well known convergecast algorithms
[?,?,?,?,?] as for the second class we present algorithms in this paper.

In Section 3 we shall consider a sequence p = ((1
2)i)i=0,...,L of probabili-

ties of length L = log2(n) + 1, where n denote the number of sensors and we
assume that at ith slot stations try to transmit with probability (1

2)i. Let SCCn,k

denotes the event of the successful transmission when k ∈ {1, . . . , n} stations
are activated and let Pr[SCCn] = min{Pr[SCCn,k] : k = 1, . . . , n}. The same
sequence was investigated in a series of papers of Nakano and Olariu. In 2000
in [?] they claimed that Pr[SCCn] ≥ 0.6 but they omit the proof (due to page
limitations). In 2001 in the next paper [?] authors sketch a proof of inequality
Pr[SCCn] ≥ 1/(2

√
e) ≈ 0.303. However they do not observe that the inequal-

ity (1−x)n−1 > e−nx, which is used in the proof, does not hold for all x ∈ [0, 1]
and n > 1. Next, in 2002 in [?] they claim that Pr[SCCn] ≥ 0.5 and for the
proof they refer to the previous paper [?]. Let us remark that numerical calcula-
tion for small values of n (say n < 1000) confirms that Pr[SCCn] ≥ 0.6.

In Section 3 we shall prove that Pr[SCCn] > 0.5 and to the best of our
knowledge this will be the first published proof of this fact. In Section 4 we
analyze the lower bound on number of slots required by our protocols for suc-
cessful transmission of alert messages with a controllable probability of success
and we show that Ω(log n/ log logn) is asymptotically a lower bound for the
number of necessary time slots. We will use the following simple lemma which
we leave without proof:

Lemma 1. Suppose A is an event, f ≥ 1, Pr[A] ≥ λ > 0 and let A1, . . . , Am
be independent copies of A. Then(

m ≥ log f
log 1

1−λ

)
−→ Pr[A1 ∪ . . . ∪Am] ≥ 1− 1

f
.



Related work. In a sense the alarm problem is similar to the wake-up problem
[?,?,?]. In the wake-up problem it is assumed that any subset of sensors wake
up spontaneously at arbitrary times and awake the remaining sensors. However,
in the alarm problem it is not important to inform other sensors about some dan-
gerous situation. Only the sink should be inform as soon as possible. Therefore,
we want to design such protocol, which are able to inform the sink with a min-
imal time complexity. Our considerations are directly related to the previously
mentioned papers [?,?,?].

2 Model Description

We consider a wireless sensor network consisting of processing units, called
sensors with limited power and distinguished sensor the sink (called also a col-
lector) with unlimited power. The sensors communicate through a shared radio
channel, where a transmission succeeds if exactly one station sends at a time. We
consider only single-hop networks in which each station can directly commu-
nicate with the sink through a shared communication channel. We also assume
that stations are synchronized and that the time is divided into short time-slots
in which each station may transmit a message with description of an alert to the
sink.

We assume that sensor network consists of known number of stations or at
least we known an upper bound. However, the number of station which can wake
up to send an alert message is unknown i.e. at any given moment any subset of
stations can send the alert message. The problem is when more than one sensors
try to send messages then the transmissions interfere with each other. Therefore
it is important to design such protocols that at least one sensor sends the message
to the sink without any interference and with high probability.

Formally, let n denotes the total number of sensors or an upper bound. Let
us suppose that this population of sensors observe some dangerous situation.
The number of sensors which detect an alert can be any k such that 1 ≤ k ≤ n.
Each such sensor try to use some time-slot to send a short message to the sink.

3 Upper Bound

By n ≥ 1 we denote the number of stations. We divide time into L+1 slots.
At ith time slot each station decides to transmit the alert message independently
with the probability pi = (1/2)i for i = 0, . . . , L. Let SCCL,n,k denotes the
event of the successful transmission when k ∈ {1, . . . , n} stations are activated.



