
Implementing Blind Signatures on Multos Smart Card - Report

Wojciech Wodo, Lucjan Hanzlik

Wroc law University of Science Technology
wojciech.wodo@pwr.edu.pl, lucjan.hanzlik@pwr.edu.pl

1 Introduction

Blind Signatures. David Chaum [1] was the first to propose blind signatures. This cryptographic
primitive allows a user to receive a signature from the signer in such a way that the signer should not
be able to link a signature to the issuing protocol (blindness). To protect the signer we also require
unforgeability, i.e. without the knowledge of the secret key, one cannot compute a valid signature.

Blind signatures are an interesting research topic as there are still open problems. The goal is to
design a two-move blind signatures (also called round-optimal [2]) that is efficient and secure under
weak assumptions in the plain model, i.e. without random oracles or a setup phase (a common reference
string).

Fischlin et al. [3] showed that this is not an easy task. In particular, it is impossible to construct a
three-move blind signature scheme with a black-box reduction to a non-interactive problem instance.
This results require that the scheme admits a signature derivation checks, i.e. the transcript of com-
munication allows to verify whether the user is able to derive a valid signature in this execution. This
leaves room for constructions that bypass this limitations.

Garg et al. [4] were the first to proposed a generic construction that bypasses those impossibility
results. However, the solution is not efficient from a practical point of view as it uses fully homo-
morphic encryption to evaluate a signing circuit. At Eurocrypt’14 Garg and Gupta [5] improved the
previous results and proposed the first efficient round-optimal blind signature constructions in the
standard model. The authors prove security using a technique called complexity leveraging. However,
the computational and communication complexity of the scheme limits its usage in many practical
applications.

Fuchsbauer et al. [6] proposed the first practical round-optimal blind signature scheme in the
standard model. Their generic construction is based on structure-preserving signatures on equivalence
classes (SPS-EQ) which unforgeability implies the unforgeability of the generic construction. On the
other hand, blindness is based on an interactive version of the decisional Diffie-Hellman problem.
Recently, the authors improved this result [7] and replaced the interactive assumption by a weaker
assumption. The disadvantage of both generic constructions is that they cannot be instantiated with all
SPS-EQ. What is more, the only instantiation that can be used still requires an interactive assumption
[8].

MULTOS. MULTOS is the second most popular operating system for smart cards. The system allows
to use multiple applications that are managed by the MULTOS virtual machine. The MULTOS tech-
nology is open but overseen by the MULTOS Consortium a body composed of companies which have
an interest in the development of the OS and includes smart card and silicon manufacturers, payment
card schemes, chip data preparation, card management and personalization system providers, and
smart card solution providers.

In comparison to Java Card, which are the most popular smart cards on the market, MULTOS
smart cards can be programmed using different programming languages, i.e.: C, Java or MEL. What
is more, the MULTOS standard defines a low-level API that allows non-industry developers (e.g.
scientists) to create more efficient application, in comparison to the high-level API given by the Java
Card API. On the other hand, smart card manufacturer only implement the mandatory functions
described by the MULTOS API and some of the optional functions are not supported.

Our Contribution. In this report we focus on the implementation of an unpublished blind signature
scheme, which is based on the single-message protocol for the short randomizable signatures presented



2 Wojciech Wodo, Lucjan Hanzlik

by Pointcheval and Sanders [9]. This protocol allows the user to receive a signature under a message
committed in a Pedersen commitment. However, the protocol requires the user to proof knowledge
of the commitment opening. Common instantiation for this type of proofs require the random oracle
model, multiple rounds or the common reference string model.

The implemented blind signature scheme uses the knowledge-of-exponent assumption [10] instead
of this proof of knowledge. It is worth noting that knowledge assumptions were already used in other
blind signature schemes [11]. However, the construction is based on unknown order groups, thus are
fairly inefficient. The scheme also uses a deterministic parameter generator, so the user can ’trust’ the
group parameters in the signer’s public key. The resulting blind signature scheme is not only two-move
but works in the plain model, i.e. without random oracle or a common-reference string.

