
Periodic constant depth sorting networks

?

Marcin Kik Miros law Kuty lowski Grzegorz Stachowiak

Institute of Computer Science, University of Wroc law,

ul. Przesmyckiego 20, PL-51-151 Wroc law, Poland,

email: kik,mirekk,gst@ii.uni.wroc.pl

Abstract. Comparator networks of constant depth can be used for sorting

in the following way. The computation consists of a number of iterations,

say t, each iteration being a single run through the comparator network.

The output of a round j (j < t) is used as the input for the round j + 1.

The output of the round t is the output of the computation. In such a way,

it is possible to apply a network with a small number of comparators for

sorting long input sequences. However, it is not clear how to make such a

computation fast.

Odd-Even Transposition Sort gives a periodic sorting network of depth 2,

that sorts n numbers in n=2 iterations. The network of depth 8 proposed

by Schwiegelshohn [8] sorts n numbers in O(

p

n log n) iterations. Krammer

[5] modi�ed the algorithm and obtained a network of depth 6 sorting in

O(

p

n log n) iterations.

For a �xed but arbitrary k 2 N , we present a periodic sorting network of

depth O(k) that sorts n input numbers in O(k

2

� n

1=k

) steps.

1 Introduction

Comparator networks are widely used for sorting sequences of numbers. A compara-

tor network of depth d sorting n input numbers may be viewed as a set of n registers

and a set of communication links between the registers divided into d so called levels.

Each level can be represented by a directed graph of degree one, i.e. a single register

may be connected to at most one other register at a given level. At step i � d of the

computation, all links of the ith level are used in parallel to perform comparison-

exchange operations between the elements stored in di�erent registers: For a given

link (R;R

0

), if numbers x and x

0

are stored in R and R

0

, respectively, then after the

compare-exchange operation R stores min(x; x

0

) and R

0

stores max(x; x

0

).

A large number of sorting comparator networks has been proposed in the lit-

erature. The networks proposed by Batcher [2] are regarded as most successful in

practice. They are very elegant in design and have depth

1

2

(logn)

2

. There has been

a lot of e�ort to reduce the depth of sorting comparator networks to logn. This was

achieved by the famous AKS network of depth O(logn) [1]. However, the result is

of purely theoretical importance, because of large constants involved.

?

supported by KBN grant 2 1197 91 01 and Volkswagen Foundation, Project \Paralleles

Rechnen: Theoretische und experimentelle Untersuchungen zu parallelen Rechnenmod-

ellen und systemnahen Algorithmen", partially this work was done while the �rst and

the second author visited Heinz{Nixdorf-Institut, Universit�at Paderborn

Except for relatively large depth, the networks of Batcher have yet another dis-

advantage. Every level is di�erent from another. Therefore, if the sorting network is

directly wired in a VLSI chip, then there is a large number of wires put into circuitry,

making the chip large and expensive. If the comparator network is emulated by a

set of processors, then there is a lot of overhead due to routing along many di�erent

paths at di�erent times. One may try to overcome these di�culties by applying pe-

riodic sorting algorithms [3]. We may use a single comparator network (presumably

of a small depth) repeatedly: after getting output that is still not sorted, we put

it as an input to the network again. We stop once the output is sorted. The total

computation time is therefore � � T , where � is the depth of the network and T is

the number of iterations. Dowd et al [3] proposed a network of depth logn that

sorts in logn iterations. All communication links of this network are those of an

logn-dimensional hypercube.

To achieve low cost sorting circuits for large inputs it would be desirable to reduce

the depth of comparator networks used for periodic sorting to a constant while

preserving a small number of iterations. The question whether such networks exist

has been raised by Meyer auf der Heide [7]. For example, Odd-Even Transposition

Sort leads to a network of depth 2 that sorts in n=2 iterations, i.e. n parallel steps [6].

Schwiegelshohn's network of depth 8 sorts n elements in O(

p

n logn) iterations [8].

Krammer [5] modi�ed the construction of Schwiegelshohn and obtained a network

of depth 6 sorting in O(

p

n logn) iterations.

In this paper we prove the following theorem.

