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Jacek Cichoń and Przemys law Szczepaniak

Abstract. In this article we consider linear isomorphisms over the field of
rational numbers between linear spaces R

2 and R. We prove that if f is such an
isomorphism, then the image by f of the unit disk is a strictly non-measurable

subset of the real line, which is strongly non-similar to any classical non-
measurable subset of reals. We also show the consistency and independence
of the proposition that all images of bounded measurable subsets of the plane

via a such mapping are non-measurable.

1. Introduction

Let us recall a well known theorem essentially due to S. Banach. Let (G, +) and
(H, +) be locally compact Polish groups (not necessarily abelian). If f : G −→ H
is a homomorphism, which is Haar measurable or has the Baire property, then
f is continuous. The proof follows immediately from well known theorem of H.
Steinhaus. Indeed, if f has one of the above properties, then there exists a ”massive”
set A ⊆ G such that f ↾ A is continuous. Then f ↾ A − A is also continuous and
by that theorem of Steinhaus A − A contains a neighborhood of unity. Thus f is
continuous everywhere.

Let R denotes the real line. Let us say that X ⊆ R
m is strictly non-measurable

if the inner measures of X and of R
m \X both vanish. And X is strictly non-Baire

if all Borel sets included in X or in R
m \X are meager (i.e. of the first category).

Consider the case when G = R
m, H = R and f is discontinuous. Then if I

is a non-degenerated interval, then f−1[I] is strictly non-measurable and strictly
non-Baire. This was shown by A. Ostrowski and M. Kuczma (see [13], [8]).

All that suggested to us a study of images of sufficiently regular subsets of R2

in the case when f is an isomorphism of R
2 onto R.

Recall that all the spaces R
m (m > 0) viewed as linear spaces over the field Q

of rational numbers are isomorphic (all have Hamel bases of the same power c). Let
f be an isomorphism of R

2 onto R. We shall prove that if D is a disk of positive
radius, then f [D] is non-measurable and lacks the Baire property. Moreover, 1.
The image f [D] is strictly non-measurable and strictly non-Baire; 2. The following
proposition is consistent in ZFC: (⋆) For all isomorphisms f : R

2 −→ R and all
bounded measurable sets A ⊆ R

2 of positive measure (or containing a non-meager
Borel set), f [A] is not measurable (or non-Baire). I. Rec law has proved that if
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we assume the Continuum Hypothesis (CH), then one can prove the negation of
(⋆). This follows from his theorem (a proof will be included below with his kind
permission): 3. (Assuming CH). Let A ∪ B = R2 be such that A is meager and
B is of measure zero (thus both A and B are Lebesgue measurable and have the
Baire property). Then there exist isomorphisms f , g : R

2 −→ R such that f [A] is
of measure zero and g[B] is meager.

Remarks: 1. There exist isomorphisms f : R
2 −→ R such that both sets

f [R × {0}] and f [{0} × R] are measurable. This follows from Theorem 5 of P.
Erdös, K. Kunen, and R. Mauldin [6]. 2. There exist isomorphisms f : R

3 −→ R
2

such that no image of a bounded set in R
3 is strictly non-mesurable nor strictly

non-Baire in R
2. Indeed, if f(x, y, z) = (g(x, y), z), where g : R

2 −→ R is an
isomorphism, then images of bounded sets are not everywhere dense in R

2.

2. Concepts and Notations

We use the standard set theoretical notations. The set of natural numbers is
denoted by ω. We identify the set ω with the first infinite cardinal number. We
shall denote by c the cardinal number continuum. The cardinality of a set A is
denoted by |A|. If f : A −→ B and X ⊆ A, then we shall denote by f [X] the image
of X by f . The complement of a set A to a fixed space is denoted by Ac. The
power set of a set A is denoted by P(A). We denote by ZFC the Zermelo-Fraenkel
set theory with the Axiom of Choice.

