Counting-sort and Routing in a Single Hop Radio Network ALGOSENSORS'2007

Maciej Gębala Marcin Kik

Institute of Mathematics and Computer Science Wrocław University of Technology Poland

June 14, 2007

Maciej Gębala, Marcin Kik Counting-sort and Routing in a Single Hop Radio Network

Model of computation

Radio network

- *p* stations communicating by radio messages
- single-hop
- synchronized (time is slotted)
- single message in single slot
- single communication channel
- broadcasting/listening to a single message requires unit of energetic cost
- the costs of internal computations is ignored

Energetic cost of the algorithm

The maximal energy dissipated by a single station.

Statement of the sorting problem

- We have p enumerated stations a₀...a_{p-1}
- We have n integer keys from the range [0, 2^m 1]
- Each a_i stores s_i keys (with r_i distinct values) (and is destination of d_i keys)
- We want to rearrange the keys that they are distributed among the stations sorted according to their values

We assume that a single message contain either single key or an integer between 0 and *n*.

Statement of the routing problem

- We have *p* enumerated stations $a_0 \dots a_{p-1}$
- Each *a_i* stores *s_i* items to *r_i* distinct stations
- Each *a_i* is destination of *d_i* items from *q_i* other stations
- We want to deliver all items to their destinations

Singh and Prasanna (2003)

Sorting algorithm based on quick-sort and balanced selection (each station stores single key) with

 $T = \Theta(n \log n)$ and $E = \Theta(\log n)$

Kik (2006)

Sorting based on merging (each station stores $\frac{n}{p}$ keys) with

$$T = (3n+2p-2)\log_2 p$$

and

$$E = 8\frac{n}{p}\log_2 p + 2(\log_2 p + 1)\log_2 p$$

Nakano, Olariu and Zomaya (2001)

Routing *n* packets between *p* stations

$$T = (2 \left\lceil \frac{\log p}{\log n/p} \right\rceil + 1)n + 1 \text{ and } E = (4 \left\lceil \frac{\log p}{\log n/p} \right\rceil - 1)\frac{n}{p}$$

Datta and Zomaya (2004)

$$T = 2n + p^2 + p + 2$$
 and $E = 6\frac{n}{p} + 2p + 8$

Each station stores $\frac{n}{p}$ and is destination for $\frac{n}{p}$ packets.

Randomized algorithm for routing

Nakano, Olariu and Zomaya (2002)

For every $f \ge 1$ the task of routing *n* items in *p* stations can be completed with probability exceeding 1 - 1/f with

 $T = n + O(q + \ln f)$

and

 $E(a_i) = s_i + d_i + O(q_i + r_i \log p + \log f)$ where $q = \sum_{i=0}^{p-1} q_i$.

Counting sort

For the single hop and single channel radio network with *p* stations there exists sorting algorithm for *n m*-bits integer keys that works with

T = mn + n + p and $E(a_i) = 3mr_i + d_i + s_i + 3$

Routing

For the single hop and single channel radio network with *p* stations there exist routing algorithms with

 $T = r \lceil \log_2 p \rceil + n + r + 3p$

 $E(a_i) = (3\lceil \log_2 p \rceil + 4)r_i + s_i + d_i + 6$

where $r = \sum_{i=0}^{p-1} r_i$.

Key procedure - Counting Rank

Main idea

- Compute the ranks of all keys
- Start with ranking which depends only on initial position of the keys
- Refine ranking by considering sequentially bits positions (starting from most significant bit)
- As result we obtain the ranks in sorted sequence

Key procedure - Counting Rank

Algorithm

- Init procedure count the total number of keys and ranks all keys by on initial positions (All elements are in single group)
- 2 For $i \leftarrow m 1$ down to 0 do:

Divide each group into two new groups group containing keys with 0 on *i*-th position group containing keys with 1 on *i*-th position and ranks elements in these new groups.

Complexity

$$T = p + mn$$
 and $E(a_i) = 3mr_i + 3$

Counting rank

2 Route by ranks – function of destination of key with rank *r* is known, for example $dest(r) = \lfloor p \cdot r/p \rfloor$

Complexity

T = mn + p + n and $E(a_i) = 3mr_i + 3 + d_i + s_i$

Routing

In the case of routing the keys are numbers of destinations stations from range [0, p - 1]. Thus $m = \lceil \log_2 p \rceil$.

Counting rank

- Compute intervals continuous slots of time where station *a_i* listen
- Finish routing

Complexity

$T = n\lceil \log_2 p \rceil + n + 3p$ $E(a_i) = (3\lceil \log_2 p \rceil + 2)r_i + s_i + d_i + 5$

- During Counting rank each station pretends that has at most one item destined for any receiver
- After Counting rank are computed real ranks

Complexity with acceleration

 $T = r \lceil \log_2 p \rceil + r + n + 3p$ $E(a_i) = (3 \lceil \log_2 p \rceil + 4)r_i + s_i + d_i + 6$ $(r \le \min\{n, p(p-1)\})$

Thank you!

Maciej Gębala, Marcin Kik Counting-sort and Routing in a Single Hop Radio Network