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Abstract. This paper concerns blind signature schemes. We focus on
two moves constructions, which imply concurrent security. There are
known efficient blind signature schemes based on the random oracle
model and on the common reference string model. However, construct-
ing two move blind signatures in the standard model is a challenging
task, as shown by the impossibility results of Fischlin et al. The recent
construction by Garg et al. (Eurocrypt’14) bypasses this result by us-
ing complexity leveraging, but it is impractical due to the signature size
(≈ 100 kB). Fuchsbauer et al. (Crypto’15) presented a more practical
construction, but with a security argument based on interactive assump-
tions. We present a blind signature scheme that is two-move, setup-free
and comparable in terms of efficiency with the results of Fuchsbauer et
al. Its security is based on a knowledge assumption called knowledge-of-
exponent assumption.

Keywords: blind signature, short randomizable signatures, knowledge
assumption

1 Introduction

The idea of blind signatures was first introduced by David Chaum in his work
[5]. He also gave the first application for this primitive, namely e-cash. The idea
was to protect privacy of user’s in such a way that the bank is not able to trace
the usage of a signed banknote. In particular, this means that the signer should
not be able to link a signature to the issuing protocol (blindness). Of course,
we also require unforgeability, i.e. without the knowledge of the secret key, one
cannot compute a valid signature. From this point on, blind signatures were the
topic of many research papers. With time new applications such as e-voting and
one-show anonymous credentials were developed.

Efficiency is one of the main topics in the research on blind signatures. This
not only concerns the computational complexity, public key and signature size
but also the communication complexity and the number of moves a user and
signer must perform during the issuance procedure. Two-move blind signatures
(also called round-optimal [7]) are of particular interest as they directly yield
concurrent security.

There exist efficient and round-optimal blind signatures with security in the
random oracle model [3,6]. Ghadafi and Smart proposed a two-move blind sig-
nature scheme in the common reference string model, based on a new variant of



the interactive LRSW assumption [13]. However, those solutions assume that the
public key is generated honestly, i.e. they use a weaker definition of blindness,
where the signing key pair is generated honestly and then given to the adversary.

Non-interactive zero-knowledge (NIZK) proofs in the CRS model were used
by Fischlin to fill this gap [7]. His generic construction of blind signatures is
round-optimal and blind in the malicious key model that allows the signer to
generate the public key in a malicious way. This construction was successfully
instantiated by Abe et al. [1] using structure-preserving signatures and Groth-
Sahai proofs [14].

The CRS model allows to construct efficient blind signatures under standard
assumptions without random oracles. However, such construction requires users
to perform a setup phase to receive the CRS. This string has to be computed by
a trusted third party in order to be useful and to ensure security. Moreover, in
a real world, it is a good practice to update the parameters of a system in order
to keep a reasonable and constant security level.

Thus, setup-free and round-optimal blind signatures without random oracles
are desired. However, as shown by Fischlin et al. [8] it is impossible to construct
a blind signature scheme which unforgeability property would have a black-
box reduction to a non-interactive problem instance. This impossibility result
requires that the scheme admits so called signature derivation checks, i.e. the
transcript of communication allows to verify whether the user is able to derive a
valid signature in this execution. This leaves room for constructions that bypass
this limitations.

Garg et al. [12] were the first to propose a generic construction in the standard
model. However, the solution is not efficient from a practical point of view. The
user uses fully homomorphic encryption to encrypt the message, which the signer
evaluates using a signing circuit. To get rid of the CRS the author’s use two-
round witness-indistinguishable proofs (ZAPs).

At Eurocrypt’14 Garg and Gupta [11] proposed the first efficient round-
optimal blind signature constructions in the standard model. They used a two-
CRS NIZK proof system based on GS proofs [14], where the common reference
string is a part of the signers public key. The construction forces the signer
to either honestly compute the CRS or to solve a subexponential DL instance.
The reduction algorithm for the unforgeability proof is able to compute this DL
instance and compute a malicious CRS, which is used to break the underlying
standard assumption. This requires to use a technique called complexity leverag-
ing. As a consequence, the computational and communication complexity limits
the usage in many practical applications.