Let (G, +) be a group. For the time being, we shall not assume that + is an
abelian operation. If A,B are subsets of G, then we mean by the algebraic sum
A+B the set {a+ b : a ∈ A & b ∈ B} and by A−B the set {a− b : a ∈ A & b ∈ B}.
We write A + b instead of A + {b} if b ∈ G.

If A ⊆ R
n, then we denote by Span(A) the set of all elements of the form

q0 · a0 + . . . + qn · an, where n is an arbitrary natural number, q0, . . . , qn ∈ Q and
a0, . . . , an ∈ A.

Let E be a topological space. Let Int(A) denote the interior of a set A ⊆ E.
We denote the family of all Borel subsets of the space E by Bor(E), the σ-ideal of
first category subsets of E by B0(E), and the family of all subsets of E with the
Baire propety by B(E). If (X, d) is a metric space, a ∈ X and ε > 0, then we denote
the open ball with center a and radius ε by B(a, ε). We denote the n-dimensional
Lebesgue measure on the space R

n by λn, the family of all Lebesgue measurable
subsets of R

n by M(Rn), and the σ-ideal of Lebesgue measure zero subsets of R
n

by M0(Rn). We simplify notations in the case of the real line. For example, λ
denotes λ1,M0 denotes the idealM0(R), B0 denotes B0(R), Bor denotes Bor(R),
and so on.

In 1920, H. Steinhaus showed (see [18]) that if A,B ⊆ R are Lebesgue mea-
surable and λ(A) > 0, λ(B) > 0, then Int(A − B) 6= ∅. A similar fact for the
Baire property is also well known (see e.g. [14]). We shall use the following two
generalisations of these results:

Theorem 2.1. (McShane, see [11]) Let (G, +) be a topological group and let
A,B ⊆ G be sets of second category such that one of them has the Baire property.
Then Int(A−B) 6= ∅.
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Theorem 2.2. (Beck, Corson, Simon, see [1]) Let (G, +) be a locally compact
topological group with completed Haar measure and let A,B ⊆ G have positive outer
measures and one of them is measurable. Then Int(A−B) 6= ∅.

Let J be an ideal of subsets of a topological space E. We say that the ideal J
has a Borel base if for each A ∈ J there exists B ∈ Bor(E) ∩ J such that A ⊆ B.
Notice that both ideals B0 and M0 have Borel bases.

A field S of subsets of a set X is called nontrivial if S 6= {∅,X} and S 6= P(X).
An ideal J of subsets of a set X is called nontrivial if J 6= {∅} and

⋃
J /∈ J .

Suppose that S is a σ-field of subsets of a set X and that J is a σ-ideal of
subsets of X. Then we denote the smallest σ-field containing S∪J by S(J ). It is well
known that S(J ) = {A△B : A ∈ S & B ∈ J }. Let us notice that Bor(M0) =M
and Bor(B0) = B.

Let S be a σ-field of subsets of X. We define S− = {A ⊆ X : P(A) ⊆ S}.
Then S− is a σ-ideal and S− ⊆ S. It follows easily from [3] that if J is a σ-ideal of
subsets of a Polish topological space E with a Borel base, then Bor(E)(J )− = J .
Therefore M− =M0 and B− = B0.

From now on, (G, +) means an abelian group. If F is a family of subsets of
a group (G, +), then we say that F is invariant if A + g ∈ F for each A ∈ F
and g ∈ G. Notice that if S is an invariant σ-field of subsets of G, then S− is an
invariant σ-ideal of subsets of the set G.

Let S be a field of subsets of a set X and let A ⊆ X. Then we say that A is
S-non-measurable if A /∈ S. The set A is downward S-null if P(A) ∩ S ⊆ S−. We
say that A is upward S-full if P(Ac) ∩ S ⊆ S−. Finally, we say that A is strictly
S-non-measurable if A is downward S-null and upward S-full.

Definition 2.1. Let S be a field of subsets of a topological group (G, +). Then
we say that S has the strong Steinhaus property if Int(A−B) 6= ∅ for each A,B ⊆ G
such that A ∈ S \ S− and B /∈ S−.