Theorem1. Let k 2 N be an arbitrary constant. Let n 2 N . There is a comparator

network of depth O(k) that sorts n numbers in O(k � n

1=k

) iterations, i.e. in time

O(k

2

� n

1=k

).

The proof of Theorem 1 is constructive { we show how to build the required

network using "-halver networks of Ajtai, Koml�os and Szemer�edi. However, our net-

work is not applicable directly in practice, since the constants seem to be not small

enough and wiring due to expanders might be complicated.

Due to space limitations, some proofs in this paper are only sketched. More

technical details can be found in [4].

2 Preliminaries

De�nition2.

A comparator network N= (V;C

1

; : : : ; C

d

) for input sequences of n numbers consists

of a set V of n registers R

1

; : : : ; R

n

and d directed graphs C

1

; : : : ; C

d

, each of degree

1, with vertices in V . For i � d, C

i

is called the ith level of N ; d is called the

depth of N . Network N works as follows. Initially, the input numbers are stored

in the registers, the ith number in the register R

i

. At step t (t � d), for each arc

(R

j

; R

j

0

) 2 C

t

the numbers stored in R

j

and R

j

0

are compared. The minimum of

them is put into R

j

, the maximum into R

j

0

. (Since C

t

has degree 1, there is at most

one arc incident to a given vertex and the de�nition is unambiguous.) For an input

sequence x = (x

1

; : : : ; x

n

), by the output of N on x, N (x), we mean the sequence

(x

j

1

; : : : ; x

j

n

), where x

j

i

denotes the contents of R

i

after step d.

A comparator network N is monotonic if j < j

0

for every arc (R

j

; R

j

0

) 2 C

t

; t � d.

(All comparator networks considered in this paper are monotonic).

De�nition3. Let N

1

(x) = N (x) and N

j+1

(x) = N (N

j

(x)) for i � 1. We say that

network N sorts a sequence x in at most t iterations, if the sequence N

t

(x) is sorted.

To prove that a comparator network sorts in a stated time one can use well known

0{1 Principle (see [6]). Clearly, iterating computation of a comparator network is

equivalent to a single computation on a comparator network with iterated layers.

Lemma4. (0{1 Principle) A comparator network correctly sorts every input se-

quence if and only if it correctly sorts every input sequence consisting of 0's and

1's.

3 Construction of the network

In our construction we use "-halver networks introduced in [1]. We recall their de�-

nition and basic properties.

De�nition5. Let " � 0. A comparator network N is an "-halver for inputs of size

n if the following holds:

(i) The set of registers of N consists of two subsets V

1

and V

2

of cardinality n=2,

and all comparison arcs point from V

1

to V

2

.

(ii) Let the input for N contain k ones and n�k zeroes. If k � n=2, then the output

of N contains at most " � k ones stored in V

1

. If k � n=2, then the output of N

contains at most " � (n� k) zeroes stored in V

2

.

We shall also say that N is a (V

1

; V

2

; ")-halver.

Lemma6. [1] For each " > 0 and n 2 N , there exists an "-halver for inputs

consisting of n numbers which has depth O(1=" � log(1=")).

The construction of "-halver networks is based on expander graphs. In fact, "-

halver networks are basic components of the AKS sorting network.

De�nition7. Let N = (V;C

1

; : : : ; C

d

) and N

0

= (V

0

; C

0

1

; : : : ; C

0

d

0

) be compara-

tor networks. If V \ V

0

= ; and d = d

0

, then by N [N

0

we mean the net-

work (V [V

0

; C

1

[C

0

1

; : : : ; C

d

[C

0

d

). If V = V

0

, then N jN

0

denotes the network

(V;C

1

; : : : ; C

d

; C

0

1

; : : : ; C

0

d

0

).

(";m)-blocks that we de�ne below are key components of our sorting network.

De�nition8. An (";m)-block built on registers R

1

; : : : ; R

n

is de�ned as follows. Let

l = d

n

m

e. For i < l, let K

i

= fR

m�(i�1)+1

; : : : ; R

m�i

g, and K

l

= fR

m�(l�1)+1

; : : : ; R

n

g.