Recently, Fuchsbauer et al. [10] proposed the first practical round-optimal
blind signature scheme in the standard model. They also present how to extend
their construction to a partially blind signature scheme and a blind signature
scheme on a vector of messages (which yield one-show anonymous credentials
in the standard model). Their construction is based on structure-preserving sig-
natures on equivalence classes (SPS-EQ), which allows to sign a representative
of an equivalence class and such signature can be transformed (even without



the secret signing key) to a signature of a different member of the equivalence
class. Unforgeability follows from the unforgeability of the SPS-EQ scheme. On
the other hand, in order to proof blindness, an interactive version of the well-
known decisional Diffie-Hellman problem is required. One of the disadvantages
of this generic construction is that it cannot be instantiated with all SPS-EQ.
Admissible instantiations must provide a feature called perfect adaptation un-
der malicious keys. The authors instantiate their construction with the SPS-EQ
from [9], which security is based on an interactive assumption.

Our Contribution. The main contribution of this paper is a blind signature
scheme based on the single-message protocol for the short randomizable signa-
tures presented by Pointcheval and Sanders [16]. The protocol allows the user to
receive a signature under a message committed in a Pedersen commitment. How-
ever, the protocol requires the user to proof knowledge of the opening. Therefore,
common instantiation for this type of proofs requires either the random oracle
model, multiple rounds or the common reference string model.

In our construction we get rid this proof using the knowledge-of-exponent
assumption [4]. Moreover, we use a deterministic parameter generator. Thus, we
can ’trust’ the group parameters in the signer’s public key. The resulting blind
signature scheme is not only two-move but works in the plain model, i.e. without
random oracle or a common-reference string. Additionally, we propose how to
extend this construction to a partially blind signature scheme. Both schemes are
blind in the weaker, honestly generated public key model.

2 Preliminaries

2.1 Notation and Bilinear Groups

By y ← A(x) we denote the execution of algorithm A outputting y, on input
x. In addition, the superscript O in AO means that algorithm A has access
to oracle O. We say that A is probabilistic polynomial-time (PPT) if A uses
internal random coins and the computation for any input x ∈ {0, 1}∗ terminates
in polynomial time. By r ←$ S we mean that r is chosen uniformly at random
over the set S. Furthermore, we will use 1G to denote the identity element in
group G and [k]P to denote point multiplication, where:

[k]P = P + . . .+ P︸ ︷︷ ︸
k- times

and point P = (x, y) lies on some curve E.

Definition 1 (Negligible Function). A function ε(λ) : N → R is negligible,
if for every positive polynomial poly(.) there exists an integer N > 0 such that
for all security parameters λ > N we have:

|ε(λ)| < 1

poly(λ)



Definition 2 (Bilinear map). Let us consider cyclic groups (G1,+), (G2,+),
(GT , ·) of a prime order q. Let P1, P2 be generators of respectively G1 and G2.
We call e : G1×G2 → GT a bilinear map (pairing) if it is efficiently computable
and the following holds:

Bilinearity: ∀(S, T ) ∈ G1 ×G2, ∀a, b ∈ Zq, we have e([a]S, [b]T ) = e(S, T )a·b,
Non-degeneracy: e(P1, P2) 6= 1 is a generator of group GT ,

Depending on the choice of groups we say that map e is of:

Type 1: if G1 = G2,
Type 2: if G1 and G2 are distinct groups and there exists an efficiently com-

putable isomorphism ψ : G2 → G1,
Type 3: if G1 and G2 are distinct groups and no efficiently computable isomor-

phism ψ : G2 → G1 is known.

Bilinear map groups are known to be instantiable with ordinary elliptic curves
such as MNT curves [15] or curves introduced by Barreto and Naehrig [2] (in
short BN-curves).

Definition 3 (Bilinear-group generator). A bilinear-group generator is a
polynomial-time algorithm BGGen that on input of a security parameter λ returns
a bilinear group BG = (q,G1,G2,GT , e, P1, P2) such that G1 = 〈P1〉, G2 = 〈P2〉
and GT are groups of order q with log2 q ≈ λ and e : G1×G2 → GT is a bilinear
map. Similar to [10] we assume that BGGen is deterministic (which is the case
for BN-curves [2]).

2.2 Pedersen Commitments

In our constructions we will make use of Pedersen commitments that work with
the bilinear group generator BGGen described above.