The main contribution of this report is the following. We present details on how to efficiently
implement the user side of the scheme on a MultiApp MULTOS smart card provided to us by Gemalto.
First we describe in details the implemented blind signature scheme. Then we present the limitations
of the MULTOS card used by us and how to improve it to support more operations. Finally, we show
how to use this improvements to implement the presented blind signature scheme.

2 Preliminaries

Definition 1 (Elliptic Curves of Prime Order).
Elliptic curve points (with O defined as point at infinity) with point addition form additive groups.

Usually, in cryptography we use elliptic curves over prime fields Fp, for p > 3, and defined by the
Weierstrass equation y2 = x3 + ax+ b mod p. By E(Fp) we denote an elliptic curve over Fp. For two
distinct points P = (xP , yP ) ∈ E(Fp) and Q = (xQ, yQ) ∈ E(Fp) we define point addition (in affine
coordinates) as R = P +Q = (xR, yR), where:

λ = (yQ − yP )/(xQ − xP ) mod p,
xR = λ2 − xP − xQ mod p,
yR = λ(xP − xR)− yP mod p.

Note that for Q = P the value λ is equal to zero. Thus, for the sum R = P + P we use λ =
(3x2P + a)/(2yP ) mod p. In addition, if Q = −P = (xP ,−yP ), then P + Q = O. It follows that for
any point P ∈ E(Fp) we have that P +O = O + P = P .

We now define scalar multiplication for a point P ∈ E(Fp) and scalar k ∈ Zq as [k]P , where:

[k]P = P + . . .+ P︸ ︷︷ ︸
k- times

Definition 2 (Bilinear map). Let us consider cyclic groups (G1,+), (G2,+), (GT , ·) of a prime
order q. Let P1, P2 be generators of respectively G1 and G2. We call e : G1×G2 → GT a bilinear map
(pairing) if it is efficiently computable and the following holds:

Bilinearity: ∀(S, T ) ∈ G1 ×G2, ∀a, b ∈ Zq, we have e([a]S, [b]T ) = e(S, T )a·b,
Non-degeneracy: e(P1, P2) 6= 1 is a generator of group GT ,

Depending on the choice of groups we say that map e is of:

Type 1: if G1 = G2,
Type 2: if G1 and G2 are distinct groups and there exists an efficiently computable isomorphism

ψ : G2 → G1,
Type 3: if G1 and G2 are distinct groups and no efficiently computable isomorphism ψ : G2 → G1 is

known.

Definition 3 (Bilinear-group generator). A bilinear-group generator is a polynomial-time algo-
rithm BGGen that on input of a security parameter λ returns a bilinear group BG = (q,G1,G2,GT , e, P1, P2)
such that G1 = 〈P1〉, G2 = 〈P2〉 and GT are groups of order q with log2 q ≈ λ and e : G1×G2 → GT is
a bilinear map. Similar to [6] we assume that BGGen is deterministic (which is the case for BN-curves
[12]).



Implementing Blind Signatures on Multos Smart Card 3

2.1 Short Randomizable Signatures

We now recall the short randomizable signatures presented by Pointcheval and Sanders [9]. This
signature scheme uses type 3 pairing, thus we will use describe it using the bilinear group generator
BGGen. We present the modified variant of the scheme that admits the signing of committed messages.

Definition 4 (Short Randomizable Signatures). The signature scheme is given by the following
triple of algorithms given an output BG of BGGen(λ).

KeyGenCL(BG):
Choose (x, y)←$ (Z∗

q)
2, compute X1 = [x]P1, X2 = [x]P2, Y1 = [y]P1, Y2 = [y]P2, set the public key

pkCL = (BG, X2, Y1, Y2) and the private key skCL = (pkCL, X1).

SignCL(m, skCL):
Select u←$ Zq and compute σ1 = [u]P1, σ2 = [u](X1 + [m]Y1). Output (σ1, σ2).

VerifyCL(m, (σ1, σ2), pkCL):
Output 1 if and only if σ1 6= 1G1 and e(σ1, X2 + [m]Y2) = e(σ2, P2).

