Introduction

Model of computation:
- radio network (set of stations communicating by radio messages)
- single hop (all stations are within the range of each message)
- synchronized (time is divided into slots)
- single channel (in one time slot only one message can be broadcast)
- if station listens then probability of successful reception is \(p \)
 (In reliable network \(p = 1 \).
 In unreliable network \(p < 1 \))
- during each time slot any station can be either:
 - idle (using no energy), or
 - broadcasting (using one unit of energy)

Complexity measures:
- energetic cost – maximum over all stations of the energy used. (Stations are powered by batteries.)
- time – number of time slots used by the computation.

Remark: By “\(L \)” we mean “\(\log n \)”

Ranking

(We assume that \(n = 2^k \)) A sorted sequence of keys: \(b_0, \ldots, b_{n-1} \) permuted by a fixed permutation \(v_3 \) is transmitted periodically. (In time slot \(i \) the key \(b_i \) is broadcast, where \(x = 2^i \mod n \).

Station \(a \) containing key \(b_i \) has to compute the rank of key \(b_i \) in \(b_0, \ldots, b_{n-1} \) (or its approximation).

(Rank of key \(b_i \) in \(b_0, \ldots, b_{n-1} \)) Station \(a \) contains variables \(\minR \) and \(\maxR \) that are the lower and upper bound on the rank, respectively. Initially \(\minR = 0 \) and \(\maxR = n-1 \) can start its computation in arbitrary time slot. In time slot \(i \), the station does:

\[
\begin{align*}
\text{let } s &= 2^i \mod n \quad &\text{if } \minR = \maxR \text{ then stop, otherwise}\;\text{continue}
\end{align*}
\]

Note that the rank of any key \(b_i \) is always in the interval \([\minR, \maxR] \).

Lemma 1. Let \(k \) be an integer. After \(r \) time slots \(\minR = \maxR \) (i.e. the exact rank is computed) with probability at least \(1 - (2r)^{-2^k} \).

(Station \(a \) has chances of receiving the direct neighbors of key \(b_i \)).

Lemma 2. The expected value of \(\Delta = \maxR - \minR \) after \(n \) time slots is not greater than \(2/n - 2 \).

(Broadcasting ordering permutation \(\beta_0 \). Illustrated by the figure to the right. Each \(x \) is connected by vertical dotted line with the node labeled \(\beta_0(x) \).

(Gray level of the tree position and the tree position within the level can be easily read from binary representation of \(x \). Hence, \(\beta_0 \) is “easily computable” function.) The network is reliable and \(v_3 = \beta_0 \) and \(a \) starts in time slot 0 then the energy used by \(a \) is at most \(1 \).

(If \(\minR = 0 \) and \(\maxR = n-1 \) then the energy used by \(a \) is at most \(n/2 \).)

Theorem 1. If \(v_3 = \beta_0 \) and \(p = 1 \) and station \(a \) starts in arbitrary time slot, then the station \(a \) listens at most \(1/n + 1/n \) times before it learns its rank.

(Ranking with \(\beta_0 \) in a reliable network)

Theorem 2. For \(0 < q < 1 \), the procedure \(\mathcal{P} \) sorts any input sequence with probability greater or equal \(1 - q^{\mathcal{P}} \).

(time / \(n/2 \) to \(n/2 \) + 1)

(mapping)

This follows from Lemma 1 and from the definition of \(\mathcal{P} \).

Theorem 3. For any input, the expected energy used for listening by any single station in \(\mathcal{P} \) is at most \(\mathcal{O}\left(\frac{n}{(1+1/2)(1-1/2)^{2/2}}\right) \).

(If the computation is successful, then all indexes on level \(k \) are computed before the first levelRanking \(\mathcal{P} \) is received.)

This theorem can be used to bound the energy used by the first levelRanking \(\mathcal{P} \).

Bibliographic coordinates of the conference paper:

This work has been supported by the ICT Programme of the European Union through contract number FP7-215270 (FRONTS).