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Abstract. Commitment schemes are one of the main cryptographic
primitives. Of particular interest are Pedersen commitments, which are
based on the discrete logarithm problem and hide the committed value
even against a powerful adversary.
Some applications require that the committing party proves that the
committed value is from a specific range, e.g. {0, 1}. Moreover, in many
application we would like to ensure that committing party ”knows” the
opening of the commitment. In case of Pedersen commitments this is usu-
ally ensured using non-interactive proofs of knowledge and range proofs,
which are secure in the random oracle model.
In this paper we describe a different approach. We make use of the
knowledge-of-exponent assumption and propose an extension to Ped-
ersen commitments. Our idea not only makes the commitment scheme
extractable (i.e. there exists an algorithm that given the same input as
the committing party and the same random coins, outputs the commit-
ted message) but provides a proof that the committed message is a bit.
What is more, our solution is efficient and requires only four time larger
commitments than standard Pedersen commitments.

Key words: Pedersen Commitments, Knowledge Assumptions, Extrac-
tion, Bit Commitments

1 Introduction

Commitment schemes are one of the main cryptographic primitives and
implement the real world idea of a lock box [1]. We can put a message
inside the box and close it. By giving the box to the recipient, we ”com-
mit” to the message inside it. Obviously we cannot change what is inside
the box, as the recipient holds the locked box. This property is called
binding, as once committed we are bound to a particular message and
cannot change it. On the other hand, the recipient cannot see what is
the message, as the closed box hides the content. This property is called
hiding. Finally, we can give the key to the recipient and he can open the
box and check the message. The message and the key are usually called
opening information.



2 Wojciech Wodo, Lucjan Hanzlik

One of the most popular schemes is the Pedersen commitment scheme
[2]. It is designed for known order groups that are also used for DSA and
ECDSA groups [3]. Given two generators of this group, g and h the com-
mitment is of the form Co = gm · hr, where m is the committed message
and r is some randomness that hides the message. The main feature of
this scheme is that it is unconditionally hiding. It means that even a
powerful adversary cannot guess what is the committed message. The
idea is that for a given commitment Co there exist opening informa-
tion to different messages, thus without the correct opening information
the recipient cannot guess the message. On the other hand, this com-
mitment scheme is only computationally binding, i.e. if the committing
party knows x = logg(h), then it is able to change the committed mes-
sage. Thus, if the discrete logarithm problem in the chosen group is hard,
it is hard to change a once committed message. What is more important,
the group can in particular be generated by the recipient. The knowledge
of x does not help to break the hiding property but still ensures that the
committing party cannot change the message inside the commitment.

For some applications it is required that the committing party proofs
the knowledge of the opening information without revealing it or to prove
that the committed message is a bit, i.e. is from the set {0, 1}. The com-
mon approach is to use non-interactive proofs of knowledge, which are
usually based on Schnorr like protocols [4], and range proofs [5]. Com-
mon solutions are secure in the random oracle model [6] and thus only
secure in theory. Recently, the non-interactive proof system presented by
Groth and Sahai gained much attention [7]. This system can also be used
in combination with Pedersen commitments as a replacement for the ran-
dom oracle proof systems. However, it requires that a trusted third party
computes a common reference string and thus is not applicable in cases
where the committing party and the recipient communicate ad hoc.

Our Contribution

In this paper we propose two extensions of the Pedersen commitment
scheme. Both schemes are extractable, i.e. in order to compute a com-
mitment one must know a valid opening information. Moreover, one of
them ensures that the committed message is a bit. Our constructions are
solely based on the knowledge-of-exponent [8] and a variant of the com-
putational Diffie-Hellman problem [12]. Both schemes are not only simple
but also efficient. In particular, the resulting schemes only quadruple the
size of Pedersen commitments.
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2 Primitives

Before presenting our contribution we briefly review a few facts about
bilinear maps, assumptions used in further sections.