3 The Implemented Blind Signature Scheme

In this section we present the implemented blind signature scheme. The construction uses in fact
the single-message protocol presented by Pointcheval and Sanders, for their randomizable signature
scheme [9], with some minor changes. The description of the scheme is given is Scheme 1.

KeyGenBS(1λ): Generate bilinear group parameters BG = (q,G1,G2,GT , e, P1, P2) ← BGGen(1λ).
Compute the short randomizable signature scheme key pair (skCL, pkCL) ←$ KeyGenCL(BG), where
pkCL = (λ,X2, Y1, Y2). Compute random k ←$ Zq and set the secret key skBS = (skCL, k). Compute
P̂1 = [k]P1, Ŷ1 = [k]Y1 and the public key pkBS = (pkCL, P̂1, Ŷ1).

RequestBS(m, pkBS): Parse pkBS as ((λ,X2, Y1, Y2), P̂1, Ŷ1), generate the parameters BG← BGGen(1λ),
choose t←$ Zq and compute ρ = ([t]P1 + [m]Y1, [t]P̂1 + [m]Ŷ1). Set StBS = (m, t) and send ρ to the
signer.

IssueBS(ρ, skBS): Parse skBS as (X, k) and ρ as (C1, C2). Abort if [k]C1 6= C2. Compute u ←$ Zq and
send β = ([u]P1, [u](X + C1)) to the user.

UnblindBS(β,StBS, pkBS): Parse β as (β1, β2), StBS as (m, t), pkBS as (pkCL, ·, ·) and compute
σ = (β1, β2 − [t]β1). Return ⊥ if VerifyBS(m,σ, pkBS) = 0 ; otherwise return σ.

VerifyBS(m,σ, pkBS): Parse pkBS as (pkCL, ·, ·) and return 1 iff VerifyCL(m,σ, pkCL) = 1 and e(Y1, P2) =
e(P1, Y2) and e(P̂1, Y2) = e(Ŷ1, P2).

Scheme 1: Our Blind Signature Scheme

4 The MULTOS Card API and its Limitations

Most cryptographic algorithms rely on computations in finite groups, e.g. multiplicative group of
integers modulo prime or additive groups on elliptic curves. In this section we investigate the operations
that are supported by the MULTOS standard and their limitations.



4 Wojciech Wodo, Lucjan Hanzlik

Operation
Name

Description Sup-
ported
on
Our
Card

Limitations Function in API

Modular
addition

a + b mod p No - Not supported by standard.

Addition a + b Yes Works on blocks of
bytes

multosBlockAdd

Modular
subtraction

a− b mod p No - Not supported by standard.

Subtraction a− b Yes Works on blocks of
bytes

multosBlockSubtract

Modular
multiplication

a · b mod p Yes - multosModularMultiplication

Modular
reduction

b = a mod p Yes - multosModularReduction

Modular
inversion

b = a−1 mod p No Not required by
standard and not
implemented on

most available smart
cards.

Requires low-level MEL primitive.

Modular ex-
ponentiation

c = ab mod p Yes Requires modulus of
standard RSA bit

length, i.e. 512, 1024
etc.

multosModularExponentiation

Modulo
square roots

b =
√
a mod p No - -

Table 1. MULTOS API Operations Supporting Multiplicative Groups of Integers Modulo Prime p

Operation
Name

Description Sup-
ported
by
Our
Card

Limitations Function in API

Point
Addition

(xR, yR) =
(xP , yP ) +
(xQ, yQ)

No Not required by the
standard and not
implemented on

most available smart
cards.

Requires low-level MEL primitive.

Point Multi-
plication

(xR, yR) =
[k](xP , yP )

No Not required by the
standard and not
implemented on

most available smart
cards.

Requires low-level MEL primitive.

EC Diffie-
Hellman

xR =
([k](xP , yP ))x

Yes - Requires low-level MEL primitive.

