
Minimal Büchi Automata for Certain Classes of
LTL Formulas

Jacek Cichón∗†, Adam Czubak†, Andrzej Jasínski†
∗Institute of Mathematics and Computer Science

Wrocław University of Technology, Poland,
†Institute of Mathematics and Computer Science

Opole University, Poland

Abstract

In this paper we calculate the minimal number of states of Büchi automata which encode some classes of linear temporal logic
(LTL) formulas that are frequently used in model checking. Among others, we show that the minimal size of a Büchi automaton
accepting the formula�♦p1 ∧ . . .∧�♦pn is n+1, the minimal size of B̈uchi automaton accepting the formula♦p1 ∧ . . .∧♦pn

is 2n and the minimal size of a B̈uchi automaton accepting the formula♦(p1 ∧ ♦p1) ∧ . . . ∧ ♦(pn ∧ ♦pn) is 3n. Our results
may be used for verification of the quality of algorithms which automatically translate LTL formulas into Büchi automata and
for improving the quality and speed of such translators. In the last section of this paper we compare our lower-bound estimations
to Büchi automata generated by two currently used translators: LTL2BA and SPOT. We have checked, among others, that the
LTL2BA translator generates a Büchi automaton with25 states and the SPOT translator generates an automaton with31 states
for the formula♦(p1 ∧ ♦(p2 ∧ ♦p3)) ∧ ♦(q1 ∧ ♦(q2 ∧ ♦q3)), while the minimal required number of states is16.

I. I NTRODUCTION

The theoretic approach to model checking is based on the correspondence between linear temporal logic (LTL), Büchi
automata and formal languages. Usually the negation of the LTLϕ formula, which express the desired property of the system,
is translated into an equivalent Büchi automatonA¬ϕ and then the productS × A¬ϕ, whereS is the automaton used for
modeling the system, is investigated (see e.g. SPIN [1]). Therefore the complexity of the resulting task depends highly on the
size of the automaton obtained from the translation of the LTL formula. In hope of finding efficient translators many different
kinds of automata have been investigated (Büchi Automata, Generalized Büchi Automata, Very Weak Alternating Automata,
Testing Automata, e.t.c.) and a number of translation algorithms has been built (see [2]–[5]). The main goal of these algorithms
is generation of automata with as few states as possible in a reasonable time.

In this paper we find the minimal number of states of Büchi automata which encodes some relatively simple LTL formulas.
All of these formulas are in common use in model checking and have been considered in literature (see [6]–[8]). Let us stress
that in this paper we investigate only one aspect of the complexity of the Büchi automata, namely the number of states. Other
important metrics of complexity, such as the number of transitions, are not considered here.

We observed that even for very simple formulas the corresponding Büchi automata are exponentially large. It follows from
Theorem 3.3 that the formula♦p1 ∧ . . .∧♦pn yields a B̈uchi automaton of size2n. Similarly, the formula♦(p1 ∧♦q1)∧ . . .∧
♦(pn ∧ ♦qn) requires an automaton with3n states (see Theorem 3.6).

In Section 2 we recall some basic notions and facts about linear temporal logic and Büchi automata. In Section 3 we prove
our main results and in Section 4 we compare our results with the automata generated by the two currently used translators
of LTL formulas into B̈uchi automata: LTL2BA (see [3]) and SPOT (see [9]).

II. PRELIMINARIES

By ω we denote the set of all natural numbers. Let[n] = {0, . . . , n}, for n ∈ ω. The power set of a given setX is denoted
by 2X . The concatenation of two finite sequences is denoted by the symbol∗. If σ = (a1, . . . , an) is a finite sequence then by
σrev we denote the reverse ofσ, i.e. σrev = (an, . . . , a1). By Sn we denote the group of permutations of the set{1, . . . , n}.

Linear Temporal Logic (LTL) is used to specify the properties of a system. The languageL(P) of LTL (see [10]) is built
from a finite setP of propositional variables with standard logical connectives and temporal operators© (next),U (until), ♦
(eventually),� (always). An LTL formula can be evaluated over a sequence (computation) π ∈ (2P)ω. The relation(π, i) |= φ
is defined as follows:

1) (π, i) |= p for p ∈ P iff p ∈ π(i);
2) (π, i) |= ¬φ iff (π, i) 6|= φ;
3) (π, i) |= φ ∧ ψ iff (π, i) |= φ ∧ (π, i) |= ψ;
4) (π, i) |= ©φ iff (π, i+ 1) |= φ;
5) (π, i) |= ♦φ iff (∃j ≥ i)((π, j) |= φ);
6) (π, i) |= �φ iff (∀j ≥ i)((π, j) |= φ);
7) (π, i) |= φUψ iff (∃j ≥ i)((π, j) |= ψ) ∧ (∀k)(i ≤ k < j → (π, k) |= φ).