2.1 Notation and Bilinear Groups

By y ← A(x) we denote the execution of algorithm A outputting y, on
input x. In addition, the superscript O in AO means that algorithm A
has access to oracle O. We say that A is probabilistic polynomial-time
(PPT) if A uses internal random coins and the computation for any input
x ∈ {0, 1}∗ terminates in polynomial time. By r ←$ S we mean that r is
chosen uniformly at random over the set S. Furthermore, we will use
1G to denote the identity element in group G and [k]P to denote point
multiplication, where:

[k]P = P + . . .+ P︸ ︷︷ ︸
k- times

and point P = (x, y) lies on some curve E.

Definition 1 (Negligible Function). A function ε(λ) : N→ R is negli-
gible, if for every positive polynomial poly(.) there exists an integer N > 0
such that for all security parameters λ > N we have:

|ε(λ)| < 1

poly(λ)

Definition 2 (Bilinear map). Let us consider cyclic groups (G1,+),
(G2,+), (GT , ·) of a prime order q. Let P1, P2 be generators of respectively
G1 and G2. We call e : G1 × G2 → GT a bilinear map (pairing) if it is
efficiently computable and the following holds:

Bilinearity: ∀(S, T ) ∈ G1 × G2, ∀a, b ∈ Zq, we have e([a]S, [b]T ) =
e(S, T )a·b,

Non-degeneracy: e(P1, P2) 6= 1 is a generator of group GT ,

Depending on the choice of groups we say that map e is of:

Type 1: if G1 = G2,
Type 2: if G1 and G2 are distinct groups and there exists an efficiently

computable isomorphism ψ : G2 → G1,
Type 3: if G1 and G2 are distinct groups and no efficiently computable

isomorphism ψ : G2 → G1 is known.
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Bilinear map groups are known to be instantiable with ordinary ellip-
tic curves such as MNT curves [10] or curves introduced by Barreto and
Naehrig [11] (in short BN-curves).

Definition 3 (Bilinear-group generator). A bilinear-group generator
is a polynomial-time algorithm BGGen that on input of a security param-
eter λ returns a bilinear group BG = (q,G1,G2,GT , e, g1, g2) such that
G1 = 〈g1〉, G2 = 〈g2〉 and GT are groups of order q and e : G1×G2 → GT

is a bilinear map.

Remark 1. Although, the bilinear map defined in [11] uses elliptic curves,
in this paper we will use the multiplicative notation for all groups.

2.2 Assumptions

In this subsection we define standard computational assumptions and
non-standard knowledge assumptions.

Computational Assumptions We start by introducing the discrete loga-
rithm problem in Gi.

Definition 4 (Discrete Logarithm Problem (DLP)). Given two el-
ements gi, g

x
i ∈ Gi, output x. We say that an algorithm A has advantage

ε in solving DLP in Gi of prime order q if:

Pr[x← A(gi, g
x
i )] ≥ ε,

where the probability is taken over the random choice of the generator
gi ∈ Gi, the random choice of x ∈ Zq, and the random bits of the algorithm
A.

Definition 5 (Co-Discrete Logarithm Problem (Co-DLP)). Given
elements g1, g

x
1 ∈ G1 and g2, g

x
2 ∈ G2, output x. We say that an algorithm

A has advantage ε in solving Co-DLP in Gi of prime order q if:

Pr[x← A(g1, g
x
1 , g2, g

x
2 )] ≥ ε,

where the probability is taken over the random choice of the generators
g1 ∈ G1 and g2 ∈ G2, the random choice of x ∈ Zq, and the random bits
of the algorithm A.
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Experiment Expkea1
A,Ā (n, q, g):

b←$ Zq; B ← gb

(C, Y )← An(q, g, B) ; c← Ān(q, g, B)
If (Y = Cb AND gc 6= C) then return 1 else return 0

Fig. 1. Experiment Expkea1
A,Ā (n, q, g)

Definition 6 (Computational Diffie-Hellman Problem in Gi). Given
elements gi, g

a
i , g

b
i ∈ Gi, output gabi ∈ Gi. We say that an algorithm A has

advantage ε in solving the CDH in Gi (of prime order q) if:

Pr[gabi ← A(gi, g
a
i , g

b
i )] ≥ ε,

where the probability is taken over the random choice of the generator
gi ∈ Gi, the random choice of a, b ∈ Zq, and the random bits of A.