Algorithm 1 Randomized Alarm Algorithm RAA(n,f ,∆)
1: if NOT ALERT then
2: EXIT
3: end if
4: λ := 1− 3

4

(
1− 1

2
e−1/2

)(
1− 1

4
e−1/4

)
5: L := dlog(n)/ log(2)e+ 1
6: r := d log f

log 1
1−λ

e
7: for j := 1 to r do
8: for i := 0 to L do
9: if GetT ime() > T0 + (i+ j ∗ L) ∗∆ then

10: if (Random() < max(1/n, (1/2)i)) then
11: SendMessage()
12: end if
13: end if
14: end for
15: end for

Then,

Pr[SCCL,n,k] = 1−
L∏
i=0

(
1−

(
k

1

)
1
2i

(
1− 1

2i

)k−1
)
.

Finally we put

Pr[SCCL,n] = min{Pr[SCCL,n,k] : k = 1, . . . , n} .

Theorem 1. If L = dlog2 ne+ 1 then

Pr[SCCL,n] ≥ 1− 3
4
(1− 1

2
e−1/2)(1− 1

4
e−1/4) ≈ 0.579 .

Proof. Let λ = 1− 3
4(1− 1

2e
−1/2)(1− 1

4e
−1/4). Notice that λ ≈ 0.579. Let us

fix k ∈ {1, . . . , n}. We pick the time slot i such that

2i−1 < k ≤ 2i . (1)

Notice that for each k ∈ {1, . . . , n} there exists i ∈ {0, . . . , L − 1} which
satisfies the inequality (1). Let us consider a function

fj(k) = k · 1
2j
·
(

1− 1
2j

)k−1

(k ≥ 1, 0 ≤ j ≤ L) .

This function is unimodal (with the maximum at the point k = 1/ log(1/(1 −
(1/2)j))) hence the minimum of the function f on interval (2i−1, 2i] is achieved
at one of the edges of this interval. We shall consider the following three cases



separately: i = 0, i = 1 and 2 ≤ i ≤ L− 1.

Case 1: If i = 0 then (2i−1, 2i] = (1/2, 1] so k = 1 and Pr[SCCL,n,1] = 1 > λ
for all n ≥ 1.
Case 2: If i = 1 then (2i−1, 2i] = (1, 2], therefore k = 2 and

Pr[SCCL,n,2] ≥ 1− (1− f1(2)) · (1− f2(2)) = 1− 5
16

=
11
16

for n ≥ 2. Notice that 11/16 = 0.6875 > λ.

Case 3: Suppose that 2 ≤ i ≤ L − 1. Let lj(i) = fj(2i−1) and rj(i) = fj(2i)
for j = i− 1, i, i+ 1. From the inequality (1− 1/x)x ≤ 1/e we get

ri−1(i)
li−1(i)

= 2
(
1− 2−(i−1)

)2i−1

≤ 2
e
.

On the other hand we have

li(i)
ri(i)

=
1
2
(
1− 2−i

)2i·(−1/2)
,

li+1(i)
ri+1(i)

=
1
4
(
1− 2−i

)2i·(−1/4)
.

Notice that those functions are decreasing, so the maximum is obtain for i =
2. Thus, li(i)/ri(i) ≤ 8/9, li+1(i)/ri+1(i) ≤ 32/49 for i ≥ 2. Notice that
each above equality is less than 1. Therefore, we obtain that the minimum of
the functions fi−1(x), fi(x), fi+1(x) on the interval is achieved respectively
at points 2i, 2i−1, 2i−1 and equals ri−1(i), li(i), li+1(i) i.e. fi−1(2i), fi(2i−1),
fi+1(2i−1).

Next, we notice that the functions lx(x), lx+1(x) are decreasing and rx−1(x)
is increasing for x ≥ 2. This can be checked by inspecting the sign of the
derivative (see Appendix A). Thus

lim
x→∞

lx(x) = lim
x→∞

1
2
(
1− 2−x

)2x−1−1 =
1
2
e−1/2 .