Finally, the computationπ satisfiesa formulaφ, that we denote byπ |= φ, if (π, 0) |= φ. The models of the LTL formulaφ
are defined as

mod(φ) = {π ∈ (2P)ω : π |= φ} .

A Büchi automaton (see [11]) is a tupleA = (Σ, S, S0, ρ, F), whereΣ is a finite set called alphabet,S is a finite set of
states,S0 ⊆ S is a set of initial states,ρ : S × Σ → 2S is a transition function andF is a set of accepting states. By|A|
we denote the number of states ofA. Elements of the setΣω are calledω–words over the alphabetΣ. The inputs ofA are
ω–words overΣ. A run over theω–word w = (an)n∈ω is a sequence of statesr = (rn)n∈ω ∈ Sω, such thatr0 ∈ S0 and
ri+1 ∈ ρ(ri, ai) for eachi ≥ 0. Let

Inf(r) = {s ∈ S : s = ri for infinitely many i-s} .

The Büchi automatonacceptsthe ω–wordw if there exists a runr overw such thatInf(r) ∩ F 6= ∅. We denote byLω(A)
the set of allω–words accepted by the automatonA. The following classical theorem (see [12]) connects LTL formulas with
Büchi automata:

Theorem 2.1:For eachφ ∈ L(P) there exists a B̈uchi automatonAφ over the alphabet2P such that

mod(φ) = Lω(Aφ) .

We say that the automatonA encodesthe formulaφ if mod(φ) = Lω(A).

III. B ÜCHI STATE COMPLEXITY FOR LTL FORMULAS

The complexity of formal model checking method based on LTL depends highly on the size of the automaton obtained from
the translation of the LTL formula. The following definition formalizes this notion:

Definition 3.1: The Büchi state complexitybsc(φ) of the formulaφ ∈ L(P) is the minimal number of states of a Büchi
automatonA which encodes the formulaφ.

For example, it is easy to check thatbsc(�p) = 1, bsc(♦p) = bsc(�♦p) = bsc(♦�p) = 2 and bsc(♦(p ∧ ♦q)) = 3. In
the following sections we shall calculate the Büchi state complexity of some LTL formulas commonly used in formal model
checking (see e.g. [3]).

A. Something Will Occur n Times in a Row

Let p be a fixed propositional variable. Letφ1(p) = p andφn(p) = p ∧ © (φn−1(p)) for n ≥ 2. Finally, for n > 0 we put

Nn(p) = ♦(φn(p)) .

Observe thatN1(p) = ♦p, N2(p) = ♦(p ∧©p), N3(p) = ♦(p ∧©(p ∧©p)), and so on. The informal interpretation of the
formulaNn(p) is ,,at some point the proposition p will occur n times in a row.”

Theorem 3.2:Let p, q be different propositional variables and letn,m > 0. Then

bsc(Nn(p) ∧Nm(q)) = (n+ 1)(m+ 1) .

Proof: Let Σ = 2{p,q}. For r ∈ {p, q}, N > 0, k ∈ [N] andX ∈ Σ we put

∆N,r(k,X) =

 N : k = N
k + 1 : r ∈ X ∧ k < N
0 : r /∈ X ∧ k < N

Let ρ((k1, k2), X) = {(∆n,p(k1, X),∆m,q(k2, X))}, wherek1 ∈ [n] andk2 ∈ [m]. Finally we put

A = (Σ, [n]× [m], {(0, 0)}, ρ, {(n,m)}) .

It is easy to see that
Lω(A) = mod(Nn(p) ∧Nm(q)) .

Thereforebsc(Nn(p) ∧Nm(q)) ≤ (n+ 1)(m+ 1).
Let us assume now that there exists a Büchi automatonA which encodes the formulaNn(p) ∧ Nm(q) such that|A| <

(n+ 1)(m+ 1). For each pair(α, β) ∈ [n]× [m] we define the sequence

σα,β = (X1, X2, . . . , Xγ) ∈ Σγ ,

whereγ = max(α, β) and
p ∈ Xi ↔ i ≤ α , q ∈ Xi ↔ i ≤ β .

Next we putπn,m
α,β = (σα,β)rev ∗ σn−α,m−β ∗ ∅ω. Notice that, for example,

π5,4
4,2 = ({p}, {p}, {p, q}, {p, q}, {p, q}, {q}) ∗ ∅ω .