Definition 4 (Pedersen Commitment in G1). Pedersen commitments con-
sist of the following algorithms:

SetupP(λ):
Compute a bilinear group BG = (q,G1,G2,GT , e, P1, P2)← BGGen(λ), choose
z ←$ Zq, compute Q1 = [z]P1 and output the commitment key cpp = (BG, Q1)
(which is an implicit parameter to the rest algorithms).

CommitP(m, r):
On input a message m ∈ Zq and a randomness r ∈ Zq, output the commit-
ment Co = [m]P1 + [r]Q1 and opening O = (m, r).

OpenP(Co,O):
On input a commitment Co ∈ G1 and an opening O, if Co = [m]P1 + [r]Q1

output m, else output ⊥.

The above commitments are perfectly hiding and computationally binding
under the DLP assumption in G1. Which is a classical result.



2.3 Short Randomizable Signatures

We now recall the short randomizable signatures presented by Pointcheval and
Sanders [16]. This signature scheme uses type 3 pairing, thus we will use describe
it using the bilinear group generator BGGen. Moreover, we present the modified
variant of the scheme that admits the signing of committed messages.

Definition 5 (Short Randomizable Signatures). The signature scheme is
given by the following triple of algorithms given an output BG of BGGen(λ).

KeyGenPS(BG):
Choose (x, y) ←$ (Z∗q)2, compute X1 = [x]P1, X2 = [x]P2, Y1 = [y]P1,
Y2 = [y]P2, set the private key skPS = X1 and the public key pkPS =
(BG, X2, Y1, Y2).

SignPS(m, skPS):
Select u ←$ Zq and compute σ1 = [u]P1, σ2 = [u](X1 + [m]Y1). Output
(σ1, σ2).

VerifyPS(m, (σ1, σ2), pkPS):
Output 1 if and only if σ1 6= 1G1

and e(σ1, X2 + [m]Y2) = e(σ2, P2).

Definition 6 (Randomization of Signatures). For all tuples (pkPS,m, (σ1, σ2)),
where

VerifyPS(m, (σ1, σ2), pkPS) = 1 and m ∈ Zq,
we have that ([t]σ1, [t]σ2), where t ∈ Z∗q , is a random element in the signature
space, conditioned on VerifyPS(m, ([t]σ1, [t]σ2), pkPS) = 1.

Definition 7 (Assumption 1 [16]). Given a security parameter λ and a bi-
linear group BG = (q,G1,G2,GT , e, P1, P2) returned by algorithm BGGen. For
X1 = [x]P1, Y1 = [y]P1, X2 = [x]P2, Y2 = [y]P2, where x and y are random
scalars in Zq, we define oracle O(·) that, on input a value m ∈ Zq, outputs
(h, [x+ y ·m]h) ∈ G2

1, where h is a random element in G1.
The Assumption 1 is said to hold for BG if for all PPT adversaries A the

following probability is negligible in the security parameter λ:

Pr[BG← BGGen(λ), x←$ Zq, y ←$ Zq, Y1 = [y]P1, X2 = [x]P2, Y2 = [y]P2,

(m,h, [x+ y ·m]h)← AO(·)(BG, X1, Y1, Y2) :

m 6∈ Q ∧ m ∈ Zq\{0} ∧ h ∈ G1\{1G1
}],

where Q denotes the set of queries made by A to oracle O(·).

Theorem 1 ([16]). The above Assumption 1 holds in the generic bilinear group
model: after qO oracle queries and qG group-oracle queries, no adversary can
generate a valid pair for a new scalar with probability greater than 6·(qO+qG)2/q.

Proof. The proof is given in [16].

Theorem 2. The above signature scheme is EUF-CMA secure under Assump-
tion 1.

Proof. The proof is given in [16].



Experiment Expkea1
A,Ā (n, q, g):

b←$ Zq; B ← gb

(C, Y )← An(q, g, B) ; c← Ān(q, g, B)
If (Y = Cb AND gc 6= C) then return 1 else return 0

Fig. 1. Experiment Expkea1
A,Ā (n, q, g)

Experiment Expkea3
A,Ā (n, q, g, A):

b←$ Zq; B ← gb ; X ← Ab

(C, Y )← An(q, g, A,B,X) ; c1, c2 ← Ān(q, g, A,B,X)
If (Y = Cb AND gc1Ac2 6= C) then return 1 else return 0

Fig. 2. Experiment Expkea3
A,Ā (n, q, g, A)

2.4 Knowledge of Exponent Assumption

We now recall two non-uniform definitions for knowledge of exponent assump-
tions [4]. Let GL = {(q, g) : q, 2q+ 1 are primes and g is a generator of Gq} and
let GLn = {(q, g) ∈ GL : |2q+ 1| = n}. Of course, the definition can be adapted
any type of groups. In particular, to the groups returned by the generator BGGen.