Hence lx(x) > (1/2)e−1/2 and therefore for each u ∈ (2i−1, 2i] we have
fi(u) > (1/2)e−1/2. Similarly, we have that

lim
x→∞

lx+1(x) =
1
4
e−

1
4 , rx−1(x) ≥

1
4

for x ≥ 2

and for each u ∈ (2i−1, 2i] we have fi−1(u) ≥ 1
4 and fi+1(u) > 1

4e
− 1

4 . Notice
that Pr[SCCL,n,k] is greater than or equal to

1− (1− fi−1(k))(1− fi(k))(1− fi+1(k))

for 2 ≤ i ≤ L− 1 and 0 ≤ fj(k) ≤ 1. Therefore theorem is proved. ut



By Theorem 1 we are able to successfully send an alert message with a
probability at least 1− 3

4

(
1− 1

2e
−1/2

) (
1− 1

4e
−1/4

)
≈ 0.579. However, we are

interested in sending the alert message with probability at least 1− 1
f for some

f > 1. Thus we need to repeat the sequence
(
(1
2)i
)
i=0,...,dlog2 ne+1

sufficient
number of times to obtain the needed probability.

From Lemma 1 we deduce that a sufficient total number of time slots re-
quired to send an alert message with probability at least 1− 1

f is equal to

log f
log 1

1−λ
· (dlog2 ne+ 1) ≈ 1.1553 · log f · (dlog2 ne+ 1) (2)

where λ = 1− 3
4

(
1− 1

2e
−1/2

) (
1− 1

4e
−1/4

)
.

Based on the above discussion we build a Randomized Alarm Algorithm
(see Algorithm 1). The only improvement in this pseudo-code is a correction of
probabilities (line 10) which is motivated by Lemma 2 from the next section.
The following theorem summarize its basic property:

Theorem 2. For each n ≥ 1 and f > 1 the Randomized Alarm Algorithm
RAA(n, f,∆) sends successfully an alert message in

d1.1553 · log fe · (dlog2 ne+ 1)

time slots with probability at least 1− 1
f for arbitrary number of activated sta-

tions.

4 Lower bound

Let p = (pi)i=1,...,L be a vector of probabilities. By SCC(p, k) we denote the
event of successful transmission of an alert message when k of n stations tries
to transmit using the vector of probabilities p.

Lemma 2. Let p = (pi)i=1,...,L be a vector of probabilities, let qi = max{pi, 1
n}

and let q = (qi)i=1,...,L. Then

(∀k ∈ {1, . . . , n})(Pr[SCC(p, k)] ≤ Pr[SCC(q, k)]) .

Proof. Let us fix a number k ≥ 1 and let fk(p) = kp(1 − p)k−1. The function
fk is unimodal, reaches a maximum at point p = 1

k . Hence if k ≤ n ≤ 1
p then

fk(p) ≤ fk( 1
n). ut

We shall prove the following theorem:



Theorem 3. If p = (pi)i=1,...,L is an arbitrary vector of probabilities then there
exists k ∈ {1, . . . , n} such that

Pr[SCC(p, k)] ≤ 1−
(

1− 3e

n
1

2(L+1)

)L
.

Proof. Let us fix n and let us consider a sequence p of length L such that

min
1≤k≤n

Pr[SCC(p, k)] = sup
x∈[0,1]L

min
1≤k≤n

Pr[SCC(x, k)] .

Using Lemma 2 we may assume that pi ≥ 1
n for all i ∈ {1, . . . , L}. We may also

assume that p1 ≥ p2 ≥ . . . ≥ pL. We additionally put p0 = 1 and pL+1 = 1/n.

Lemma 3. There exists i ∈ {0, . . . , L} such that

pi
pi+1

≥ n
1

L+1 .