Table 2. MULTOS API Operations Supporting Elliptic Curves

4.1 Implementing the Missing Operations

In this subsection we present how to implement the operations that are missing on our card using the
given operations. We begin by defining a structure that will hold all elements and the prime modulus
of the multiplicative group, i.e.:

typedef struct {

BYTE value[FIELD_LEN];

} FieldElement;



Implementing Blind Signatures on Multos Smart Card 5

. Moreover, we will use the structure

typedef struct {

FieldElement x;

FieldElement y;

} ECPoint;

to represent elliptic curve points, the structure

typedef struct {

BYTE format;

BYTE length;

FieldElement p;

FieldElement a;

FieldElement b;

ECPoint G;

FieldElement q;

BYTE h;

} domainParameters;

to represent parameters of ordinary elliptic curves and the structures

typedef struct {

ECPoint pub;

FieldElement priv;

} ECKeyPair;

typedef struct {

BYTE value[FIELD_LEN+4];

} ECDH_Secret;

to represent EC Diffie-Hellman keypairs and secrets.

Modular Addition and Subtraction We begin with basic operations, i.e. modular addition and
modular subtraction. As one can see from Table 1, the MULTOS API supports standard addition and
subtraction on blocks of bytes and we simple use those functions to implement the functions:

void mod_add(FieldElement a,FieldElement b,FieldElement modulo, FieldElement* result)

and

void mod_sub(FieldElement a,FieldElement b,FieldElement modulo, FieldElement* result)

Note that the implementation always ensures that FieldElement is always an element of the group and
smaller than the prime modulus p. Thus, we can use the block addition method and check whether the
result is smaller than p, otherwise we just subtract the modulus p from the result. Modular subtraction
can be done in a similar way.

Modular Multiplication It is also easy to implement modular multiplication on FieldElement as:

void mod_mul(FieldElement a,FieldElement b,FieldElement modulo, FieldElement* result)

{

multosModularMultiplication(FIELD_LEN,modulo.value,a.value,b.value);

multosBlockCopyNonAtomic(FIELD_LEN,a.value,result->value);

}

To simplify operations on elliptic curves, we also implement function for computing modular squares



6 Wojciech Wodo, Lucjan Hanzlik

void mod_sq(FieldElement a,FieldElement modulo, FieldElement* result)

{

multosModularMultiplication(FIELD_LEN,modulo.value,a.value,a.value);

multosBlockCopyNonAtomic(FIELD_LEN,a.value,result->value);

}

and cubes

void mod_cube(FieldElement a,FieldElement modulo, FieldElement* result)

{

multosBlockCopyNonAtomic(FIELD_LEN,a.value,c.value);

multosModularMultiplication(FIELD_LEN,modulo.value,c.value,a.value);

multosModularMultiplication(FIELD_LEN,modulo.value,c.value,a.value);

multosBlockCopyNonAtomic(FIELD_LEN,c.value,result->value);

}

Modular Exponentiation As one can see from Table 1 the multosModularExponentiation requires
that the used modulus has a standard RSA length. This causes some problems as for our purposes
(working on elliptic curves) we use a much smaller modulus, e.g. 256-bit. To solve this problem, we
extend the 256-bit modulus p by computing a modulus n = p ·(2255+1), which can be used. Finally, we
compute r = gx mod n and reduce the result r mod p using the multosModularReduction function.
Note that this in fact is the correct result, as there exists a k such that gx = r+k ·n = r+k ·p·(2255+1).
Thus, gx mod p = r mod p+ 0. The source code is given below:

void mod_exp(FieldElement a,FieldElement exp,FieldElement modulo, FieldElement* result)

{

multosBlockCopyNonAtomic(FIELD_LEN,modulo.value,mod64);

multosBlockCopyNonAtomic(FIELD_LEN,a.value,in64+(64-FIELD_LEN));

multosBlockAdd(FIELD_LEN,mod64+(64-FIELD_LEN),modulo.value,mod64+(64-FIELD_LEN));

multosModularExponentiation(FIELD_LEN,64,exp.value,mod64,in64,out64);

multosModularReduction(64,FIELD_LEN,out64,modulo.value);

multosBlockCopyNonAtomic(FIELD_LEN,out64+(64-FIELD_LEN),result->value);

