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Abstract. We consider the problem of estimating a size of wireless sensor net-
works (WSNs). The problem arise in tasks that sensors have to quickly obtain
approximate size of the network to use algorithms i.e. leader election or initial-
ization problem that to work efficiently require this information. In this paper we
present two phase algorithm based on order statistics and balls-bins model which
effectively estimate the size of WSNs.
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1 Introduction

Most wireless sensor network (WSN) algorithms require knowing, at least approxi-
mately, the size of the sensor network to work efficiently. In other applications the
sensors should cope with mobility and changing connectivity and our goal is to count
these sensors in a given area. For example, we want to effectively count the number of
distinct people in mass events. Then, when the counter exceeds some threshold, we can
send an alert message [1]. Thus increase security of those events.

At first, the solution to this problem seems quite simple. We can just store and count
the number of different sensors identifiers. However, what if the number of sensors is
large for example several hundreds or thousands. Let us assume for the moment that
we have a thousand sensors and each has 32 bit identifier, then we need almost 4kB
of memory to store those identifiers. Moreover, we need at least logarithmic time to
insert each new encounter sensor or just check if the encounter sensor has already been
inserted. Since, we restrict our attention to a quarter size sensors e.g. MICA2DOT which
is based on the Atmel ATmega128 with available 4kB memory for data storage. Then,
our simple algorithm will take all available memory. However, if the number of sensors
exceeds thousand then this algorithm simply fails.

In this paper, we present probabilistic algorithm that are capable to count sensors
with a lot smaller memory consumption and two of them run also in a constant time. Our
algorithm can count even to 100 000 or more with less than 1kB of memory available
and they have a very low variance of estimation.



1.1 Related Work

2 The Basic Algorithm

Our algorithm consists of two phases. To make the exposition clearer, we describe the
intiutive way to look at the algorithm. In the first phase the ordered statistic is used to
quickly obtain a rough estimate n̂1 of the network size. Next, in the second phase we
use the balls and bins model with preselection to obtain a more accurate approximation,
for preselection the estimate n̂1 is used. Namely, each sensor decides to participate in
the second phase with probability

p = min{C/n̂1, 1}, (1)

where the optimal value of C is to be determined. Then, we obtain the estimation of
the number of sensors n̂2 participating in the second phase. Dividing n̂2 by p gives the
estimation of the total number of sensors n̂. Notice that as a matter of fact each of this
two phases could be used separately to approximate the number of sensors. However,
in section 3 we show that together they obtain a lot better results.

2.1 First Phase: Order statistics

The first phase of our algorithm is based on ordered statistics. Initially each sensor
allocates a table of real numbers T of size k and generates a random value x from the
unit interval. Then, each sensor inserts x into its table T , broadcast x to all neighbours
and goes to sleep. Upon receiving the message x, a sensor wakes up and tries to insert x
into its table T . At first, the algorithm checks whether the value x has already occurred
in the table. If so, the message is ignored. Otherwise, two cases are considered. If the
table T is not yet completely filled, the value x is inserted into the table. If the table T is
already filled up, a sensor checks whether the value x is smaller than the largest number
in the table. If so, the largest element is replaced by x. Finally, in the case the table T
has been changed, it is sorted and sensor forwards the new element to all neighbours.
At any time a sensor can estimate the network size by counting the number of inserted
elements or, if the whole table T is filled up, by calculating (k − 1)/T [k], where T [k]
is the largest number in the table.

Analysis Let X1, . . . , Xn be independent random variables with the uniform density
on the interval [0, 1). The order statistics X1:n, . . . Xn:n are the random variables ob-
tained from X1, . . . , Xn by sorting in the increasing order each of its realizations. The
probabilistic density fk:n(x) of the variable Xk:n equals

fk:n(x) =
1

B(k, n− k + 1)
xk−1(1− x)n−k . (2)

(see e.g.[4]) where B(a, b) = Γ (a)Γ (b)/Γ (a + b). It is well known that E [Xk:n] =
k

n+1 . Let

Zk,n =
k − 1

Xk:n
.



