
Wstęp do Informatyki i Programowania
Laboratorium nr 6

8, 13, 14, 15, 21 stycznia
Przeczytaj opis problemu 8 hetmanów (ang. 8 queens). Zauważ, że rozwiązanie problemu

w postaci listy pozycji w kolejnych kolumnach szachownicy musi być permutacją wierszy (z
warunku niebicia w poziomie i pionie).

Zadanie 1C (6 pkt)
Napisz w języku C program, który rozwiązuje problem n hetmanów następującym algo-

rytmem:
Generujemy kolejne n elementowe permutacje (funkcja z listy na ćwiczeniach) i spraw-
dzamy następną funkcją, czy permutacja jest rozwiązaniem (czy nie ma bić po skosie).
Program po podaniu n w linii poleceń powinien wypisać wszystkie znalezione rozwiązania

oraz na końcu ich liczbę.
Przykładowa sesja powinna wyglądać następująco:

1 szmaragd :~/ lab6/queens 3
2 Number of solutions: 0
3 szmaragd :~/ lab6/queens 4
4 2 4 1 3
5 3 1 4 2
6 Number of solutions: 2
7 szmaragd :~/ lab6/queens 6
8 2 4 6 1 3 5
9 3 6 2 5 1 4

10 4 1 5 2 6 3
11 5 3 1 6 4 2
12 Number of solutions: 4

Sprawdź liczbę rozwiązań dla n od 1 do 12.

Zadanie 1A (6 pkt)
Napisz w języku Ada program, który rozwiązuje problem n hetmanów następującym

algorytmem:
Generujemy kolejne n elementowe permutacje (funkcja z listy na ćwiczeniach) i spraw-
dzamy następną funkcją, czy permutacja jest rozwiązaniem (czy nie ma bić po skosie).
Program po podaniu n w linii poleceń powinien wypisać wszystkie znalezione rozwiązania

oraz na końcu ich liczbę.
Przykładowa sesja powinna wyglądać następująco:

1 szmaragd :=~/ lab6/queens 3
2 Number of solutions: 0
3 szmaragd :=~/ lab6/queens 4
4 2 4 1 3
5 3 1 4 2
6 Number of solutions: 2
7 szmaragd :=~/ lab6/queens 6
8 2 4 6 1 3 5
9 3 6 2 5 1 4

10 4 1 5 2 6 3
11 5 3 1 6 4 2
12 Number of solutions: 4

Sprawdź liczbę rozwiązań dla n od 1 do 12.

https://pl.wikipedia.org/wiki/Problem_o%C5%9Bmiu_hetman%C3%B3w
https://en.wikipedia.org/wiki/Eight_queens_puzzle


Algorytm 1 Pseudokod algorytmu z nawrotami dla problemu hetmanów.
1: procedure HETMANI(n)
2: position(1 : n)← all 0
3: bije_wiersz(1 : n)← all false
4: bije_przek1(2 : 2n)← all false
5: bije_przek2(−n+ 1 : n− 1)← all false
6: procedure USTAW(i)
7: for j from 1 to n do
8: if ¬(bije_wiersz[j] ∨ bije_przek1[i+ j] ∨ bije_przek2[i− j]) then
9: position[i]← j

10: bije_wiersz[j]← bije_przek1[i+ j]← bije_przek2[i− j]← true
11: if i < n then
12: USTAW(i+ 1)
13: else
14: DRUKUJ ROZWIĄZANIE
15: end if
16: position[i]← 0
17: bije_wiersz[j]← bije_przek1[i+ j]← bije_przek2[i− j]← false
18: end if
19: end for
20: end procedure
21: USTAW(1)
22: end procedure

Zadanie 1P (6 pkt)
Napisz w języku Python program, który rozwiązuje problem n hetmanów następującym

algorytmem:
Generujemy kolejne n elementowe permutacje (funkcja z listy na ćwiczeniach) i spraw-
dzamy następną funkcją, czy permutacja jest rozwiązaniem (czy nie ma bić po skosie).
Program po podaniu n w linii poleceń powinien wypisać wszystkie znalezione rozwiązania

oraz na końcu ich liczbę.
Przykładowa sesja powinna wyglądać następująco:

1 szmaragd :~/ lab6/python queens.py 3
2 Number of solutions: 0
3 szmaragd :~/ lab6/python queens.py 4
4 2 4 1 3
5 3 1 4 2
6 Number of solutions: 2
7 szmaragd :~/ lab6/python queens.py 6
8 2 4 6 1 3 5
9 3 6 2 5 1 4

10 4 1 5 2 6 3
11 5 3 1 6 4 2
12 Number of solutions: 4

Sprawdź liczbę rozwiązań dla n od 1 do 12.