The computational Diffie-Hellman problem can be considered sepa-
rately for each group. In the asymmetric pairing setting we can define the
following variant of the CDH problem called co-Diffie-Hellman problem
[12].

Definition 7 (co-Diffie-Hellman Problem). Given elements g1, g
a
1 , g

b
1 ∈

G1, g2, g
a
2 ∈ G2 , output gab1 ∈ G1. We say that an algorithm A has ad-

vantage ε in solving the co-DHP∗ in G1 and G2 (of prime order q) if:

Pr[gab1 ← A(g1, g
a
1 , g

b
1, g2, g

a
2)] ≥ ε,

where the probability is taken over the random choice of the generators
g1 ∈ G1, g2 ∈ G2, the random choice of a, b ∈ Zq, and the random bits of
A.

Knowledge of Exponent Assumptions We now recall two non-uniform
definitions for knowledge of exponent assumptions. [8]

GL = {(q, g) : q, 2q + 1areprimesandgisageneratorofGq} GLn =
{(q, g) ∈ GL : |2q + 1| = n}

Definition 8. KEA1 Let A = {An}n∈N and Ā = {Ān}n∈N be families
of circuits, and v : N→ [0, 1] a function. We associate to any n ∈ N, any
(q, g) ∈ GLn, and any A ∈ Gq the following experiment:

We let

Advkea1
A,Ā(n, q, g) = Pr[Expkea1

A,Ā(n, q, g) = 1]
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Experiment Expkea3
A,Ā (n, q, g, A):

b←$ Zq; B ← gb ; X ← Ab

(C, Y )← An(q, g, A,B,X) ; c1, c2 ← Ān(q, g, A,B,X)
If (Y = Cb AND gc1Ac2 6= C) then return 1 else return 0

Fig. 2. Experiment Expkea3
A,Ā (n, q, g, A)

denote the advantage of A relative to Ā on inputs n, q, g. We say that Ā
is a kea1-extractor for A with error bound v if

∀n ∈ N ∀(q, g) ∈ GLn : Advkea1
A,Ā(n, q, g) ≤ v(n).

We say that KEA1 holds if for every poly-size family of circuits A there
exists a poly-size family of circuits Ā and a negligible function v such that
Ā is a kea1-extractor for A with error bound v.

Definition 9. KEA3 according to [8] Let A = {An}n∈N and Ā = {Ān}n∈N
be families of circuits, and v : N→ [0, 1] a function. We associate to any
n ∈ N, any (q, g) ∈ GLn, and any A ∈ Gq the following experiment:

We let

Advkea3
A,Ā(n, q, g) = Pr[Expkea3

A,Ā(n, q, g, A) = 1]

denote the advantage of A relative to Ā on inputs n, q, g, A. We say that
Ā is a kea1-extractor for A with error bound v if

∀n ∈ N ∀(q, g) ∈ GLn : Advkea3
A,Ā(n, q, g, A) ≤ v(n).

We say that KEA3 holds if for every poly-size family of circuits A there
exists a poly-size family of circuits Ā and a negligible function v such that
Ā is a kea3-extractor for A with error bound v.

2.3 Pedersen Commitments for Bilinear Groups

Definition 10 (Pedersen Commitment in Gi). Pedersen commit-
ments consist of the following algorithms:

SetupP(λ):
Compute a bilinear group BG = (q,G1,G2,GT , e, g1, g2)← BGGen(λ),
choose x ←$ Zq, compute X = gxi and output the commitment key
cpp = (BG, X) (which is an implicit parameter to the rest algorithms).
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CommitP(m, r):
On input a message m ∈ Zq and a randomness r ∈ Zq, output the
commitment Co = gmi ·Xr and opening O = (m, r).