Therefore, by Theorems 2.1 and 2.2, the σ-fields M and B have the strong
Steinhaus property.

3. Main results

A function f : R
n −→ R

m is said to be additive if it satisfies the Cauchy
equation

f(x + y) = f(x) + f(y)

for each x, y ∈ R
n. We begin our considerations with some preliminary well known

facts. If f : R
n −→ R

m is an additive function, then the following three properties
of the function f are equivalent: 1. f is continuous; 2. f is continuous in zero; 3.
there exists a nonempty open ball B ⊆ R

n such that f [B] is a bounded set.
We shall consider the finite dimensional spaces R

n as linear spaces over the
field of rational numbers. Notice that f : Rn −→ Rm is additive if and only if f is
linear over Q. Recall that if f : R

n −→ R
m is an isomorphism and n 6= m, then f

is not continuous. Finally, it is well known and easy to show that if f : R
n −→ R

is a discontinuous additive function, then the graph of f is a dense subset of the
topological space R

n+1. Therefore f [U ] is a dense subset of R for each nonempty
open subset U of the space R

n.
We shall call a function briefly isomorphism if it is a linear isomorphism over

the field of rational numbers.



4 JACEK CICHOŃ AND PRZEMYS LAW SZCZEPANIAK

Theorem 3.1. Let S be a nontrivial, invariant σ-field of subsets of the group
(R, +) with strong Steinhaus property containing all finite sets. Let f : R

2 −→ R

be an isomorphism and let A be a bounded subset of R2 such that countably many
translations of A cover R

2. Then the image f [A] is S-non-measurable.

Proof. Suppose that f [A] ∈ S and that T is a countable subset of R
2 such

that A + T = R
2. Notice that f [A + T ] = f [A] + f [T ] and that S− is a nontrivial

invariant σ-ideal. Therefore f [A] /∈ S−. By the strong Steinhaus property of the σ-
field S there exists a nonempty open interval I ⊆ f [A]− f [A]. Hence I ⊆ f [A−A],
so f−1[I] ⊆ A− A. But f−1 is an isomorphism and A− A is a bounded subset of
R

2, so f−1 is a continuous additive function, which is impossible. �

We may apply Theorem 3.1 to the σ-fieldsM, B and to a nonempty open ball
B. Hence we deduce that if f : R

2 −→ R is an arbitrary isomorphism, then the
image f [B] is non-measurable and does not have the Baire property.

Theorem 3.2. Let S be a nontrivial, invariant σ-field of subsets of the group
(R, +) with the strong Steinhaus property containing all finite sets. Let f : R

2 −→ R

be an isomorphism and let A ⊆ R
2 be such that Int(A) 6= ∅ and Int(Ac) 6= ∅. Then

the image f [A] is strictly S-non-measurable.

Proof. It is sufficient to show that the image of any nonempty open ball
B(a, ε) is upward S-full, because this implies that both f [A] and its complement
are upward S-full, which gives strictly S-non-measurability of f [A].

Let B⋆ = f [B(a, ε
2
)], D = f [B((0, 0), ε

2
)]. Notice that B(a, ε

2
) + B((0, 0), ε

2
) =

B(a, ε). Therefore we have B⋆ + D = f [B(a, ε)].
Suppose now that there exists a set E ∈ S \ S− such that f [B(a, ε)] ∩ E = ∅.

Then (B⋆ +D)∩E = ∅. Theorem 3.1 implies that B⋆ /∈ S, so the strong Steinhaus
property of S implies that Int(E − B⋆) 6= ∅. But D is a dense subset of the real
line, so let d ∈ (E −B⋆) ∩D. Let e ∈ E and b ∈ B⋆ be such that d = e− b. Then
e = b + d, so (B⋆ + D) ∩ E 6= ∅. This contradiction finishes the proof. �

Theorem 3.1 can be generalized to the class of all discontinuous isomorphisms
between spaces R

n and R
m for each n,m > 0. Theorem 3.2 cannot be similarly

generalized because of remark 2 in the introduction. However, 3.2 can be generalized
to the class of all discontinuous isomorphisms between R

n and R.