It is easy to check that for all pairs(α, β) ∈ [n]× [m] we haveπn,m
α,β ∈ mod(Nn(p) ∧Nm(q)). For all (α, β) ∈ [n]× [m] we

fix runs rα,β of the automatonA which acceptsπn,m
α,β , i.e. a sequence of states

rα,β = (s0, s1, s2 . . . , sγ , . . .),

such thats0 is an initial state,si ∈ ρ(si−1, π
n,m
α,β (i)) for 1 ≤ i and Inf(rα,β) ∩ F 6= ∅. Let yα,β = rα,β(max(α, β)). From

the assumption|A| < (n+ 1)(m+ 1) and the pigeonhole principle we deduce that there are two pairs(α, β) 6= (α′, β′) such
that yα,β = yα′,β′ . We can assume thatα < α′. Then

r̃ = rα,β � (0, . . . ,max(α, β)) ∗ rα′,β′ � (max(α′, β′) + 1, . . . ,∞)

is an accepting run of the automatonA. Moreover, this is a run over theω–word

(σα,β)rev ∗ σn−α′,m−β′ ∗ ∅ω .

But α+(n−α′) = n−(α′−α) < n, so the automatonA accepts anω-word in which there are strictly less thann occurrences
of the propositional variablep, which is impossible. Therefore we have proved thatbsc(Nn(p) ∧Nm(q)) ≥ (n+ 1)(m+ 1).

Theorem 3.3:Let p1, . . . , pk be pairwise different propositional variables and letn1, . . . nk be positive natural numbers.
Then

bsc(
k∧

i=1

Nni(pi)) =
k∏

i=1

(ni + 1).

Proof: The proof for this theorem is a generalization of the proof of Theorem 2. Namely, we consider the automaton
with states[n1]× . . . [nk] in the first part of the proof and later we simulate the run on an arbitrary automaton by sequences
πn1,...,nk

α1,...,αk
.

Remark 3.4:From Theorem 3.3 we getbsc(♦p1 ∧ . . . ∧ ♦pk) = 2k, bsc(♦(p1 ∧©p1) ∧ . . . ∧ ♦(pk ∧©pk)) = 3k, and so
on. Therefore we see that even for very simple LTL formulas the size of encoding Büchi automata is exponential in the size
of formulas.

B. Some Sequence will Occur in the Future in the Proper Order

Let n > 0 and letp1, . . . , pn be fixed propositional variables. We define recursively the formulaφn(p1, . . . , pn) as follows:
φ1(p1, . . . , pn) = pn, φi(p1, . . . , pn) = pn−i+1 ∧ ♦ (φi−1(p1, . . . , pn)) for i = 2 . . . , n. Finally, we put

En(p1, . . . , pn) = ♦(φn(p1, . . . , pn)).

Observe thatE1(p1) = ♦p1, E2(p1, p2) = ♦(p1 ∧ ♦p2),

E3(p1, p2, p3) = ♦(p1 ∧ ♦(p2 ∧ ♦p3))

and so on. The informal interpretation of the formulaEn(p1, . . . , pn) is ,,the sequence of eventsp1, . . . , pn will occur in future
in the proper order.” We shall prove a theorem similar to Theorem 3.2. In fact not only this theorem but also its proof is
similar to the proof of the previous one, but we have found out that the common generalization of both proofs is artificial.

Theorem 3.5:Let n,m > 0 and letp1, . . . , pn, q1, . . . , qm be pairwise different propositional variables. Then

bsc(En(p1, . . . , pn) ∧ Em(q1, . . . , qm)) = (n+ 1)(m+ 1) .

Proof: Let Σ = 2{p1,p2,...pn,q1,q2...,qm}. ForN ∈ ω, k ∈ [N] andX ∈ Σ we define

∆N (k,X) =
{
N : k = N
k + s : pk+1, . . . pk+s ∈ X ∧ k < N

and

ΘN (k,X) =
{
N : k = N
k + s : qk+1, . . . qk+s ∈ X ∧ k < N

Let
ρ((k1, k2), X) = {(∆n(k1, X),Θm(k2, X))} ,

wherek1 ∈ [n] andk2 ∈ [m]. Finally, we put

A = (Σ, [n]× [m], {(0, 0)}, ρ, {(n,m)}) .

It is easy to see that
Lω(A) = mod(En(p1, p2, . . . , pn) ∧ Em(q1, q2, . . . , qm)).