Zadanie 2C (6 pkt)
Przeanalizuj pseudokod opisany w Algorytmie 1 i zaimplementuj go w języku C.



Napisz program, który po podaniu n w linii poleceń wypisuje wszystkie znalezione roz-
wiązania oraz na końcu ich liczbę.

Sprawdź liczbę rozwiązań dla n od 1 do 12. Który algorytm jest szybszy.

Zadanie 2A (6 pkt)
Przeanalizuj pseudokod opisany w Algorytmie 1 i zaimplementuj go w języku Ada.
Napisz program, który po podaniu n w linii poleceń wypisuje wszystkie znalezione roz-

wiązania oraz na końcu ich liczbę.
Sprawdź liczbę rozwiązań dla n od 1 do 12. Który algorytm jest szybszy.

Zadanie 2P (6 pkt)
Przeanalizuj pseudokod opisany w Algorytmie 1 i zaimplementuj go w języku Python.
Napisz program, który po podaniu n w linii poleceń wypisuje wszystkie znalezione roz-

wiązania oraz na końcu ich liczbę.
Sprawdź liczbę rozwiązań dla n od 1 do 12. Który algorytm jest szybszy.

Gra Mastermind W grze łamie się ukryty kod złożony z sekwencji czterech cyfr wybra-
nych spośród sześciu (od 1 do 6, cyfry mogą powtarzać się w sekwencji).

Gra dwóch graczy. Jeden układa kod z czterech cyfr (nazywać będziemy go koderem) a
drugi stara się go odgadnąć (nazywać będziemy go dekoderem).

Dekoder podaje sekwencję czterech cyfr i dostaje od kodera w odpowiedzi informację
ile cyfr jest poprawnych i na swoich miejscach, a ile poprawnych ale na złych miejscach.

Celem jest napisanie programu, który będzie łamał ukryty kod (grał jako dekoder). Za-
kładamy, że osoba uruchamiająca program jest koderem i zapisała sobie na kartce kod
złożony z czterech cyfr. Program cyklicznie drukuje swoją propozycję kodu (cztery cyfry z
zakresu od 1 do 6) i czeka na wprowadzenie przez kodera liczby cyfr na swoich miejscach i
liczby cyfr dobrych ale nie na swoich miejscach.

Program nie musi łamać kodu minimalną liczbą pytań. Wystarczy, że będzie to robił w
kilku pytaniach (maksymalnie ośmiu).

W poniższym przykładzie program znalazł poprawny kod po zadaniu pięciu pytań:
1 $ ./ mastermind
2 1: 1 1 1 1 ?
3 Na swoim miejscu: 1
4 Nie na swoim miejscu: 0
5 2: 1 2 2 2 ?
6 Na swoim miejscu: 0
7 Nie na swoim miejscu: 1
8 3: 3 1 3 3 ?
9 Na swoim miejscu: 1

10 Nie na swoim miejscu: 1
11 4: 3 4 1 4 ?
12 Na swoim miejscu: 2
13 Nie na swoim miejscu: 2
14 5: 3 4 4 1 ?
15 Na swoim miejscu: 4
16 Nie na swoim miejscu: 0
17 Wygrałem.

W tym przykładzie program wykrył po pięciu pytaniach, że koder oszukał go:
1 $ ./ mastermind
2 1: 1 1 1 1 ?
3 Na swoim miejscu: 1



4 Nie na swoim miejscu: 0
5 2: 1 2 2 2 ?
6 Na swoim miejscu: 1
7 Nie na swoim miejscu: 0
8 3: 1 3 3 3 ?
9 Na swoim miejscu: 1

10 Nie na swoim miejscu: 0
11 4: 1 4 4 4 ?
12 Na swoim miejscu: 1
13 Nie na swoim miejscu: 0
14 5: 1 5 5 5?
15 Na swoim miejscu: 0
16 Nie na swoim miejscu: 1
17 Oszukujesz!

Wskazówka: Rozważ następujący algorytm: Wygeneruj wszystkie możliwe kody (warian-
cje z powtórzeniami), a następnie wypisuj pierwszy dostępny i na podstawie odpowiedzi
kodera eliminuj te które nie pasują.

Zadanie 3C (6 pkt)
Napisz program mastermind w języku C. Czy może on być uogólniony do wszystkich 10

cyfr?

Zadanie 3A (6 pkt)
Napisz program mastermind w języku Ada. Czy może on być uogólniony do wszystkich

10 cyfr?

Zadanie 3P (6 pkt)
Napisz program mastermind w języku Python. Czy może on być uogólniony do wszystkich

10 cyfr?