Definition 8. KEA1 Let A = {An}n∈N and Ā = {Ān}n∈N be families of cir-
cuits, and v : N→ [0, 1] a function. We associate to any n ∈ N, any (q, g) ∈ GLn,
and any A ∈ Gq the following experiment:

We let
Advkea1

A,Ā(n, q, g) = Pr[Expkea1
A,Ā(n, q, g) = 1]

denote the advantage of A relative to Ā on inputs n, q, g. We say that Ā is a
kea1-extractor for A with error bound v if

∀n ∈ N ∀(q, g) ∈ GLn : Advkea1
A,Ā(n, q, g) ≤ v(n).

We say that KEA1 holds if for every poly-size family of circuits A there exists
a poly-size family of circuits Ā and a negligible function v such that Ā is a
kea1-extractor for A with error bound v.

Definition 9. KEA3 according to [4] Let A = {An}n∈N and Ā = {Ān}n∈N be
families of circuits, and v : N → [0, 1] a function. We associate to any n ∈ N,
any (q, g) ∈ GLn, and any A ∈ Gq the following experiment:

We let
Advkea3

A,Ā(n, q, g) = Pr[Expkea3
A,Ā(n, q, g, A) = 1]

denote the advantage of A relative to Ā on inputs n, q, g, A. We say that Ā is a
kea1-extractor for A with error bound v if

∀n ∈ N ∀(q, g) ∈ GLn : Advkea3
A,Ā(n, q, g, A) ≤ v(n).



We say that KEA3 holds if for every poly-size family of circuits A there exists
a poly-size family of circuits Ā and a negligible function v such that Ā is a
kea3-extractor for A with error bound v.

Remark 1. Informally, if we assume that the KEA3 assumption holds for the
generator BGGen. Then if there exists an algorithm that on input receives (g, ĝ =

[k]g, h, ĥ = [k]h) and outputs c = [m]g + [r]h and c′ = [m]ĝ + [r]ĥ then there
must exists an extraction algorithm that outputs m, r, receiving the same input.

3 (Partially) Blind Signatures

In this section we recall the syntax and security of blind signature and partially
blind signature schemes.

3.1 Blind Signature Scheme

Definition 10. A blind signature scheme consists of the following PPT algo-
rithms BS = (KeyGenBS,UBS,SBS,VerifyBS) defined as follows:

KeyGenBS(1λ): on input a security parameter, this algorithm outputs a pair of
public/secret key (pkBS, skBS) of the signer.

〈UBS(m, pkBS),SBS(skBS)〉: are executed by a user and a signer. On input the
signer’s secret key skBS algorithm SBS interacts with algorithm UBS. On in-
put a message m, from message space M, and the signer public key pkBS,
algorithm UBS outputs a signature σ on m, or ⊥, if the interaction was not
successful.

VerifyBS(m,σ, pkBS): on input a message m, signature σ and the signer’s public
key pkBS, this algorithm outputs 1, if σ is a valid signature and 0 otherwise.

A blind signature scheme BS must satisfy correctness, unforgeability and
blindness as defined below.

Correctness. A blind signature scheme BS is correct, if for all λ ∈ N, all (pkBS,
skBS)← KeyGenBS(1λ), all messages m ∈M and σ ← 〈UBS(m, pkBS),SBS(skBS)〉
it holds that VerifyBS(m,σ, pkBS) = 1.

Unforgeability. A blind signature scheme BS is unforgeable, if for all PPT algo-
rithms A having access to a signer oracle, we have:

Pr
[
(pkBS, skBS)← KeyGenBS(1λ), (m∗i , σ

∗
i )k+1
i=1 ← A(pkBS)〈· ,SBS(skBS)〉 :

m∗i 6= m∗j for i, j ∈ {1, . . . , k + 1}, i 6= j and

VerifyBS(m∗i , σ
∗
i , pkBS) = 1 for i ∈ {1, . . . , k + 1}

]
≤ ε(λ),

where k is the number of oracle queries.