OpenP(Co,O):
On input a commitment Co ∈ Gi and an opening O, if Co = gmi ·Xr

output m, else output ⊥.

The above commitments are perfectly hiding and computationally
binding under the DLP assumption in Gi. Which is a classical result.
However, To be more formal, we recall the game based definitions for this
properties in Figures 3 and 4.

Experiment BindingA(λ):
cpp← SetupP(λ)
(Co,O0, O1)← A(cpp)
If OpenP(Co,O0) = OpenP(Co,O1) 6= ⊥

and O0 6= O1 then return 1,
else return 0.

Fig. 3. Experiment BindingA(λ)

Experiment HidingA(λ):
b←$ {0, 1}
BG← BGGen(λ)
r0, r1 ←$ Zq

(m0,m1, cpp, St)← A(λ)
Co0 ← CommitP(mb, r0)
Co1 ← CommitP(m1−b, r1)
b̂← A(Co0, Co1, St)
If b = b̂ then return 1, else return 0.

Fig. 4. Experiment HidingA(λ)

Let

AdvBinding
P,A (λ) = Pr[Exp BindingA(λ) = 1]

and

AdvHiding
P,A (λ) = |2 · Pr[Exp HidingA(λ) = 1]− 1|
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denote the adversary’s advantage for the binding and hiding experiments
(Fig. 4).It is a known result that for Pedersen commitment we have:

AdvHiding
A (λ) = 0.

and
AdvBinding

A (λ) = Adv
DLPGi
A (λ).

Remark 2. Since Pedersen commitments are perfectly hiding, we used a
stronger hiding definition where the adversary can compute the commit-
ment key cpp. Note that the knowledge of the exponent z does not help
to break the hiding property.

3 A Bit Commitment Scheme from KEA-3

In this section we introduce a commitment scheme based on Pedersen
commitments. The resulting scheme is unconditionally hiding and compu-
tationally binding. Moreover, the scheme is extractable under the KEA-3
assumption. We also extend this scheme and present a simple NIZK proof
system that, under the KEA-3 and CDH assumptions, can be used to
prove that the commited values are bits.

3.1 Construction

Definition 11 (Extractable Commitment Scheme).

SetupP(λ):
Compute a bilinear group BG = (q,G1,G2,GT , e, g1, g2)← BGGen(λ),
choose x, y ←$ Zq, compute X = gx1 , Y = gy1 and Z = Y x and output
the commitment key cpp = (BG, X, Y, Z) (which is an implicit param-
eter to the rest algorithms).

CommitP(m, r):
On input a message m ∈ Zq and a randomness r ∈ Zq, output the
commitment Co = (gr1 ·Xm, Y r · Zm) and opening O = (m, r).

OpenP(Co,O):
On input a commitment Co ∈ Gi and an opening O, if Co = (gr1 ·
Xm, Y r · Zm) output m, else output ⊥.

Lemma 1. The above scheme is unconditionally hiding, i.e. AdvHiding
A (λ) =

0.
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Proof (Sketch). Given a honestly generated commitment key cpp = (BG,
X, Y, Z), a commitment Co = (gr1 ·Xm, Y r ·Zm) and opening O = (m, r),
there always exists a opening O′ = (m′, r′), such that Co = (gr

′
1 ·Xm′ , Y r′ ·

Zm′). Note that this follows from the fact that Co can be rewritten as
Co = (w,wy) and w is a Pedersen commitment to r, which is uncondi-
tionally hiding.

Lemma 2. For the above scheme we have AdvBinding
A (λ) = Adv

DLPG1
A (λ).

Proof (Sketch). The same reasoning as above can be applied, i.e. given
a honestly generated commitment key cpp = (BG, X, Y, Z), any commit-
ment can be rewritten as Co = (w,wy), where w is a Pedersen commit-
ment to r. Thus, if an adversary A outputs a different opening O′ =
(m′, r′), then it can be used to solve the DLP in G1, i.e. to compute
logg1

(X).