Thereforebsc(En(p1, p2, . . . , pn) ∧ Em(q1, q2 . . . , qm)) ≤ (n+ 1)(m+ 1).
Let us assume now that there exists a Büchi automatonA which encodes the formulaEn(p1, . . . , pn) ∧ Em(q1, . . . , qm)

such that|A| < (n+ 1)(m+ 1). For each pair(α, β) ∈ [n]× [m] we define the sequence

σα,β = (X1, X2, . . . , Xγ) ∈ Σγ

whereγ = max(α, β) and
pi ∈ Xj ↔ j = γ − α+ i , qi ∈ Xj ↔ j = γ − β + i .

For the sequenceσα,β we define the sequenceσend
α,β = (X1, X2, . . . , Xδ) ∈ Σδ whereδ = max(n− α,m− β) and

pα+i ∈ Xi ↔ i ≤ n− α , qβ+i ∈ Xi ↔ i ≤ m− β .

Next we putπn,m
α,β = σα,β ∗ σend

α,β ∗ ∅ω. Notice that, for example,

π5,4
4,2 = ({p1}, {p2}, {p3, q1}, {p4, q2}, {p5, q3}, {q4}) ∗ ∅ω .

It is easy to observe thatπn,m
α,β ∈ mod(En(p1, p2, . . . , pn)∧Em(q1, q2, . . . , qm)) for all pairs(α, β) ∈ [n]× [m]. Now, similarly

as in the proof of Theorem 3.3, we fix a runrα,β of automatonA which acceptsπn,m
α,β and we deduce that there are two pairs

(α, β) 6= (α′, β′) such thatrα,β(max(α, β)) = rα′,β′(max(α′, β′)). Finally we deduce that

r̃ = (rα,β � (0, . . . ,max(α, β))) ∗ (rα′,β′ � (max(α′, β′) + 1, . . . ,∞))

is an accepting run of automatonA over theω–word

σα,β ∗ σend
α′,β′ ∗ ∅ω .

We can assume thatα < α′. Then the automatonA accepts a word in which there are no propositional variablespα+1, pα+2, . . . , pα′ ,
which is impossible. Therefore we have proved that

bsc(En(p1, . . . , pn) ∧ Em(q1, . . . , qm)) ≥ (n+ 1)(m+ 1) .

Using similar arguments we can prove the following generalization of the previous Theorem:
Theorem 3.6:Let n1, . . . nk be positive natural numbers and{pi,ji : i ∈ {1, 2, . . . k}, ji ∈ {1, 2, . . . ni} be pairwise different

propositional variables. Then

bsc(
k∧

i=1

Eni(pi,1, pi,2 . . . pi,ni)) =
k∏

i=1

(ni + 1) .

C. All Events Occur Infinitely Often

For each positive natural numberk we put

ψk =
k∧

i=1

(�♦pi) .

This kind of formulas often appears in various fairness conditions. The informal interpretation of the formulaψk is ,,all of the
propositionsp1, . . . , pk occur infinitely often in an arbitrary order”.

Theorem 3.7:(∀k > 0)
(

bsc(
∧k

i=1(�♦pi)) = k + 1
)

Proof: Let Σ = 2{p1,p2,...pk}. ForX ∈ Σ andm ∈ [k] we define

ρ(m,X) =

 0 : m = k
m+ 1 : pm+1 ∈ X ∧m < k
m : pm+1 6∈ X ∧m < k

Finally we put
A = (Σ, [k], {0}, ρ, {k}) .

It is easy to check that
Lω(A) = mod(ψk) ,

thereforebsc(ψk) ≤ (k + 1).
It is easy to check that ifk ≤ 3 then bsc(ψk) ≥ k + 1. We shall assume from now on thatk > 3. Now let us suppose

A = (Σ, S, S0, ρ, F) is a Büchi automaton which encodes the formulaψk and |A| ≤ k. Let us consider theω-word

w̃ = ({p1}, {p2}, . . . , {pk})ω.

Obviously w̃ ∈ mod(ψk). We fix an accepting ruñr of the automatonA over the wordw̃. Let s ∈ Inf(r̃) be an accepting
state which occurs infinitely often in the ruñr. Then r̃ can be represented in the following way:

r̃ = (q0,1, . . . , q0,r0 , s, q1,1, . . . , q1,r1 , s, q2,1, . . . , q2,r2 , s, . . .)

It is easy to observe thats 6∈ ρ(s, {pi}) for all i ∈ {1, 2, . . . , k}. We calla single event runa finite sequence(Q1, Q2, . . . Qr)
of the state of the automaton such that

(∀i ∈ {1, 2, . . . , r − 1})(∃j ∈ {1, 2, . . . k})(Qi+1 ∈ ρ(Qi, {pj})) .