Proof. Suppose that p0/p1 < n1/(L+1), p1/p2 < n1/(L+1), . . . , pL/pL+1 <
n1/(L+1). Then

n =
p0

p1
· p1

p2
· · · pL

pL+1
< n

L+1
L+1 = n ,

what is impossible. ut

Let us fix a such that pa

pa+1
≥ n

1
L+1 . We shall consider three cases sepa-

rately: 0 < a < L, a = 0 and a = L. In the next considerations we shall use
several times the inequality x/ex < 1.5/x2 which holds for all x > 0 and the
inequality (1− x)1/x < e−1 which holds for all x ∈ (0, 1).

Case 1: 0 < a < L. Let p = pa and q = pa+1. We choose k = 1/
√
pq.

Notice that p/q ≥ n1/L, kp =
√
p/q and k2 ≥ n1/L (because: k2 = (pq)−1 =

p−2(p/q) ≥ p−2n1/L ≥ n1/L). Let k∗ = dke. Then for arbitrary x ∈ (0, 1) we
have k∗x(1− x)k∗−1 ≤ 2kx(1− x)k−1.
Subcase 1. If i ≤ a and p ≤ 1− 1

e then we have

k∗pi(1− pi)k
∗−1 ≤ 2kpi(1− pi)k−1 ≤ 2kp(1− p)k−1 ≤ 2kp(1− p)ke =√
p

q
(1− p)

1
p

√
p
q 2e <

√
p
q

exp(
√

p
q )

2e <
3e

n1/(L+1)



Subcase 2. If i ≤ a and p > 1− 1
e then we have

k∗pi(1− pi)k
∗−1 ≤ 2kpi(1− pi)k−1 ≤ 2kp(1− p)k−1 <

2kp
(

1
e

)k−1

≤ 2
ke

ek
<

3e
k2
≤ 3e
n1/(L+1)

Subcase 3. If a < i ≤ L and q ≤ 1− 1
e then

k∗pi(1− pi)k
∗−1 ≤ 2kpi(1− pi)k−1 ≤ 2kq(1− q)k−1 ≤ 2kq(1− q)ke =

2
√
q

p
(1− q)

1
q

√
q
p e < 2

√
q
p

exp(
√

q
p)
e < 2

√
q

p
e ≤ 2e

n1/(2(L+1))

Subcase 4. If a < i ≤ L and q > 1− 1
e then

k∗pi(1− pi)k
∗−1 ≤ 2kpi(1− pi)k−1 ≤ 2kq(1− q)k−1 < 2kq

(
1
e

)k−1

≤

2ke
exp(k)

<
3e
k2
≤ 3e
n1/(L+1)

Therefore we shown that in all subcases of Case 1 we have

Pr[SCCk∗ ] = 1−
L∏
i=1

(1− k∗pi(1− pi)k
∗−1) < 1− (1− 3e

n1/(2(L+1))
)L

Case 2: a = 0. In this case we take k = 1 and since p1 ≤ 1/n1/(L+1) we get

Pr[SCC1] = 1−
L∏
i=1

(1− 1 · pi(1− pi)1−1) ≤

1− (1− 1
n1/(L+1)

)L < 1− (1− 2e
n1/(2(L+1))

)L .

Case 3: a = L. In this case we take k = n. Then npL ≥ n1/(L+1). If pL ≤ 1− 1
e

we have

npL(1− pL)n−1 ≤ npL(1− pL)ne ≤ npL(1− pL)
1

pL
npLe <

npL
exp(npL)

e <
2e

n1/(L+1)

and if pL > 1− 1
e then

npL(1− pL)n−1 < npL

(
1
e

)n−1

≤ n

exp(n)
e <

2e
n1/(L+1)

,



therefore

Pr[SCCn] = 1−
L∏
i=1

(1− npi(1− pi)n−1) ≤

1−
(

1− 2e
n1/(L+1)

)L
< 1−

(
1− 3e

n1/(2(L+1))

)L
.