Blindness. A blind signature scheme BS is blind in the honest-signer model, if
for all PPT algorithms A with one-time access to two user oracles, we have:

Pr
[
b←$ {0, 1}, (pkBS, skBS)← KeyGenBS(1λ), (St1,m0,m1)← A(pkBS, skBS),

(St2)← A(St1)〈UBS(mb,pkBS), ·〉(1),〈UBS(m1−b,pkBS), ·〉(1) ,

Let σb and σ1−b be the resp. outputs of UBS,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1) = (⊥,⊥),

b∗ ← A(St2, σ0, σ1) : b = b∗
]
− 1

2 ≤ ε(λ).

3.2 Partially Blind Signature Scheme

Definition 11. A partially blind signature scheme consists of the following PPT
algorithms PBS = (KeyGenPBS,UPBS,SPBS,VerifyPBS) defined as follows:

KeyGenPBS(1λ): on input a security parameter, this algorithm outputs a pair of
public/secret key (pkPBS, skPBS) of the signer.

〈UPBS(m, γpkPBS),SPBS(γ, skPBS)〉: are executed by a user and a signer. On input
common information γ, the signer’s secret key skPBS algorithm SPBS inter-
acts with algorithm UPBS. On input a message m and a common information
γ, both from message space M, and the signer public key pkPBS, algorithm
UPBS outputs a signature σ on m, or ⊥, if the interaction was not successful.

VerifyPBS(m, γ, σ, pkPBS): on input the message m, the common information γ,
the signature σ and the signers public key pkPBS, this procedure outputs 1 if
σ is a valid signature and 0 otherwise.

A partially blind signature scheme PBS must satisfy correctness, unforgeabil-
ity and partial blindness as defined below.

Correctness. A partially blind signature scheme PBS is correct, if for all λ ∈
N, all (pkPBS, skPBS) ← KeyGenBS(1λ), all messages m ∈ M, all common in-
formation γ ∈ M and σ ← 〈UPBS(m, γ, pkBS),SPBS(γ, skPBS)〉 it holds that
VerifyPBS(m, γ, σ, pkPBS) = 1.

Unforgeability. A partially blind signature scheme PBS is strongly unforgeable,
if for all PPT algorithms A having access to a signer oracle, we have:

Pr
[
(pkPBS, skPBS)← KeyGenPBS(1λ), (γ∗, (m∗i , σ

∗
i )k+1
i=1 )← A(pkPBS)〈· ,SPBS(skPBS)〉 :

m∗i 6= m∗j for i, j ∈ {1, . . . , k + 1}, i 6= j and

VerifyPBS(m∗i , γ
∗, σ∗i , pkPBS) = 1 for i ∈ {1, . . . , k + 1}

]
≤ ε(λ),

where k is the number of oracle queries.



Blindness. A partially blind signature scheme PBS is blind in the honest-signer
model, if for all PPT algorithms A with one-time access to two user oracles, we
have:

Pr
[
b←$ {0, 1}, (pkPBS, skPBS)← KeyGenPBS(1λ), (St1, γ,m0,m1)← A(pkPBS, skPBS),

(St2)← A(St1)〈UPBS(mb,γ,pkPBS), ·〉(1),〈UPBS(m1−b,γ,pkPBS), ·〉(1) ,

Let σb and σ1−b be the resp. outputs of UPBS,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1) = (⊥,⊥),

b∗ ← A(St2, σ0, σ1) : b = b∗
]
− 1

2 ≤ ε(λ).

4 Blind Signatures from Knowledge Assumptions

In this section we present our blind signature scheme. The construction is in
fact the single-message protocol presented by Pointcheval and Sanders, for their
randomizable signature scheme [16]. It allows to sign committed messages but
requires a proof of knowledge protocol of commitment opening. Thus a concrete
instantiation requires additional rounds (Schnorr like sigma protocol), random
oracles (via Fiat-Shamir transformation) or a common reference string (non-
interactive proof systems e.g. Groth-Sahai).