Observe that each segment(s, qt,1, qt,2, . . . , qt,rt , s) of the run r̃, for t ≥ 1 is a single event run. Take the shortest one and
denote it byη = (η0, η1, η2, . . . , ηr, ηr+1), whereη0 = ηr+1 = s. From the fact thatη is the shortest one we deduce that
(∀i < j ≤ r)(ηi 6= ηj). Let w̃η = ({α0}, . . . , {αr}) be the subword of the word̃w corresponding to the segmentη. It is clear
that{p1, p2, . . . , pk} ⊆ {α0, α1, . . . , αr}, so from the assumption|A| ≤ k we deduce that{p1, p2, . . . , pk} = {α0, α1, . . . , αr}.
We will show that not all states of the automatonA are accepting ones, i.e. that|F | < k. Namely, suppose thatF = S and
consider the sequenceδ = ({p1}, {p2}, . . . , {pk}, ∅)ω. The sequenceδ is accepted byA, so there exists a stateq ∈ S such
that ρ(q, ∅) 6= ∅. If q ∈ ρ(q, ∅) then some sequence of the formσ ∗ ∅ω would be accepted by the automatonA, though
σ ∗ ∅ω 6∈ mod(ψk). On the other hand if there exists a stateqi 6= q such thatqi ∈ ρ(q, ∅), then the automatonA would accept
a sequence of the formσ ∗ (∅ ∗ λ)ω, where not all propositional variablesp1, . . . , pk occur inλ.

Notice thatLω(A) =
⋃

f∈F Lω(Af), where

Af = (Σ, S, S0, ρ, {f}).

Let us fix a final stateηi ∈ F . For each permutationΠ ∈ Sk we define the sequencexΠ = ({αΠ(1)}, {αΠ(2)}, . . . , {αΠ(k)})ω.
It is easy to observe that ifxΠ ∈ Lω(Aηi) then

xΠ = σ ∗ {α(i−1) mod k} ∗ {αi} ∗ {α(i+1) mod k} ∗ λ

for someσ ∈ Σ∗ andλ ∈ Σω. Let a = α(i−1) mod k, b = αi andc = α(i+1) mod k.
There are(k − 2)! permutationsΠ ∈ Sk such that(a, b, c) is a subsequence of({αΠ(1)}, {αΠ(2)}, . . . , {αΠ(k)}). There are

(k − 3)! permutationsΠ ∈ Sk such thatαΠ(1) = c, αΠ(k−1) = a andαΠ(k) = b and there are(k − 3)! permutationsΠ ∈ Sk

such thatαΠ(1) = b, αΠ(2) = c andαΠ(k) = a. Therefore

|Π ∈ Sk : xΠ ∈ Lω(Aηi)| ≤ (k − 2)! + 2(k − 3)!.

Recall that for eachΠ ∈ Sk we havexΠ ∈ Lω(A). Therefore

k! ≤ |F |((k − 2)! + 2(k − 3)!).

But we showed that|F | ≤ k − 1, so
k! ≤ (k − 1)((k − 2)! + 2(k − 3)!),

which is not true fork > 3. Therefore we have proved thatbsc(ψk) ≥ k + 1.

D. One of the Events Eventually Holds Forever

In this section we take under consideration the negation of the formula from the previous section, namely, for each positive
natural numberk we put

ξk =
k∨

i=1

(♦�pi) .

The informal interpretation of the formulaξk is ,,one of the propositionsp1, . . . , pk eventually holds forever.”
Theorem 3.8:(∀k > 0)

(
bsc(

∨k
i=1(♦�pi)) = k + 1

)

Proof: Let Σ = 2{p1,p2,...pk}. ForX ∈ Σ we putρ(0, X) = {0} ∪ {i : pi ∈ X} and

ρ(i,X) =
{
{i} : pi ∈ X,
∅ : pi /∈ X

for i ∈ {1, . . . , k}. Finally we put
A = (Σ, [k], {0}, ρ, {1, 2, . . . , k}) .

It is easy to check thatLω(A) = mod(ξk), so bsc(ξk) ≤ (k + 1).
Suppose thatA is a Büchi automaton such thatLω(A) = mod(ξk) and|A| ≤ k. For i ∈ {1, 2, . . . , k} we define the sequence

πi = ({pi}ω). Thenπi ∈ Lω(A), so there is a runri over the wordπi and an accepting statefi such thatfi ∈ Inf(ri). We
show now thatfi 6= fj for all i 6= j. So let us suppose thati 6= j andfi = fj . Fix αi < βi andαj < βj such that

ri(αi) = ri(βi) = rj(αj) = rj(βj) = fi.