//clearing auxiliary arrays

multosBlockClear(64,mod64);

multosBlockClear(64,in64);

multosBlockClear(64,out64);

}

Modular Inversion Usually modular inversion is implemented using the extended euclidean algo-
rithm, as this is one of the most efficient ways to compute an inverse. However, since the MULTOS
card is running a virtual machine, the software implementation of this algorithm is less efficient than
using modular exponentiation and the Fermat’s little theorem. The idea is that we first compute the
exponent e = p− 2 and compute the inverse of a modulo p by computing ae mod p.

void mod_inv(FieldElement a,FieldElement modulo,FieldElement* result)

{

multosBlockCopyNonAtomic(FIELD_LEN,modulo.value,exponent.value);

multosBlockDecrement(FIELD_LEN,exponent.value);

multosBlockDecrement(FIELD_LEN,exponent.value);

multosBlockCopyNonAtomic(FIELD_LEN,modulo.value,mod64);



Implementing Blind Signatures on Multos Smart Card 7

multosBlockCopyNonAtomic(FIELD_LEN,a.value,in64+(64-FIELD_LEN));

multosBlockAdd(FIELD_LEN,mod64+(64-FIELD_LEN),modulo.value,mod64+(64-FIELD_LEN));

multosModularExponentiation(FIELD_LEN,64,exponent.value,mod64,in64,out64);

multosModularReduction(64,FIELD_LEN,out64,modulo.value);

multosBlockCopyNonAtomic(FIELD_LEN,out64+(64-FIELD_LEN),result->value);

//clearing auxiliary arrays

multosBlockClear(64,mod64);

multosBlockClear(64,in64);

multosBlockClear(64,out64);

}

Modulo Square Roots To efficiently compute square roots modulo prime p we restrict the imple-
mentation to p ≡ 3 mod 4. In such a case, the computation of a square root of the value a is fairly
efficient. The resulting root can be computed as b = a(p+1)/4 mod p. It is easy to see that:

b2 mod p = (a(p+1)/4)2 mod p = a(p+1)/2 mod p

= a((p−1)+2)/2 mod p = (a1/2)p−1 · a2/2 mod p = 1 · a mod p = a mod p.

The source code for this method is given below.

void mod_sqrt(FieldElement a,FieldElement modulo,FieldElement* result)

{ //only for p = 3 \mod 4

multosBlockCopyNonAtomic(FIELD_LEN,modulo.value,tmp);

multosBlockIncrement(FIELD_LEN,tmp);

multosBlockShiftRight(FIELD_LEN,2,tmp,exponent.value);

mod_exp(a,exponent,modulo,result);

}

Elliptic Curve Point Addition Above we defined all operations in multiplication groups of integers
modulo a prime. Thus, we can define elliptic curves over such groups and use the definition of point
addition as described in Definition 1. Given two distinct points P = (xP , yP ) and Q = (xQ, yQ), first
we compute the slope λ = (yQ − yP )/(xQ − xP ) mod p and then the resulting points coordinates
xR = λ2 − xP − xQ mod p and yR = λ(xP − xR) − yP mod p. This can be done as shown in the
source code below.

void pointAddition(domainParameters domain, ECPoint P, ECPoint Q, ECPoint* R){

if(cmp(P.x,Q.x)==0)

{

if(cmp(P.y,Q.y)==0)

{ //point double

mod_sq(P.x,domain.p,&tmp1);

mod_add(tmp1,tmp1,domain.p,&tmp2);

mod_add(tmp2,tmp1,domain.p,&tmp3); //3xp^2

mod_add(tmp3,domain.a,domain.p,&tmp1); // a+3xp^2

mod_shl(P.y,domain.p,&tmp2);

mod_inv(tmp2,domain.p,&tmp3); //1/2P.y

mod_mul(tmp3,tmp1,domain.p,&lambda);

mod_sq(lambda,domain.p,&tmp1);

mod_shl(P.x,domain.p,&tmp2);

mod_sub(tmp1,tmp2,domain.p,&tmp3); // R.x

multosBlockCopyNonAtomic(FIELD_LEN,tmp3.value,R->x.value);