Algorithm 1
Initialization
1: set T [i]← � for i = 1, . . . , k
2: x← generate uniformly at random a value from an interval (0, 1)
3: T [1]← x
4: broadcast 〈x〉 to neighbours

Upon receiving a message
1: receive 〈x〉
2: if ∀1≤i≤kT [i] 6= x then
3: if ∃1≤i≤kT [i] = � then
4: T [i0]← x for i0 such that T [i0] = � and sort T
5: broadcast 〈x〉 to neighbours
6: else
7: if x < T [k] then
8: T [k]← x and sort T
9: broadcast 〈x〉 to neighbours

10: end if
11: end if
12: end if
Get estimate number of sensors
1: if ∃1≤i≤kT [i] = � then
2: return |{i : T [i] 6= �}|
3: else
4: return (k − 1)/X[k]
5: end if

Directly from definition of the density fk:n we deduce that for k ≥ 2 we have

E [Zk,n] =
∫ 1

0

k − 1

x
fk:n(x)dx = n ,

and for k ≥ 3 we have

Var [Zk,n] =
n(n− k + 1)

k − 2
.

Therefore, we proved the following theorem

Theorem 1. Let 3 ≤ k < n. Then the random variable Zk,n is an unbiased estimator
of the number n and

σ(Zk,n)
n

=
1√
k − 2

√
1− k − 1

n
=

1√
k − 2

+O

(
1

n

)
. (3)

For the estimator Z∗ from [2] we have EZ∗ = n(1 + o(1)) and σ(Z∗)/n ∼ 1√
k−2 .

Hence the estimatorZk,n has better statistical properties (is unbiased) than the estimator
Z∗.

The equation 2 together with Chebyshev’s inequality gives some information about
the precision of the estimatorZk,n. However this approach is not precise. We will prove



a better estimates by reducing properties of order statistics to the Bernoulli distribution
and using the classical Chernoff inequalities.

Let Bp,n denotes a random variable with binomial distribution with parameters p
and n, i.e. Pr[Bp,n = k] =

(
n
k

)
pk(1− p)n−k.

Lemma 1. Suppose that k ≤ n and α ∈ (0, 1).

1. If αn < k then Pr[Xk:n ≤ α] ≤ exp(− 1
3
(k−αn)2
αn )

2. If αn > k then Pr[Xk:n ≥ α] ≤ exp(− 1
2
(k−αn)2
αn )

Proof. We shall use in the proof the following well known form of Chernoff bounds for
binomial distribution:

Pr[Bp,n ≥ (1 + δ)np] < exp

(
−1

3
npδ2

)
(4)

Pr[Bp,n ≤ (1− δ)np] < exp

(
−1

2
npδ2

)
(5)

(see e.g. [5]).
Let X1, . . . , Xn we a sequence of independent uniformly distributed random vari-

able in the interval (0, 1). Let Yi = 1 if Xi ≤ α and Yi = 0 otherwise. The random
variable Bα,n = Y1 + . . .+ Yn have binomial distribution with parameters n and α.

Observe that the sentence Xk:n ≤ α means that |{i : Xi ≤ α}| ≥ k i.e. that
Bα,n ≥ k. Notice that k = αn(1 + k−αn

αn ). Hence if αn < k then from inequality 20
we get

Pr[Xk:n ≤ α] < exp(−1

3
nα

(
k − αn
αn

)2

) = exp(−1

3

(k − αn)2

αn
) .

Suppose now that αn > k. Observe that Xk:n ≥ α is equivalent to Bα,n ≤ k. So
we may use inequality 21 and in a similar way we get the result. ut

Theorem 2. Suppose that η > 0, 0 < ε < 1 and 3 ≤ k ≤ n. Then

Pr[
n

1 + η

k − 1

k
<
k − 1

Xk:n
<

n

1− ε
k − 1

k
] > 1−

(
e−

kη2

2(1+η) + e−
kε2

2(1−ε)

)
(6)

Proof. Let 0 < ε < 1. From the first part of the last Lemma we obtain

Pr[Xk:n ≤ (1− ε)k
n
] ≤ exp(−1

3

kε2

1− ε
)

Observe next that X ≤ (1− ε) kn if and only n
1−ε

k−1
k ≤

k−1
X . Hence

Pr[
n

1− ε
k − 1

k
≤ k − 1

Xk:n
] ≤ exp

(
−1

3

kε2

1− ε

)
In a similar way we show that

Pr[
n

1− η
k − 1

k
≤ k − 1

Xk:n
] ≥ exp

(
−1

2

kη2

1− η

)
ut



After putting η = 1
20

(
1 +
√
41
)
, ε = 1

40

(
−3 +

√
249
)

and k = 400 into the last
formula from the last theorem we get the following bound:

Corollary 1. Suppose that n ≥ 400. Then

Pr[0.728n <
399

X400:n
< 1.466n] ≥ 1− 2

e20
≈ 1− 4

109

Remark 1. Numerical calculations with the incomplete regularized Beta functions shows
that in this case for all n <= 107 we have Pr[0.728n < 399

X400:n
< 1.466n] ≥

1− 1.357057799 ∗ 10−11.