Hence we have finished the analysis of cases and we see in all case we are able
to find k ∈ {1, . . . , n} such that

Pr[SCCk] < 1−
(

1− 3e
n1/(2(L+1))

)L
.

ut

Let W denote the main branch of the Lambert function. Let us consider
an arbitrary vector p = (pi)i=1,...,L of probabilities of length L. Let SCCL,n,k

denotes the event of successful transmission when k sensors are activated and
let Pr[SCCL,n] = min{Pr[SCCL,n,k] : k = 1, . . . , n}.

Theorem 4. If L ≤ logn
2 log(3e) − 1, f > 1 and Pr[SCCL,n] > 1− 1

f and then

L ≥ log(n)

2W
(

3e
2

f
f−1 log(n)

) − 1 .

Proof. IfL ≤ logn
2 log(3e)−1 then 3e/n1/(2(L+1) ≤ 1 so we may apply the classical

Bernoulli inequality ((∀x ≤ 1)((1 − x)n ≥ 1 − nx)) to Theorem 3 and obtain
the following inequality

Pr[SCCL,n] <
3eL

n
1

2(L+1)

.

Hence from Pr[SCCL,n] > 1− 1
f we deduce that 3eLn

−1
2(L+1) > 1− 1

f , so also

3e(L+1)n
−1

2(L+1) > 1− 1
f . This inequality may be solved by using the Lambert

functionW , giving us the required inequality. ut

Let us recall that log x− log log x <W(x) < log x− 1
2 log log x for x ≥ e

(see e.g. [?]). Using this bounds we get

log(n)

2W
(

3e
2

f
f−1 log(n)

) > log n

2 log
(

3e
2

f
f−1 log(n)

) =
1
2

log n

log log n+ log
(

3e
2

f
f−1

)



If f > 1 is fixed and n tends to infinity then

log(n)

2W
(

3
2e

f
f−1 log(n)

) ∼ log(n)
2 log log n

.

Let us finally remark that if f = n then the inequality

1−
(

1− 3e
n1/(2(L+1))

)L+1

> 1− 1
f

can be solved precisely giving us a bound L > 0.236594 log n− 1.

5 Conclusions

In this paper we show that there exists an alarm protocol for sensor network
which use O(log n) time slots and that each alarm protocol for sensor network
requires Ω( logn

log logn) time slot. The algorithmic gap remains to be clarified.
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A Monotonicity of functions from Section 3

This section will be removed from the final version of the paper. It is added here
for the convenience of the reviewer.

Lemma 4. Let fi(k) = k 1
2i (1− 1

2i )k−1. Then, the functions fi(2i−1), fi+1(2i−1)
are decreasing and fi−1(2i) is increasing for i ≥ 2.

Proof. Let gα(x) = (1 − 1
αx)x−1. Then fi(2i−1) = 1

2g2(2
i−1), fi+1(2i−1) =

1
4g4(2

i−1) and fi−1(2i) = 2g 1
2
(2i). Notice that

d

dx
gα(x) =

(
1− 1

αx

)x−1

·
(

1
x

+
α− 1
1− αx

+ log
(

1− 1
αx

))
.

We consider x ≥ 4 and α ≥ 1
2 . Then 1 − 1/(αx) > 0, so

(
1− 1

αx

)x−1
> 0.

We are interested in the sign of derivative of the function gα, so we only need to
check the sign of the remaining part. Let z = 1

αx . Then 0 < z < 1 and

1
x

+
α− 1
1− αx

+ log
(

1− 1
αx

)
= αz + (α− 1)

z

z − 1
− log

(
1

1− z

)
.

We expand the right side of this equation and obtain

αz− (α−1)
∞∑
i=1

zi−
∞∑
i=1

zi

i
= αz−

∞∑
i=1

(α−1+
1
i
)zi = −

∞∑
i=2

(α−1+
1
i
)zi .

It is easy to check that if α = 1/2 then this series is greater than zero and for
α ≥ 1 this series is less than zero. ut