8 Wojciech Wodo, Lucjan Hanzlik

mod_sub(P.x,R->x,domain.p,&tmp1);

mod_mul(lambda,tmp1,domain.p,&tmp2);

mod_sub(tmp2,P.y,domain.p,&tmp3);

multosBlockCopyNonAtomic(FIELD_LEN,tmp3.value,R->y.value);

}

else

{

;//infinity

}

}

else{

mod_sub(Q.y,P.y,domain.p,&tmp1);

mod_sub(Q.x,P.x,domain.p,&tmp2);

mod_inv(tmp2,domain.p,&tmp3);

mod_mul(tmp1,tmp3,domain.p,&lambda); // \lambda = (Q.y-P.y)/(Q.x-P.x) \mod p

mod_sq(lambda,domain.p,&tmp1);

mod_sub(tmp1,P.x,domain.p,&tmp2);

mod_sub(tmp2,Q.x,domain.p,&tmp3);

multosBlockCopyNonAtomic(FIELD_LEN,tmp3.value,R->x.value); // R.x = \lambda^2-P.x-Q.x

mod_sub(P.x,tmp3,domain.p,&tmp1);

mod_mul(tmp1,lambda,domain.p,&tmp2);

mod_sub(tmp2,P.y,domain.p,&tmp3);

multosBlockCopyNonAtomic(FIELD_LEN,tmp3.value,R->y.value); // R.y = \lambda*(P.x-R.x)-P.y

}

}

Elliptic Curve Point Multiplication As one can see from Table 2, point multiplication is not
available on our MULTOS card and we can only compute the result of the EC Diffie-Hellman protocol,
which is in fact the x-coordinate of the result of a point multiplication. We can use this function to
compute the resulting x-coordinate but we must reconstruct the y-coordinate. This can be done directly
by solving the curves equation y2 = x3 + ax+ b mod p. However, this way we receive two solutions,
i.e. y and −y. To solve this problem we can again use the EC Diffie-Hellman primitive as follows.

Let us assume that we want to compute P = [k]G, where k is the known scalar and G is a known
point. We first compute the x-coordinate of P using the EC Diffie-Hellman primitive. Then we use
the curves equation to compute two candidate points P1 = (x, y) and P2 = (x,−y). Note that P = Pi,
for i = 1 or i = 2. We then compute xQ = ([k + 1]G)x using the EC Diffie-Hellman primitive and
(xQ1 , yQ1) = Q1 = P1 +G using the above point addition function. We the check whether xQ = xQ1 ,
if so then P = P1 and P = P2 otherwise. The source code for the EC Diffie-Hellman primitive and
the above technique is given below.

void ECDH(domainParameters domain,FieldElement s,ECPoint pub,ECDH_Secret* R)

{

__push (&domain);

__push (s.value);

__push (&pub);

__push (R);

__code (PRIM, DH, 0x00);

}

void pointMultiplication(domainParameters domain,FieldElement s,ECPoint pub,ECPoint* R)



Implementing Blind Signatures on Multos Smart Card 9

{

__push (&domain);

__push (s.value);

__push (&pub);

__push (R);

__code (PRIM, DH, 0x00);

multosBlockCopyNonAtomic(FIELD_LEN,R->x.value,xd.value);

multosBlockIncrement(FIELD_LEN,s.value);

__push (&domain);

__push (s.value);

__push (&pub);

__push (R);

__code (PRIM, DH, 0x00);

multosBlockCopyNonAtomic(FIELD_LEN,R->x.value,xd1.value);

multosBlockCopyNonAtomic(FIELD_LEN,xd.value,R->x.value);

multosBlockDecrement(FIELD_LEN,s.value);

mod_mul(pub.x,xd,domain.p,&tmp1);

mod_add(tmp1,domain.a,domain.p,&tmp2);

mod_add(pub.x,xd,domain.p,&tmp3);

mod_mul(tmp2,tmp3,domain.p,&tmp1); // (x+xd)(a+x*xd)