Corollary 2. Suppose that n ≥ 400. Then

Pr[0.847n <
399

X400:n
< 1.217n] ≥ 0.99

Remark 3. Numerical calculations with the incomplete regularized Beta functions shows
that in this case for all n <= 107 we have Pr[0.847n < 399

X400:n
< 1.217n] ≥ 0.9995.

Also, for all n <= 107 we have Pr[(1− 1
6 )n <

399
X400:n

< (1 + 1
6 )n] ≥ 0.9987

2.2 Second Phase: Balls-Bins Model with Preselection

The second phase of our algorithm is based on the balls and bins model. At first each
sensor allocate a bit map of size m, which represent m bins, and initialize all entries
to "0"s. The sensors at this point decides whether it will participate (b = 1) or not. If
so, it generates random value x, sets xth bit to "1" and broadcast x to all neighbours.
Next, sensor goes to sleep and wakes up upon receiving the message x. Then, it checks
if bin T [x] is empty, if so it sets xth bin to "1" and forwards message to neighbours.
Otherwise, sensor does nothing and goes to sleep. Notice that if a sensor receives the
same message twice then the proper bit is already set so it does not forward the mes-
sage further. Since we have usually a lot more sensors than bins it also can happen that
two stations generate the same value, thus further decreases the number of transmit-
ted messages. At any time we can get the estimated number of sensors by calculating
log(m/x̂)/ log(1 − p/m), where x̂ is the number of empty bins. As a hash function h
we can even take identity function h(x) = x. However, notice that in our algorithm it
is possible that sensors have different numbers of bins. For example, we can generate
32-bit random values. Then each sensor can use simple hash function h(x) = x mod m,
where m < 232.

Analysis Let us assume that we have n balls and m bins. Let us fix a probability
p ∈ [0, 1]. Then, we consider the following two round process: in the first round each
ball decides with probability p whether it will participate in the next round or not. In
the second round each ball chooses uniformly at random one of the bins. Let random
variable Xm,n denotes the number of empty bins after n balls have been thrown. In the
theorem below we shall generalize the result from [3], which holds only for p = 1.



Algorithm 2
Initialization
1: set bitmap T [i]← 0 for all i = 0, . . . ,m− 1

2: b←
{
1 with probability p,
0 otherwise.

3: if b = 1 then
4: x← random(0,m− 1)
5: T [h(x)]← 1
6: broadcast 〈x〉 to neighbours
7: end if

Upon receiving a message
1: receive 〈x〉
2: if T [h(x)] = 0 then
3: T [h(x)]← 1
4: broadcast 〈x〉 to neighbours
5: end if

Get estimate number of sensors
1: x̂ = m−

∑m−1
i=0 T [i]

2: return log(x̂/m)/ log(1− p/m)

Theorem 3. Let p ∈ [0, 1]. Then

E [Xm,n] = m(1− p

m
)n . (7)

Proof. Let Ani denotes the event that a i-th bin is empty for all 1 ≤ i ≤ m after n balls
have been thrown. Then Pr[Ani ] = (1− 1

m )n. Let

Y ni =

{
1 if a i-th bin is empty,
0 otherwise.

Thus, Xm,n =
∑m
i=1 Y

n
i . Moreover, let Z denotes the event that k balls have decided

to participate in the second round. Then Pr[Z = k] =
(
n
k

)
pk(1− p)n−k and

E [Xm,n] =

n∑
k=0

E [Xm,n|Z = k] Pr[Z = k].

Since E [Xm,n|Z = k] =
∑m
i=1 E

[
Y ki
]
=
∑m
i=1 Pr[Y

k
i ] = m(1 − 1

m )k, we obtain
that

E [Xm,n] =

n∑
k=0

m(1− 1

m
)k
(
n

k

)
pk(1− p)n−k = m(1− p

m
)n.

ut

Thus, we can derive the estimator n̂ for the number of balls that have been thrown to m
bins as

n̂ =
log(Xm )

log(1− p
m )

. (8)



Theorem 4. Let p ∈ [0, 1]. Then

Var [Xm,n] = m((1− p

m
)n − (1− 2p

m
)n) +m2((1− 2p

m
)n − (1− p

m
)2n). (9)

Proof. We keep the notation from the proof of Theorem 3. By the law of the total
variance