Let E

i

be an (K

i

;K

i+1

; ")-halver. (If K

l

consists of less than m registers, then we

add dummy registers to make K

l

contain m registers, we take an (K

l�1

;K

l

; ")-

halver and remove all arcs pointing to the dummy registers; E

l�1

consists of the

arcs that remain.) Let P = (E

1

[E

3

[E

5

[� � �) and N = (E

2

[E

4

[E

6

[� � �).

Then the network P jN is called an (";m)-block. P is called the �rst layer and

N is called the second layer of the (";m)-block. In particular, a (0; 1)-block is

a network (fR

1

; : : : ; R

n

g; C

1

; C

2

), where C

1

= f(R

1

; R

2

); (R

3

; R

4

); : : :g and C

2

=

f(R

2

; R

3

); (R

4

; R

5

); : : :g

We can imagine the registers of an (";m)-block to be arranged in an m�l-matrix,

with K

i

being the ith column of the matrix. Between each pair of columns we put

an "-halver . During the �rst part of computation corresponding to P we apply "-

halversfor the pair of columns K

1

and K

2

, K

3

and K

4

, : : : . During the second part

of the computation corresponding to N , we use "-halversfor the pairs of columns

K

2

and K

3

, K

4

and K

5

, : : : . The crucial property of (";m)-blocks is that in O(l)

iterations each element is moved to a column not far from the column of its �nal

destination in the sorted sequence (to be proved in Section 4).

Now we complete the construction of our comparator network that sorts n num-

bers in O(k

2

� n

1=k

) iterations:

De�nition9. For n; k 2 N , let I

n;k

be a comparator network of the form

I

n;k

= F

1

jF

2

j � � � jF

k

jF

k+1

where F

k+1

is a (0; 1)-block, and F

i

is an ("; n

(k�i)=k

� (c � logn)

i�1

)-block for i =

1; : : : ; k. (The constants c and " (0 < " <

1

2

) will be determined later.)

It follows from the de�nition that I

n;k

has depth 2�k+2, where � = O(

1

"

� log(

1

"

))

denotes the depth of the "-halvers used in the construction.

4 The time bounds

This section is organized as follows. First we analyze computation of a single (";m)-

block. In Subsection 4.1 we formulate the main lemma and make some straightfor-

ward observations. Subsections 4.2, 4.3, 4.4 are devoted to the proof of the main

lemma. Finally, in Subsection 4.5 we use the main lemma to estimate the number of

iterations required by the network I

n;k

.

4.1 Main lemma

Let B be an (";m)-block consisting of registers R

1

; : : : ; R

n

, l = d

n

m

e. By K

i

=

K

i

(B;m) we denote the ith column of B of height m, i.e.,K

i

= fR

m(i�1)+1

; : : : ; R

mi

g,

for i < l, and K

l

= fR

m(l�1)+1

; : : : ; R

n

g. We shall use this notation throughout the

whole section.

De�nition10. Let C = X

1

jBjX

2

and let the registers of C store 0's and 1's, only.

Then we say that network C is at most (p;m)-dirty, if there is j such that the

columns K

1

; : : : ;K

j

contain only zeroes, and the columns K

j+p+1

; : : : ;K

l

contain

only ones.

Lemma11. (Main Lemma) Let B

0

be a comparator network such that B

0

=

X

1

jBjX

2

for some monotonic comparator networks X

1

; X

2

and the (";m)-block B.

There are constants � 2 N and � 2 R, such that if initially B

0

stores 0's and 1's and

is at most (p;m)-dirty, then after ��p iterations, B

0

is at most (� �log(p�m);m)-dirty.

It is convenient to reduce Main Lemma using three following observations:

Fact 12 It su�ces to prove Main Lemma for l = p and for the case when the last

column of B consists of m registers.

The �rst claim is obvious. The second claim can be proved by adding lacking registers

containing ones to the last column.

Fact 13 If Main Lemma holds for the case when the number of ones is an odd

multiple of m, then it holds in general.

Sketch of the proof. We need the following easy claim:

Claim. [5] If x

1

� x

2

and F is a comparator network, then F (x

1

) � F (x

2

).