mod_shl(domain.b,domain.p,&tmp2); // 2b

mod_add(tmp2,tmp1,domain.p,&tmp3); // 2b + (x+xd)(a+x*xd)

mod_sub(pub.x,xd,domain.p,&tmp1);

mod_sq(tmp1,domain.p,&tmp2); // (x-xd)^2

mod_mul(tmp2,xd1,domain.p,&tmp1); // xd1*(x-xd)^2

mod_sub(tmp3,tmp1,domain.p,&tmp2); // 2b + (x+xd)(a+x*xd) - xd1*(x-xd)^2

mod_shl(pub.y,domain.p,&tmp1); // 2y

mod_inv(tmp1,domain.p,&tmp3); // 1/2y

mod_mul(tmp3,tmp2,domain.p,&tmp1); // result!

multosBlockCopyNonAtomic(FIELD_LEN,tmp1.value,R->y.value);

}

Generating Random Elliptic Curve Key Pairs In order to generate random EC key pairs we
use the following function.

void generateKeyPair(domainParameters domain,ECPoint* P,FieldElement* scalar)

{

ECKeyPair pair;

__push (&domain);

__push (&pair);

__code (PRIM, PRIM_GEN_ECC_PAIR, 0x00);

multosBlockCopyNonAtomic(FIELD_LEN,pair.pub.x.value,P->x.value);

multosBlockCopyNonAtomic(FIELD_LEN,pair.pub.y.value,P->y.value);

multosBlockCopyNonAtomic(FIELD_LEN,pair.priv.value,scalar->value);

}



10 Wojciech Wodo, Lucjan Hanzlik

5 Implementing User Side of the Blind Signature Scheme

We begin this section with the observation that beside the signature verification VerifyBS(m,σ, pkBS)
(which requires the pairing operation and operations in G2) in the UnblindBS(β,StBS, pkBS) algorithm,
the user only performs operations in the group G1. As noted earlier, the required groups can be
instantiated by BN-curves [12]). In such a case, the group G1 is an ordinary elliptic curve. On the
other hand, the group G2 is an elliptic curve defined over an extension field and our tests have shown
that the efficiency of such operations is unsatisfactory.

Fortunately, a signature verification does not require any secret values and it can be easily delegated
by the card to the reader. It follows that we can use the operations described in Section 4 to implement
the user side of the blind signature scheme.

RequestBS(m, pkBS) Algorithm

We will now show how to compute the output ρ = (ρ1, ρ2). At first, we must create variables to store
the elliptic curve points P1, Y1, P̂1, Ŷ1.

ECPoint P1;

ECPoint HP1;

ECPoint Y1;

ECPoint HY1;

and send those values to the smart card. Those values can be initialized using the multosBlockCopyNonAtomic
function. Moreover, we must create variables to store the output ρ, which consists of two elliptic curve
points, and the state StBS, which consists of two group elements.

ECPoint RHO1;

ECPoint RHO2;

FieldElement m;

FieldElement t;

We also use auxiliary values

ECKeyPair TMP;

ECPoint Q1;

ECPoint Q2;

ECPoint Q3;

and variable

domainParameters domain;

to store the domain parameters for group G1.

Finally, we compute the output using the following commands

generateKeyPair(domain,&TMP.pub,&TMP.priv); // TMP.pub contains [t]P_1

pointMultiplication(domain,m,Y1,&Q1); // Q1 contains [m]Y_1

pointAddition(domain,TMP.pub,Q1,&RHO1); // RHO1 contains [t]P_1+[m]Y_1

pointMultiplication(domain,TMP.priv,HP1,&Q2); // Q2 contains [t]\hat{P}_1

pointMultiplication(domain,m,HY1,&Q3); // Q3 contains [m]\hat{Y}_1

pointAddition(domain,Q1,Q2,&RHO2); // RHO2 contains [t]\hat{P}_1+[m]\hat{Y}_1

Note that the state value StBS is (m, t).