In our construction we get rid of the proof of knowledge and require the user
to compute some additional value. In particular, the signer publishes (P1, [y]P1,
[k]P1, [k · y]P1) and for a given message m, the user chooses t and computes the
Pedersen commitment C1 = [t]P1 +[m]([y]P1). In the original protocol from [16],
the user must proof that it knows m and t. However, in our construction it is
only required that the user additionally computes and sends C2 = [t]([k]P1) +
[m]([k ·y]P1) to the signer. The proof of security follows then from the knowledge
of exponent assumption (KEA3).

Theorem 3 (Correctness). Scheme 1 is correct.

Proof. Correctness of the scheme follows directly from the correctness of the
randomizable signature scheme in [16]. Note that the additional element C2 =
[t]P̂1 + [m]Ŷ1 and the equation [k]C1 = C2 is always satisfied if the user behaves
according to protocol. However, for a sense of completeness we will sketch the
idea behind correctness. First see that the user computes the commitment C1 =
[t]P1 + [m]Y1, which is used by the signer to compute (σ1, σ2) = ([u]P1, [u](X +
C1)). Thus, [u](X + C1) = [u](X + [m]Y1 + [t]P1)) and by computing σ =
(σ1, σ2 − [t]σ1) the user receives σ = ([u]P1, [u](X + [m]Y1)), which is a valid
signature under m.

Theorem 4 (Unforgeability). Scheme 1 is unforgeable.

Proof (Sketch). We will show that if there exists an algorithm A that has non-
negligible advantage in breaking unforgeability of scheme 1, then we can con-
struct an algorithm R that breaks the EUF-CMA security of the used short
randomizable signatures.



KeyGenBS(1λ): Generate bilinear group parameters BG =
(q,G1,G2,GT , e, P1, P2) ← BGGen(1λ). Compute the short randomiz-
able signature scheme key pair (skPS, pkPS) ←$ KeyGenPS(BG), where
pkPS = (BG, X2, Y1, Y2). Compute random k ←$ Zq and set the secret key

skBS = (skPS, k). Compute P̂1 = [k]P1, Ŷ1 = [k]Y1 and the public key
pkBS = (pkPS, P̂1, Ŷ1).

U (1)
BS (m, pkBS): generate the parameters BG ← BGGen(1λ). Parse

pkBS as ((BG, X2, Y1, Y2), P̂1, Ŷ1), choose t ←$ Zq and compute

ρ = ([t]P1 + [m]Y1, [t]P̂1 + [m]Ŷ1). Set StBS = (m, t) and send ρ to
the signer.

SBS(ρ, skBS): Parse skBS as (X, k) and ρ as (C1, C2). Abort if [k]C1 6= C2.
Compute u←$ Zq and send β = ([u]P1, [u](X + C1)) to the user.

U (2)
BS (β,StBS, pkBS): Parse β as (σ1, σ2), StBS as (m, t) pkBS as (pkPS, ·, ·) and

compute σ = (σ1, σ2−[t]σ1). Return ⊥ if VerifyBS(m,σ, pkBS) = 0 ; otherwise
return σ.

VerifyBS(m,σ, pkBS): Parse pkBS as (pkPS, ·, ·) and return 1 iff
VerifyPS(m,σ, pkPS) = 1 and e(Y1, P2) = e(P1, Y2) and e(P̂1, Y2) = e(Ŷ1, P2).

Scheme 1: Our Blind Signature Scheme

First R sets up the system using the public key pkPS, i.e. creates the blind
signature public key pkBS. ThenR starts interacting withA. After each signature
query of A, R runs the KEA3 extractor and receives m, t. R then asks the EUF-
CMA oracle for a signature (σ1, σ2) under the message m. To answer A’s query,
the algorithmR returns (σ1, σ2+[t]σ1). In order to win,Amust output a message
m∗ and a signature σ∗, such that m∗ was now queried to R. Thus, m∗ was also
not queried by R to the EUF-CMA oracle and R can return (m∗, σ∗) as a valid
forge.

Theorem 5 (Blindness). Scheme 1 is blind in the honest-signer model.

Proof (Sketch). We will show that there exists no algorithm A that has non-
negligible advantage in breaking the blindness of scheme 1. It is easy to see that
given the secret key skBS, we can open the user commitments to arbitrary mes-
sages and even sign arbitrarily messages. What is more, the resulting signatures
are randomizable. Thus, from the point of view of any adversary A the blindness
experiment in case b = 0 is indistinguishable from the blindness experiment in
case b = 1.