The main difference between our commitment scheme and Pedersen
commitment scheme is the second element Y r · Zm. We use this second
element to prove the following lemma.

Lemma 3. Let A be an algorithm that on input receives the commitment
key cpp and outputs a commitment Co = (gr1 ·Xm, Y r ·Zm). Then, there
exists an algorithm A′ that given the commitment key cpp and the same
random coins as A returns (m, r).

Proof (Sketch). Under the KEA-3 assumption, A can only compute Co
if it ”knows” m and r. Thus, there must exists an extraction algorithm
A′ that given the same input and random coins outputs (m, r).

3.2 Committing to Bits

Our commitments scheme can be used to commit to an arbitrarily element
of Zq. For some application it is required to limit the message space to
bits {0, 1}. Usually, this is ensured using non-interactive proof system.
However, they either require random oracles or are not very efficient.
Here we present a simple way to prove committing to a bit. Our method
is based on simple algebra and the co-CDH and KEA-3 assumptions.

Let us first extend the commitment key by an additional element
X2 = gx2 . In addition to the Co = (gr1 · Xm, Y r · Zm), the committing
party also computes a Pedersen commitment in G2, i.e. gr2 · Xm

2 . Note
that since logg1

X = logg2
X2, this element does not break the hiding

property. Given those values, a verifier can compute the value
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e(X · g−r1 ·X
−m, gr2 ·Xm

2 ) = e(g1, g2)(−r+(1−m)·x)·(r+m·x).

Let us take a look at the exponent (−r + (1 − m) · x) · (r + m · x).
Simplifying this value we receive −r2 + r · (1− 2 ·m) ·x+ (1−m) ·m ·x2.
The main observation is that the term x2 only exists if (1−m) ·m 6= 0,
thus implying that m 6∈ {0, 1}. Therefore, if there exists an algorithm
A that commits to a element 6∈ {0, 1}, then we can use it to solve the
co-computational Diffie-Hellman assumption. However, in order to do so,
we require the element gx

2

1 but we only can compute e(g1, g2)x
2

(we know
m and r because of the extractor). Thus, we require that the committing
party also computes a value T , such that e(T, g2) = e(X · g−r1 ·X−m, gr2 ·
Xm

2 ). Then, logg1
T = −r2 +r · (1−2 ·m) ·x+(1−m) ·m ·x2 and knowing

r and m, we can compute gx
2

1 .
It remains to argue how this helps us to solve the co-computational

Diffie-Hellman problem. It is a known fact [9] that the square Diffie-
Hellman problem, i.e. given g, gx compute gx

2
is equivalent to the com-

putational Diffie-Hellman problem, as we can compute a · b = 2−1 · (a2 +
b2 − (a− b)2). The full scheme is given below.

Definition 12 (Extractable Bit Commitment Scheme).

SetupP(λ):
Compute a bilinear group BG = (q,G1,G2,GT , e, g1, g2)← BGGen(λ),
choose x, y ←$ Zq, compute X1 = gx1 , Y1 = gy1 , Z = Y x

1 , X2 = gx2 ,
Y2 = gy2 and output the commitment key cpp = (BG, X1, X2, Y1, Y2, Z)
(which is an implicit parameter to the rest algorithms).

CommitP(m, r):
On input a message m ∈ {0, 1} and a randomness r ∈ Zq, output the
commitment

Co = (Co1, Co2, Co3, Co4) = (gr1·Xm
1 , Y

r
1 ·Zm, gr2·Xm

2 , g
−r2+r·(1−2·m)·x
1 )

and opening O = (m, r).

OpenP(Co,O):
On input a commitment Co ∈ Gi and an opening O, if Co = (gr1 ·
Xm

1 , Y
r

1 · Zm, ·, ·) output m, else output ⊥.

In order to verify that a commitment Co = (Co1, Co2, Co3, Co4) was
computed in an honest way, i.e. using message space {0, 1} one has to
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verify that e(Co1, g2) = e(g1, Co3), e(X1 · Co−1
1 , Co3) = e(Co4, g2) and

that e(Co1, Y2) = e(Co2, g2).