Then the run
ri � (1, . . . , αi) ∗ (ri � (αi + 1, . . . , βi) ∗ rj � (αj + 1, . . . , βj))ω

of the automatonA would accept the word

{pi}αi ∗ ({pi}βi−αi ∗ {pj}βj−αj)ω ,

which doesn’t belong tomod(ξk). Therefore we see that all states ofA are accepting ones. Let us consider the runr of the
automatonA over theω-word

w = ∅k ∗ {p1}ω.

From the assumption|A| ≤ k and the fact that for each stateq of the automatonA we haveq 6∈ ρ(q, {∅}) we deduce that
there are0 ≤ i < j ≤ k such thatri = rj . But

(r0, r1, . . . , ri−1) ∗ (ri, ri+1 . . . , rj)ω

is an accepting run, therefore∅ω ∈ Lω(A), which is impossible.

IV. COMPARISON WITH LTL2BA AND SPOT

We compared our results with two currently used LTL to Büchi automata translators: LTL2BA1 and SPOT2. We compared the
number of states generated by these tools and our results from the previous section. Moreover, we checked the time consumed
by them. Similar research was done by other authors (see e.g. [8]), but their experiments compared only the relative efficiency
of translators–we compared the result of translation with our lower theoretical bounds.

We run all tests on HP Proliant DL360, with 2 Intel(R) Xeon(TM) CPU 5160 Processor (3.00 GHz, 1333 FSB), 2GB of
memory. The operating system was FreeBSD 6.2-RELEASE with SMP support. Both SPOT and LTL2BA were compiled on this
machine to achieve best performance. For the purpose of tests both programs were configured with the formula simplification
enabled.

We summarize the results in the series of tables. In the third and fifth column of each table we have the number of states
of the Büchi automaton generated by LTL2BA and SPOT and in the fourth and sixth column we have the time consumed by
these programs to translate the given formula. If the program returned no answer within 24h we marked it with N/A and if a
program died then we marked it by RIP.

First we consider the formulaαn = En(p1, p2 . . . pn) ∧ En(q1, q2 . . . qn), i.e.

αn = ♦(p1 ∧ ♦(p2 ∧ . . . ∧ ♦pn) . . .) ∧ ♦(q1 ∧ ♦(q2 ∧ . . . ∧ ♦qn) . . .) .

From Theorem 3.6 we havebsc(αn) = (n + 1)2. Table I contains the obtained results. We see that the automata generated
by both tools are far from being optimal. For example, forα2 the minimal B̈uchi automaton has 9 states, but the automata
generated by LTL2BA and SPOT have respectively12 and15 states. The difference between the optimal automaton and the
generated ones grows whenn increases.

We must stress that both programs LTL2BA and SPOT produce optimal Büchi automata for the first class of formulas
considered in this paper, namely for formulas of the formβn = Nn(p) ∧Nn(q), i.e.

βn = ♦(p ∧©(p ∧ . . . ∧©p) . . .) ∧ ♦(q ∧©(q ∧ . . . ∧©q) . . .)

1http://www.lsv.ens-cachan.fr/˜gastin/ltl2ba/index.php
2http://spot.lip6.fr/wiki/

TABLE I
FORMULA

♦(p1 ∧ ♦(p2 ∧ ... ∧ ♦pn)...) ∧ ♦(q1 ∧ ♦(q2 ∧ . . . ∧ ♦qn)...)

LTL2BA SPOT
n bsc(αn) States Time [s] States Time [s]
1 4 4 0.01 4 0.073
2 9 12 0.01 15 0.084
3 16 25 0.01 31 0.124
4 25 44 0.01 53 0.236
5 36 69 0.01 81 0.510
6 49 100 0.03 115 1.095
7 64 137 0.05 155 2.248
8 81 180 0.1 201 4.307
9 100 229 0.17 253 7.851
10 121 284 0.29 311 13.719
11 144 345 0.5 375 23.022
12 169 412 0.83 445 36.876
13 196 485 1.32 521 57.716
14 225 564 2.06 603 87.587
15 256 649 3.16 691 129.990
16 289 740 4.81 785 189.464
17 324 837 7.09 887 267.893
18 361 940 10.33 996 374.519
19 400 1049 14.89 1111 517.417
20 441 1164 21.09 1237 701.669

TABLE II
FORMULA

♦(p ∧©(p ∧ ... ∧©p)...) ∧ ♦(q ∧©(q ∧ ... ∧©q)...)