4. Additive images of measurable sets

We shall now show that the flattening of any set of positive Lebesgue measure
may be non-measurable. We restrict our attention to sets of positive Lebesgue
measure because of remark 1 in the introduction.

Before the formulation of the next result we shall introduce some notions. Let
us recall (see [7]) the following two cardinal numbers connected with ideals:

Definition 4.1. Let J be an ideal of sets. Then cov(J ) = min{|A| : A ⊆
J &

⋃
A =

⋃
J } and non(J ) = min{|A| : A ⊆

⋃
J & A /∈ J }.

Obviously, ℵ1 ≤ non(M0) ≤ c, ℵ1 ≤ cov(M0) ≤ c, ℵ1 ≤ non(B0) ≤ c, and
ℵ1 ≤ cov(B0) ≤ c. It is well known that both theories ZFC ∪ {non(M0) <
cov(M0)} and ZFC ∪ {non(B0) < cov(B0)} are relatively consistent (see [4]).
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Theorem 4.1. Suppose that non(M0) < cov(M0). Let f : R
2 −→ R be an

isomorphism and let A ⊆ R
2 be a bounded Lebesgue measurable set of positive

measure. Then the image f [A] is non-measurable.

Proof. Suppose that the image f [A] is Lebesgue measurable. We first show
that f [A] ∈ M0. Suppose that f [A] /∈ M0. The strong Steinhaus property of the
σ-fieldM implies that Int(f [A]−f [A]) 6= ∅. But A−A is bounded, so there exists a
nonempty ball B ⊆ R

2 such that B∩(A−A) = ∅. But then f [B]∩(f [A]−f [A]) = ∅,
which contradicts the density of f [B].

Let D = A + Q
2. Then f [D] = f [A] + f [Q2], so f [D] ∈ M0. It is clear that

λ2(R2 \D) = 0. Let T ⊆ R
2 be such that |T | = non(M0) and T /∈M0(R2).

We claim that R
2 = D−T . Indeed, suppose that D−T 6= R

2 and let us fix an
arbitrary element u ∈ R

2 \ (D − T ). Then (u + T ) ∩D = ∅, so u + T ⊆ Dc ∈M0.
From the equality R

2 = D−T we deduce that
⋃

t∈T (f [D]−f(t)) = f [D]−f [T ] =
R. Hence cov(M0) ≤ |T | = non(M0), which contradicts our assumption. �

An analogous result is true for the Baire property. Namely, if non(B0) <
cov(B0), f : R

2 −→ R is an isomorphism, and A ⊆ R
2 is a bounded set of second

category with the Baire property, then the image f [A] does not have the Baire
property.

In Theorem 4.1 we used the assumption non(M0) < cov(M0). We shall show
that some kinds of set theoretical assumptions are necessary for the validity of the
conclusion of Theorem 4.1. Before we formulate the next result we introduce one
technical notion. Namely, for a given set A ⊆ R

n we define

tc(A) = min{|T | : T ⊆ R
n & Q ·A + T = R

n}.

Lemma 4.2. If A, T ⊆ R, |T | < c and tc(A) = c, then |(Q ·A + T )c| = c.

Proof. Suppose on the contrary that |(Q · A + T )c| < c. Let us fix an a ∈ A
and put T ⋆ = T ∪ ((Q ·A + T )c− a). Then R 6= Q ·A + T ⋆ = (Q ·A + T )∪ (Q ·A +
(Q ·A + T )c − a) ⊇ (Q ·A + T ) ∪ (a + (Q ·A + T )c − a) = R, a contradiction. �

Let us remark that if f : R
n −→ R

m is an isomorphism then tc(f [A]) = tc(A)
for each A ⊆ R

n.

Lemma 4.3. If A,B ⊆ R and tc(A) = tc(Bc) = c, then there exists an isomor-
phism f : R −→ R over Q such that f [A] ⊆ B.

