Counting-sort and Routing in a Single Hop Radio Network ALGOSENSORS'2007

Maciej Gębala Marcin Kik

Institute of Mathematics and Computer Science Wrocław University of Technology
Poland

June 14, 2007

Model of computation

Radio network

- p stations communicating by radio messages
- single-hop
- synchronized (time is slotted)
- single message in single slot
- single communication channel
- broadcasting/listening to a single message requires unit of energetic cost
- the costs of internal computations is ignored

Energetic cost of the algorithm
The maximal energy dissipated by a single station.

Statement of the sorting problem

- We have p enumerated stations $a_{0} \ldots a_{p-1}$
- We have n integer keys from the range $\left[0,2^{m}-1\right]$
- Each a_{i} stores s_{i} keys (with r_{i} distinct values) (and is destination of d_{i} keys)
- We want to rearrange the keys that they are distributed among the stations sorted according to their values

We assume that a single message contain either single key or an integer between 0 and n.

Statement of the routing problem

- We have p enumerated stations $a_{0} \ldots a_{p-1}$
- Each a_{i} stores s_{i} items to r_{i} distinct stations
- Each a_{i} is destination of d_{i} items from q_{i} other stations
- We want to deliver all items to their destinations

Algorithms for sorting

Singh and Prasanna (2003)

Sorting algorithm based on quick-sort and balanced selection (each station stores single key) with

$$
T=\Theta(n \log n) \text { and } E=\Theta(\log n)
$$

Kik (2006)

Sorting based on merging (each station stores $\frac{n}{p}$ keys) with

$$
T=(3 n+2 p-2) \log _{2} p
$$

and

$$
E=8 \frac{n}{p} \log _{2} p+2\left(\log _{2} p+1\right) \log _{2} p
$$

Algorithms for routing

Nakano, Olariu and Zomaya (2001)

Routing n packets between p stations

$$
T=\left(2\left\lceil\frac{\log p}{\log n / p}\right\rceil+1\right) n+1 \text { and } E=\left(4\left\lceil\frac{\log p}{\log n / p}\right\rceil-1\right) \frac{n}{p}
$$

Datta and Zomaya (2004)

$$
T=2 n+p^{2}+p+2 \text { and } E=6 \frac{n}{p}+2 p+8
$$

Each station stores $\frac{n}{p}$ and is destination for $\frac{n}{p}$ packets.

Randomized algorithm for routing

Nakano, Olariu and Zomaya (2002)

For every $f \geq 1$ the task of routing n items in p stations can be completed with probability exceeding $1-1 / f$ with

$$
T=n+O(q+\ln f)
$$

and

$$
E\left(a_{i}\right)=s_{i}+d_{i}+O\left(q_{i}+r_{i} \log p+\log f\right)
$$

where $q=\sum_{i=0}^{p-1} q_{i}$.

Our results

Counting sort

For the single hop and single channel radio network with p stations there exists sorting algorithm for $n m$-bits integer keys that works with

$$
T=m n+n+p \text { and } E\left(a_{i}\right)=3 m r_{i}+d_{i}+s_{i}+3
$$

Our results

Routing

For the single hop and single channel radio network with p stations there exist routing algorithms with

$$
\begin{gathered}
T=r\left\lceil\log _{2} p\right\rceil+n+r+3 p \\
E\left(a_{i}\right)=\left(3\left\lceil\log _{2} p\right\rceil+4\right) r_{i}+s_{i}+d_{i}+6
\end{gathered}
$$

where $r=\sum_{i=0}^{p-1} r_{i}$.

Key procedure - Counting Rank

Main idea

- Compute the ranks of all keys
- Start with ranking which depends only on initial position of the keys
- Refine ranking by considering sequentially bits positions (starting from most significant bit)
- As result we obtain the ranks in sorted sequence

Key procedure - Counting Rank

Algorithm

(1) Init procedure - count the total number of keys and ranks all keys by on initial positions (All elements are in single group)
(2) For $i \leftarrow m-1$ down to 0 do:

Divide each group into two new groups group containing keys with 0 on i-th position group containing keys with 1 on i-th position and ranks elements in these new groups.

Complexity

$$
T=p+m n \text { and } E\left(a_{i}\right)=3 m r_{i}+3
$$

Sorting

(c) Counting rank
(2) Route by ranks - function of destination of key with rank r is known, for example $\operatorname{dest}(r)=\lfloor p \cdot r / p\rfloor)$

Complexity

$$
T=m n+p+n \text { and } E\left(a_{i}\right)=3 m r_{i}+3+d_{i}+s_{i}
$$

Routing

In the case of routing the keys are numbers of destinations stations from range $[0, p-1]$. Thus $m=\left\lceil\log _{2} p\right\rceil$.
(c) Counting rank
(2) Compute intervals - continuous slots of time where station a_{i} listen
(3) Finish routing

Complexity

$$
\begin{gathered}
T=n\left\lceil\log _{2} p\right\rceil+n+3 p \\
E\left(a_{i}\right)=\left(3\left\lceil\log _{2} p\right\rceil+2\right) r_{i}+s_{i}+d_{i}+5
\end{gathered}
$$

Routing - acceleration

- During Counting rank each station pretends that has at most one item destined for any receiver
- After Counting rank are computed real ranks

Complexity with acceleration

$$
\begin{gathered}
T=r\left\lceil\log _{2} p\right\rceil+r+n+3 p \\
E\left(a_{i}\right)=\left(3\left\lceil\log _{2} p\right\rceil+4\right) r_{i}+s_{i}+d_{i}+6
\end{gathered}
$$

$(r \leq \min \{n, p(p-1)\})$

Thank you!