Theorem 1. The above scheme is unconditionally hiding, i.e. AdvHiding
A (λ) =

0.

Proof. Let cpp = (BG, X1, X2, Y1, Y2, Z) be a honestly generated commit-
ment key and r the randomness used to compute a commitment to the
bit 0, i.e. Co = (Co1, Co2, Co3, Co4) = (gr1, Y

r
1 , g

r
2, g
−r2+r·x
1 ). Note that

there exists a value r′ = r − x such that Co1 = gr
′

1 ·X1, Co2 = Y r′
1 · Z,

Co3 = gr
′

2 ·X2 and

Co4 = g
−(r′+x)2+r′·x+x2

1 c = g
−((r′)2+2·r′·x+x2)+r′·x+x2

1 = g
−(r′)2−r′·x
1 .

Thus, both (0, r) and (1, r′) are valid openings for the commitment Co.
It follows that the commitment scheme is unconditionally hiding.

Theorem 2. For the above scheme we have AdvBinding
A (λ) = AdvCo-DLP

A (λ).

Proof. Let (g1, g
x
1 , g2, g

x
2 ) be an instance of the co-discrete logarithm prob-

lem for parameters BG. We construct the commitment key cpp as fol-
lows. First we compute y, z ←$ Zq and set cpp = (BG, gx1 , g

x
2 , g

y
1 , g

y
2 , (g

x
1 )z).

Now if there exists an algorithm A that can output commitment Co =
(Co1, Co2, Co3, Co4) and openings (0, r0) and (1, r1), then we can solve
the co-discrete logarithm problem. Note that by definition Co1 = gr0

1 =
gr1

1 · X1. It follows that X1 = gr0−r1
1 and logg1

X1 = r0 − r1. Thus, by
returning r0 − r1 we can solve the co-discrete logarithm problem

Theorem 3. An adversary A that can commit to a message 6∈ {0, 1},
can be used to solve the co-computational Diffie-Hellman problem.

Proof. We will show how to use A to compute squares, which as shown
in [9] is equivalent to the computational Diffie-Hellman problem. Let
(g1, g

a
1 , g

b
1, g2, g

a
2 , g

b
2) be an instance of the co-Diffie-Hellman problem for

parameters BG. We construct the commitment key cpp as follows. First
we compute y, z ←$ Zq and set cpp = (BG, ga1 , g

a
2 , g

y
1 , g

y
2 , (g

a
1)z). This pa-

rameter is given to the adversary A, which outputs a valid commitment
Co. We use the extraction algorithm to extract m 6∈ {0, 1} and random-
ness r. Since this is a valid commitment we know that: Co1 = gr1 · Xm

1 ,
Co3 = gr2 ·Xm

2 and e(X1 · Co−1
1 , Co3) = e(Co4, g2). It follows that:

logg1
(Co4) = (a− logg1

(Co1)) · logg2
(Co3) = (a− (r+ a ·m)) · (r+ a ·m)
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and

logg1
(Co4) = (−r+a·(1−m))·(r+a·m) = −r2+r·a·(1−2·m)+a2·(m−1)·m.

However, since m 6∈ {0, 1} we have that:

(Co4 · gr
2

1 · (ga1)−r·(1−2·m))((m−1)·m)−1
= ga

2

1 .

The same can be done for gb1 and ga+b
1 . Then, using the formula

a · b = (a2 + b2 − (a− b)2) · 2−1

we can compute the solution for the co-computational Diffie-Hellman
problem.

4 Conclusions

We have proposed a practical extractable bit commitment scheme. More-
over, we proposed an extension that ensures that the message space is
{0, 1}, which is required by many application. We achieve this without
random oracles or Groth-Sahai proofs. Moreover, our commitment scheme
is efficient in terms of computational and space complexity. For a future
work we plan to apply our commitment scheme to blind signatures.
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