LTL2BA SPOT
n bsc(βn) States Time [s] States Time [s]
1 4 4 0.01 4 0.074
2 9 9 0.01 9 0.077
3 16 16 0.01 16 0.083
4 25 25 0.01 25 0.091
5 36 36 0.01 36 0.101
6 49 49 0.01 49 0.121
7 64 64 0.01 64 0.153
8 81 81 0.01 81 0.197
9 100 100 0.01 100 0.258
10 121 121 0.01 121 0.325
11 144 RIP RIP 144 0.479
12 169 169 0.02 169 0.651
13 196 RIP RIP 196 0.882
14 225 225 0.03 225 1.180
15 256 256 0.04 256 1.559
16 289 289 0.05 289 2.039
17 324 324 0.07 324 2.638
18 361 361 0.09 361 3.373
19 400 400 0.11 400 4.275
20 441 441 0.13 441 5.360

TABLE III
FORMULA β′n = ♦(p ∧©p ∧©2p ∧ . . . ∧©n−1p) ∧ ♦(q ∧©q ∧©2q ∧ . . . ∧©n−1q)

LTL2BA SPOT

n bsc(β′
n) States Time [s] States Time [s]

1 4 4 0.01 4 0.074
2 9 9 0.01 9 0.078
3 16 16 0.01 16 0.081
4 25 25 0.01 25 0.089
5 36 36 0.01 36 0.101
6 49 49 0.01 49 0.119
7 64 64 0.01 64 0.149
8 81 81 0.03 81 0.195
9 100 100 0.06 100 0.261
10 121 121 0.24 121 0.353
11 144 144 0.90 144 0.480
12 169 169 3.62 169 0.655
13 196 196 14.64 196 0.886
14 225 225 61.44 225 1.186
15 256 256 287 256 1.561
16 289 289 1165 289 2.048
17 324 324 4759 324 2.640
18 361 361 19408 361 3.389
19 400 400 53450 400 4.305
20 441 N/A N/A 441 5.379

and they are doing it in a quick time. The results of these experiments are in the Table II. However, let us consider the formula

β′n = ♦(p ∧©p ∧©2p ∧ . . . ∧©n−1p) ∧ ♦(q ∧©q ∧©2q ∧ . . . ∧©n−1q) .

The formulasβn andβ′n are logically equivalent. Table III contains the results of experiments for the formulasβ′n. We observed
that LTL2BA produces the optimal automatons, but the time requirements increase dramatically. It turns out that the formula
simplifications in the preprocessing stage play a very important role. Notice that the SPOT translator can do such optimizations
automatically.

Both considered tools produce optimal automata for the formula

ψn = �♦p1 ∧�♦p2 ∧ . . . ∧�♦pn ,

however, the consumed time grows very quickly and SPOT died for formulasψ19 andψ20. Table IV contains the results for
formulasψn. Finally, Table V contains the results of experiments for formulas of the form

ξn = ♦�p1 ∨ ♦�p2 ∨ . . . ∨ ♦�pn .

Both tools produced optimal B̈uchi automata in a very short time.

V. CONCLUSIONS ANDFUTURE WORK

All of the LTL formulas analyzed in this paper are widely used in formal verification. In fact we focused in this paper on
formulas which we used in verification of properties of some distributed protocols. Observation from the last section shows that
the considered translators are far from being ideal. In many simple cases the size of the automata generated by both analyzed
translators is bigger than the lower bound (i.e. its Büchi state complexity) or the time consumed by these tools is very big.

TABLE IV
FORMULA ψn = �♦p1 ∧�♦p2 ∧ . . . ∧�♦pn

LTL2BA SPOT
n bsc(ψn) States Time [s] States Time [s]
1 2 2 0.01 2 0.074
2 3 3 0.01 3 0.075
3 4 4 0.01 4 0.078
4 5 5 0.01 5 0.085
5 6 6 0.02 6 0.099
6 7 7 0.16 7 0.133
7 8 8 1.30 8 0.212
8 9 9 12.89 9 0.397
9 10 10 106 10 0.828
10 11 11 1209 11 1.833
11 12 12 11442 12 4.149
12 13 N/A N/A 13 9.415
13 14 N/A N/A 14 21.296
14 15 N/A N/A 15 48.123
15 16 N/A N/A 16 108.402
16 17 N/A N/A 17 242.422
17 18 N/A N/A 18 542.459
18 19 N/A N/A 19 1209.573
19 20 N/A N/A RIP RIP
20 21 N/A N/A RIP RIP