Proof. Let � be a well ordering of R. We define by transfinite recursion of
length c a sequence ((xα, yα))α<c such that {xα : α < c} and {yα : α < c} are
Hamel bases. Then the unique additive extension f of ((xα, yα))α<c will be the
required function. By fη we denote the unique additive extension of ((xξ, yξ))ξ<η.
Suppose that α < c and that the sequence ((xξ, yξ))ξ<α is defined.

Let us consider first the case when α is even. Let xα be the �-minimal element
of R \ Span({xξ : ξ < α}). We choose any element yα from

⋂
{qB − r : q ∈

Q \ {0} ∧ r ∈ Span({yξ : ξ < α})} \ Span({yξ : ξ < α}) (this is possible by Lemma
4.2). This choice of yα guarantees us that fα+1[A ∩ Span({xξ : ξ ≤ α})] ⊆ B.
Suppose now that α is even. Let yα be the �-minimal element of R \ Span({yξ :
ξ < α}). Then we put xα to be any element from

⋂
{qAc − r : q ∈ Q \ {0} ∧ r ∈

Span({xξ : ξ < α})} \ Span({xξ : ξ < α}). This guarantees us, as before, that
fα+1[A ∩ Span({xξ : ξ ≤ α})] ⊆ B. �
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Theorem 4.4 (Rec law). Suppose that cov(B0) = c. Then there exists a Lebesgue
measurable set A ⊆ R

2 such that Ac ∈ M0(R2) and an isomorphism f : R
2 −→ R

such that f [A] ∈M0.

Proof. Let us fix an isomorphism ϕ : R
2 −→ R. Let A ⊆ R

2 and B ⊆ R

be such that Ac ∈ M0(R2), A ∈ B0(R2), B ∈ M0, Bc ∈ B0. The assumption
cov(B0) = c implies that tc(A) = tc(Bc) = c. By Lemma 4.3, there exists an
isomorphism g : R −→ R such that g[ϕ[A]] ⊆ B. So g ◦ ϕ is the required function.

�

It is well known that Martin’s Axiom implies that cov(B0) = cov(M0) = c

(see [10]). Therefore, applying Theorems 4.1 and 4.4, we immediately obtain the
following result:

Corollary 4.5. The sentence ”for every isomorphism f : R
2 −→ R and

every bounded Lebesgue measurable set A ⊆ R
2 of positive measure the image f [A]

is non-measurable” is independent from the set theory ZFC.

An analogous result also holds for the Baire property.

5. Properties of images of additive functions

We shall show in this section that images of isomorphisms like in Theorem 3.1
have different properties than some other classical pathological subset of the real
line.

Let (G, +) be a subgroup of the group (Rn, +) and let ∼G be the equivalence
relation on R

n defined by the formula: x ∼G y ←→ x − y ∈ G. A selector of the
family R

n/ ∼G is called a set of Vitali’s type for the group (G, +) (see [5]). It is
well known that if (G, +) is a dense and countable subgroup of the real line (R, +),
then every set of Vitali’s type is not Lebesgue measurable and has no the Baire
property. Let us consider the subgroup (Z2, +) of the group (R2, +) and notice
that the square [0, 1)2 is a set of Vitali’s type for this group. Let f : R2 −→ R be
an isomorphism. Therefore the image of the set [0, 1)2 by f is a set of Vitali’s type
for the dense subgroup of the real line generated by {f(0, 1), f(1, 0)}. But if we
take instead of [0, 1)2 any nonempty open ball B, then the image f [B] is not a set
of Vitali’s type for any subgroup of the group (R, +) because there is no countable
T ⊆ R

2 such that the family {B + t : t ∈ T} is a partition of R
2. Therefore we see

that images f [A] of regular subsets A of R
2 may be and may not be Vitali’s type

subsets of R.