Implementing Blind Signatures on Multos Smart Card 11

UnblindBS(β, StBS, pkBS) Algorithm

We will now show how to compute the final signature σ∗ = (σ∗1, σ
∗
2). This time we must create two

variables to store the input β = (β1, β2), the final signature σ∗ and a the value −t mod q

ECPoint S1;

ECPoint S2;

ECPoint Beta1;

ECPoint Beta2;

FieldElement tt;

To compute the signature σ∗ we use the following source code. First we compute the value −t
mod q as

mod_sub(domain.q,t,domain.q,&tt); // tt contains -t \mod q

Then we compute

multosBlockCopyNonAtomic(FIELD_LEN,Beta1->x.value,S1->x.value);

multosBlockCopyNonAtomic(FIELD_LEN,Beta1->y.value,S1->y.value); // S1 contains Beta1

pointMultiplication(domain,tt,Beta1,&TMP); // TMP contains [-t]\beta_1

pointAddition(domain,Beta2,TMP,&S2); // S2 contains \beta_2+[-t]\beta_1

and send the values m, S1 and S2 to the reader for verification. If the signature is valid, then it can
be processed by other algorithms, e.g. anonymous credential or e-coin applications, which use blind
signatures as a component.

Conclusions

In this report we presented a way to efficiently implement the user side of a practical two-move blind
signature. The described results can be used to implement various other cryptographic algorithms and
protocols on MULTOS smart cards.

Acknowledgements

This research was supported by the National Science Centre (Poland) based on decision
no 2014/15/N/ST6/04577.

References

1. Chaum, D.: Blind Signatures for Untraceable Payments. In: Advances in Cryptology: Proceedings of CRYPTO ’82,
Plenum (1982) 199–203

2. Fischlin, M.: Round-Optimal Composable Blind Signatures in the Common Reference String Model. In Dwork, C.,
ed.: Advances in Cryptology - CRYPTO 2006. Volume 4117 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2006) 60–77

3. Fischlin, M., Schrder, D.: On the Impossibility of Three-Move Blind Signature Schemes. In Gilbert, H., ed.: Advances
in Cryptology EUROCRYPT 2010. Volume 6110 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2010) 197–215

4. Garg, S., Rao, V., Sahai, A., Schrder, D., Unruh, D.: Round Optimal Blind Signatures. In Rogaway, P., ed.:
Advances in Cryptology CRYPTO 2011. Volume 6841 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2011) 630–648

5. Garg, S., Gupta, D.: Efficient Round Optimal Blind Signatures. In Nguyen, P., Oswald, E., eds.: Advances in
Cryptology EUROCRYPT 2014. Volume 8441 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2014) 477–495

6. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical Round-Optimal Blind Signatures in the Standard Model.
Cryptology ePrint Archive, Report 2015/626 (2015) http://eprint.iacr.org/.

7. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical Round-Optimal Blind Signatures in the Standard
Model from Weaker Assumptions. Cryptology ePrint Archive, Report 2016/662 (2016) http://eprint.iacr.org/

2016/662.



12 Wojciech Wodo, Lucjan Hanzlik

8. Fuchsbauer, G., Hanser, C., Slamanig, D.: EUF-CMA-Secure Structure-Preserving Signatures on Equivalence
Classes. Cryptology ePrint Archive, Report 2014/944 (2014) http://eprint.iacr.org/.

9. Pointcheval, D., Sanders, O.: Short randomizable signatures. Cryptology ePrint Archive, Report 2015/525 (2015)
http://eprint.iacr.org/.

10. Bellare, M., Palacio, A.: The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols. In:
Advances in Cryptology - CRYPTO 2004, Santa Barbara, California, USA, August 15-19, 2004, Proceedings. Volume
3152 of Lecture Notes in Computer Science., Springer (2004) 273–289

11. Hanzlik, L., Kluczniak, K.: A Short Paper on Blind Signatures from Knowledge Assumptions. Financial Cryptog-
raphy 2016 - preproceedings (2016) http://fc16.ifca.ai/preproceedings/31_Hanzlik.pdf.

12. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In Preneel, B., Tavares, S.E., eds.:
Selected Areas in Cryptography. Volume 3897 of Lecture Notes in Computer Science., Springer (2005) 319–331