Var [Xm,n] = E [Var [Xm,n|Z]] +Var [E [Xm,n|Z]] .

we have
Var [Xm,n] = E

[
E
[
(Xm,n)

2|Z
]]
−E [Xm,n]

2
. (10)

We will use the formula

E
[
E
[
(Xm,n)

2|Z
]]

=

n∑
k=0

E
[
(Xm,n)

2|Z = k
]
Pr[Z = k]. (11)

Notice that

E
[
X2
m,n|Z = k

]
= E

[
(Y k1 + . . .+ Y km)2

]
= E

 m∑
i=1

(Y ki )
2 +

∑
i6=j

Y ki Y
k
j

 .
Since (Y ki )

2 = (Y ki ) we obtain

m∑
i=1

E
[
(Y ki )

2
]
=

m∑
i=1

E
[
(Y ki )

]
= E [Xm,n|Z = k] .

Let us now assume that i 6= j. Since the assignment of the balls is independent

E
[
Y ki Y

k
j

]
= Pr

[
Aki ∩Akj

]
= (1− 2

m
)k.

Then
E
[
X2
m,n|Z = k

]
= m(1− 1

m
)k +m(m− 1)(1− 2

m
)k. (12)

Finally, combining formulas (??) , (??) and (??) we obtain the assertion. ut

As using the formula (6) is rather inconvenient, we will henceforth use the following
good approximation

Var [Xm,n] ≈ m(e−np/m − e−2np/m − np2

m
e−2np/m) (13)

In the derivation of this approximation we use

m
(
(1− 2p/m)n − (1− p/m)2n

) ∼= np2

m
e−2np/m

since...[3, p.225]



2.3 The Complete Algorithm

To optimize the complete algorithm we shall find the value of C in (1) minimizing the
variance of n̂. As n̂1 is unbiased estimator of n let us temporarily assume that p = C/n.
Let random variable Vm,n = Xm,n/m denotes the fraction of empty bins. We have

E [Vm,n] =

(
1− C/m

n

)n
, (14)

Var [Vm,n] ≈
e−C/m − e−2C/m(1− C2

nm )

m
. (15)

To give an approximation of the variance of the estimator n̂ we expand the function
log(Vm,n) by its Taylor series about x0 = e−C/m ≈ E [Vm,n] and truncate after the
second term

n̂ =
log(Vm,n)

log(1− C
nm )

≈ 1

log(1− C
nm )

(
−C
m

+
Vm,n − x0

x0

)
. (16)

The error caused by such a truncation was discussed in [3]. Then

Var [n̂] ≈
(
x0 log(1−

C

nm
)

)−2
V ar[Vm,n] . (17)

For values of x close to 0 we have

log(1− x) = −x+O(x2) .

Hence, log(1− C
nm ) ≈ − C

nm (UZASADNIC). Finally, we obtain that

Var [n̂] ≈ n2m

C2

(
eC/m − C2

nm
− 1

)
. (18)

Let V (C) denote the right hand side of the above equation. Now we are able to find an
approximation of the optimal value of C

C∗ = argmin
C∈(0,∞)

V (C) = m

(
2 +W(− 2

e2
)

)
≈ 1.594m . (19)

Moreover, one can check that the standard error SE [n̂] can be tightly upper bounded
by the following function of the parameter C (SPRAWDZIC !)

SE(C) =
√
m

C

(
eC/m − C2

nm
− 1

)1/2

. (20)
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Fig. 1. Comparison of simulation results
(dots) to SE(C) for n = 104, m = 800.
Notice that C∗ ≈ 1275.(WYKRES DO
POPRAWY)
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Fig. 2. Function SE(x) for C = 1.594m
and m = 800

DALEJ WSZYSTKO DO POPRAWY:

Setting p = C∗/n̂1 and x = n̂1/n, we may express the standard error as a function
of x

SE(x) =
x

1.594
√
m

(
e1.594/x − 1

)1/2
.

For definiteness let us assume that each sensor has no more than 100 bytes of available
memory. Then in the first phase we need to set k = 16 as we take 6 bytes for each
statistic, to ensure the correctness of the procedure for networks up to size 1.5 × 107.
In the second phase we set m = 800. Hence, as we put in the formula (22) η = 1.1 and
ε = 0.7, we obtain that

Pr[0.446 < x < 3.125] > 0.99 .

Thus, we can show that inequality SE(x) < 0.06 holds with probability at least 0.99
(see Figure 2).

3 Experimental Results

4 Conclusions
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