Let us now denote by B the unit ball in R
2 at center (0, 0). Let H ⊆ B be a

Hamel base of R
2, P be a perfect set of algebraic independent members (see [12]),

and P ⋆ ⊇ P be a Hamel base of R. Let us fix a bijection f0 : H −→ P ⋆ and let
f : R

2 −→ R be the isomorphism extending the function f0. Then P ⊆ f [B], so
the image of B by f is not a Bernstein set. On the other hand there exists an
isomorphism f : R2 −→ R such that f [B] is a Bernstein set. Such an isomorphism
can be easy defined by the transfinite recursion. Therefore, we see that images f [A]
of regular subsets A of R

2 may be and may not be Bernstein subsets of R.
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Let us recall that a set X ⊆ R is called a Lusin set if |X| = c and for each
L ∈ M0 we have |X ∩ L| < c. A set X ⊆ R is called a Sierpiński set if |X| = c

and for each K ∈ B0 we have |X ∩K| < c. Let us fix an isomorphism f : R2 −→ R

and let A ⊆ R
2 be such that A + T = R

2 for some countable T ⊆ R
2. Then f [A] is

neither a Lusin set nor a Sierpiński set. Namely, suppose that f [A] is a Lusin set.
Let C denote the classical ternary Cantor set. Then

|C| = |C ∩ (f [A] + f [T ])| ≤
∑

t∈T

|(C − f(t)) ∩ f [A])| < c.

A similar argument shows that f [A] is not a Sierpiński set.

Let us consider another construction. Let � be any well ordering of the real
line R of type continuum and let S={(x, y) ∈ R

2 : x � y}. Sierpiński observed (see
[17]) that S is not Lebesgue measurable. Let us call a subset S ⊆ R2 a Sierpiński
half-plane if for each x ∈ R we have |{t : (x, t) ∈ S}| < c and |{t : (t, x) /∈ S}| < c.
It is easy to see that each Sierpiński half-plane is not Lebesgue measurable. A
countable union of translates of Sierpiński half-plane is also a Sierpiński half-plane.
Therefore additive images of sets A such that A+T = R for some countable T ⊆ R

2

have different algebraic properties than Sierpiński half-planes.

Let H be a fixed Hamel base of R. Sierpiński observed (see [16]) that there are
q1, ..., qk ∈ Q such that the set q1H + ... + qkH is not Lebesgue measurable. Notice
that

⋃
n∈ω n · (q1H + ... + qkH) 6= R. But if A is a subset of the plane such that

0 ∈ Int(A) 6= ∅, then
⋃

n∈ω n · f [A] = R for any additive function from R
2 onto R.

Let µ be the completion of the probability Haar measure on the compact group
({0, 1}ω, +) and let U be a non-principal ultrafilter on ω. Let U⋆ = {x ∈ {0, 1}ω :
x−1[{1}] ∈ U}. Sierpiński proved that U⋆ is a non-measurable set with respect to
the measure µ (see [15]). There are two steps in the classical proof of this fact.
In the first one the equality U⋆ + 1 = {0, 1}ω \ U⋆ is shown, where 1 denotes the
constant function with value 1. In the second step it is shown that U⋆ + D = U⋆,
where D = {x ∈ {0, 1}ω : (∃n)(∀m > n)(xm = 0)}. Observe that if A ⊆ R

2 is a
bounded set, C 6= {0} is a nonempty subset of R, and f is an isomorphism between
R

2 and R, then f [A] + C 6= f [A]. Therefore the set f [A] has different algebraic
properties than the set U⋆.
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[4] L. Bukovský, Random forcing, w Set Theory and hierarchy theory V (A. Lachlan, M. Srebrny,

A. Zarach, eds.), Springer Lecture Notes in Mathematics 619, Springer–Verlag, Berlin, 1977,
101-117.
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[7] D. Fremlin, Cichoń’s diagram, Sem. d’Initiation s l’Analyse (G. Choquet, M. Rogalski, J.

Saint-Raymond, eds.) Univ. Pierre et Marie Curie, Paris 23, 1983-1984, 5.01-5.12.
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