TABLE V
FORMULA ξn = ♦�p1 ∨ ♦�p2 ∨ . . . ∨ ♦�pn

LTL2BA SPOT
n bsc(ξn) States Time [s] States Time [s]
1 2 2 0.002 2 0.075
2 3 3 0.002 3 0.076
3 4 4 0.002 4 0.076
4 5 5 0.002 5 0.078
5 6 6 0.002 6 0.079
6 7 7 0.002 7 0.079
7 8 8 0.002 8 0.080
8 9 9 0.002 9 0.081
9 10 10 0.002 10 0.082
10 11 11 0.002 11 0.080
11 12 12 0.002 12 0.081
12 13 13 0.002 13 0.080
13 14 14 0.002 14 0.080
14 15 15 0.002 15 0.082
15 16 16 0.002 16 0.084
16 17 17 0.002 17 0.085
17 18 18 0.002 18 0.086
18 19 19 0.002 19 0.087
19 20 20 0.002 20 0.089
20 21 21 0.002 21 0.090

In fact we have discussed in this paper some examples of LTL formula patterns (or templates). In formal verification the
class of useful LTL-patterns, up to our knowledge, is not too large; it consists of few hundred of templates. Let us call the
LTL-patternsrecognizedif we know the size and the construction of their minimal Büchi automata for each instance of the
pattern. Suppose that after some period of investigations most of useful patterns in formal verification will be recognized.
Then we would be able to construct a database with these patterns and algorithms for generation of their Büchi automata. This
database, when completed, could be used in tools like SPIN for building Büchi automatons and in many (or even most) cases
the time for this operation could be reduced from several hours to few seconds needed for the access to the database. Notice
also that only one database of this kind is required in the world.

We plan to expand the class of LTL-patterns frequently used in formal verification with precisely calculated Büchi state
complexity and to extend our investigations onto other metrics of complexity of Büchi automatons.

ACKNOWLEDGMENT

The paper was partially supported by grant no 342162 of the Institute of Mathematics and Computer Science of Wrocław
University of Technology.

REFERENCES

[1] G. J. Holtzmann,The Spin Model Checker. Addison-Wesley, 2003.
[2] R. Gerth, D. Peled, M. Y. Vard, and P. Wolper, “Simple on-the-fly automatic verification of linear temporal logic,” inProceedings of the 15th IFIP

Symp. of Protocol Specification, Testing, and Verification. North-Holland, 1995, pp. 3–18.
[3] P. Gastin and D.Oddoux, “Fast ltl to büchi automata translation,” inProceedings of the 13th International Conference on Computer Aided Verification.

Springer-Verlag, 2001, pp. 53–65.
[4] S. Schwon and J. Esperza,Proceedings of 11th Internat. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’05), ser.

LNCS. Springer-Verlag, 2005, vol. 3440, ch. A note on on-the-fly verification algorithms, pp. 174–190.
[5] J. Geldenhuys and A. Valmari,Proceedings of 10th Internat. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’04),

ser. LNCS. Springer-Verlag, 2005, vol. 2988, ch. Tarjan’s algorithm makes on-the-fly LTL verification more efficient, pp. 205–219.
[6] K. Etessami and G. J. Holzmann,Proceedings of the 11th International Conference of Concurrency Theory, ser. LNCS. Springer-Verlag, August 2000,

vol. 1877, ch. Optimizing B̈uchi automata, pp. 154–167.
[7] J. Geldenhuys and H. Hansen,Model Checking Software, 13th Int’l SPIN Workshop, ser. LNCS. Springer-Verlag, 2006, vol. 3925, ch. Larger automata

and less work for LTL model checking, pp. 53–70.
[8] K. Rozier and M. Vardi, “LTL satisfiability checking,” in14th Workshop on Model Checking Software (SPIN ’07), ser. Lecture Notes in Computer

Science (LNCS), vol. 4595. Springer-Verlag, 2007, pp. 149–167.
[9] A. Duret-Lutz and D. Poitrenaud, “Spot: an extensible model checking library using transition-based generalized büchi automata,” inProceedings of the

12th IEEE/ACM International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’04). IEEE
Computer Society Press, 2004, pp. 76–83.

[10] A. Pnueli, “The temporal logic of programs,” inProceedings of the 18th IEEE Symposium on Foundations of Computer Science (FOCS 1977). IEEE
Computer Society Press, 1977, pp. 46–57.

[11] J. Büchi, “On a decision method in restricted second-order arithmetic,” inProccedings of International Congres on Logic Method and Philosophy of
Science, 1960. Stanford University Press, 1962, pp. 1–12.

[12] P. Wolper, M. Vardi, and A. Sistla, “Reasoning about infinite computation paths,” inProceedings of the 24th Symposium on Foundations of Computer
Science, 1983, pp. 185–194.