5 Partially Blind Signatures from Knowledge
Assumptions

In this section we propose an extension of our blind signature scheme to partially
blind signatures. We use the idea of Pedersen commitments, i.e. instead of signing
the message m, the signed message is m + γ · r, where r is a secret chosen by
the signer. Similar to the binding property, this approach protects against the
changing of the signed message (as long as the co-DLP assumption holds).

KeyGenPBS(1λ): Generate bilinear group parameters BG =
(q,G1,G2,GT , e, P1, P2) ← BGGen(1λ). Compute the short randomiz-
able signature scheme key pair (skPS, pkPS) ←$ KeyGenPS(BG), where
pkPS = (BG, X2, Y1, Y2). Compute random k, r ←$ Zq and set the secret key

skPBS = (skPS, k, r). Compute P̂1 = [k]P1, Ŷ1 = [k]Y1, Y3 = [r]Y2 and set the
public key pkPBS = (pkPS, P̂1, Ŷ1, Y3).

U (1)
BS (m, γ, pkPBS): generate the parameters BG ← BGGen(1λ). Parse

pkPBS as ((BG, X2, Y1, Y2), P̂1, Ŷ1, Y3), choose t ←$ Zq and compute

ρ = ([t]P1 + [m]Y1, [t]P̂1 + [m]Ŷ1). Set StPBS = (m, t) and send ρ to the
signer.

IssuePBS(ρ, γ, skPBS): Parse skPBS as (X, k) and ρ as (C1, C2). Abort if
[k]C1 6= C2. Compute u ←$ Zq and send β = ([u]P1, [u](X + C1 + [γ · r]Y1))
to the user.

UnblindPBS(β,StPBS, pkPBS): Parse β as (σ1, σ2), StPBS as (m, t) pkPBS
as (pkPS, ·, ·) and compute σ = (σ1, σ2 − [t]σ1). Return ⊥ if
VerifyPBS(m, γ, σ, pkBS) = 0 ; otherwise return σ.

VerifyPBS(m, γ, σ, pkBS): Parse pkPBS as (pkPS, ·, ·) and return 1 iff σ1 6= 1G1

and e(σ1, X2 + [m]Y2 + [γ]Y3) = e(σ2, P2) and e(Y1, P2) = e(P1, Y2) and
e(P̂1, Y2) = e(Ŷ1, P2).

Scheme 2: Our Partially Blind Signature Scheme

Theorem 6 (Correctness). Scheme 2 is correct.

Proof. Similar to scheme 1, correctness of the scheme follows directly from the
correctness of the randomizable signature scheme in [16].

Theorem 7 (Unforgeability). Scheme 2 is unforgeable.

Proof (Sketch). It is easy to see that the same proof as in case of theorem 4 can
be applied. However, this time instead of sending m to the EUF-CMA oracle,



the algorithm R queries m + γ · r. Note that R fails if the adversary knows r.
Therefore, we have to include an additional case in algorithm R. Depending on
a coin toss, R either works as in case of theorem 4 or solves the co-DLP problem
(i.e given [u]g1 ∈ G1, [u]g2 ∈ G2, compute u). To do so, R sets Y3 to be [u]g2 for
the solved co-DLP instance. R works according to protocol. However, instead of
using [r]Y1 it uses [u]g1. Finally, the adversary outputs message-signature pairs.
For one of them exists a message m∗i + γ∗i · u = m + γ · u, such that γ∗i 6= γ
and m∗i , γ

∗
i , m, γ are known R. Therefore, R is able to compute u and solve the

co-DLP problem.

Theorem 8 (Blindness). Scheme 2 is blind in the honest-signer model.

Proof (Sketch). Note that since the secret key is computed in an honest way,
the same reasoning as in the proof of theorem 5 can be used.

Conclusions

We have proposed a fairly practical two-move blind signature without random
oracles and a common reference string. It is efficient in terms of signature size
and communication complexity. For a future work we plan to extend blindness to
the malicious-signer model, where the adversary generates the signing key. One
promising approach is to use the knowledge of exponent assumption to extract
the signer’s secret key.
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