Let x be an arbitrary input to B

0

and its input x contain s ones. Consider x

1

;x

2

such that: x

1

� x � x

2

; for some odd r, x

1

contains r � m ones and x

2

contains

(r+1) �m ones. By the claim, (B

0

)

�l

(x

1

) � (B

0

)

�l

(x) � (B

0

)

�l

(x

2

). We replace zeros

in x

1

that are ones in x by 1=3 and zeros in x that are ones in x

2

by 2=3 obtaining x

0

.

Assume (B

0

)

�l

(x

i

) are (� log(lm);m)-dirty. It is easy to see, that the area between

columns consisting of zeros and columns consisting of ones in (B

0

)

�l

(x

0

) contains at

most 2� log(lm)+1 columns. It means, that (B

0

)

�l

(x) is at most (2� log(lm)+1;m)-

dirty.2

4.2 Dominance relation

We consider the number of 1's in each column K

i

during the computation on inputs

consisting of 0's and 1's. This motivates the de�nitions that follow.

De�nition14. Let a = (a

1

; : : : ; a

l

);b = (b

1

; : : : ; b

l

), where a

i

; b

i

2 [0;m] (a

i

; b

i

2

R), for i = 1; 2; : : : ; l. For i � l, let head

i

(a) =

P

i

j=1

a

j

. We say that a dominates

b (denoted by a � b), if head

l

(a) = head

l

(b) and head

k

(a) � head

k

(b) for every

k < l.

Intuitively, a

i

, b

i

denote the number of ones in K

i

. If a dominates b, then the

sequence of 0's and 1's corresponding to a is closer to the sorted sequence than the

sequence corresponding to b. Equivalently, for a;b 2 f0; 1g

l

, we could de�ne: a � b

if a and b contain the same number of 1's, and for every i, the ith one in b occurs

no later than the ith one in a (cf. [5]). The following properties follow directly from

the de�nition:

Fact 15 The relation � is a partial order.

Fact 16 Let X be an arbitrary monotonic network on the registers R

1

; : : : ; R

n

. Con-

sider an input consisting of 0's and 1's; let e

i

denote the number of 1's in K

i

and

e = (e

1

; : : : ; e

l

). Let x

i

denote the number of 1's in K

i

after applying X to the input

and x = (x

1

; : : : ; x

l

). Then x � e.

By Fact 16, by applying the network from Main Lemma we get a sequence not

worse in sense of � than a sequence produced by block B only. So, we can restrict

our considerations to prove Main Lemma for B

0

= B.

De�nition17. Let B

0

be the network de�ned in Main Lemma. Let the input of

the network B

0

consist of 0's and 1's. Then a

2t;i

denotes the number of ones in the

column K

i

of (";m)-block B immediately after iteration t of B

0

, and a

2t+1;i

denotes

the number of ones in K

i

after applying the �rst layer P of B at iteration t + 1 of

B

0

. Let a

t

= (a

t;1

; : : : ; a

t;l

).

The vectors a

t

might be very di�cult to determine. Even if we �x "-halvers used

to build B, there are many di�erent distributions of 0's and 1's corresponding to the

same vector a

0

, and each of them inuences a

t

in some way. Therefore, we look for

simpler vectors b

t

such that a

t

dominates b

t

for each t. The key point is to de�ne

b

t+1

from b

t

without loosing the property that a

t+1

dominates b

t+1

. To do this we

�rst de�ne pair of functions (f

"

1

; f

"

2

) that estimates how a single "-halver works.

De�nition18. Let " 2 [0;

1

2

). We de�ne

f

"

1

(x) =

�

"x for x � m;

m� (1� ")(2m � x) for x > m;

f

"

2

(x) =

�

(1� ")x for x � m;

m� "(2m � x) for x > m;

Fact 19 Let us have a single (V

1

; V

2

; ")-halver H and an input x to H containing x

ones. Then H(x) contains not more than f

"

1

(x) ones in V

1

and not less than f

"

2

(x)

ones in V

2

.

Proof. Follows from the de�nition of "-halver .2

In order to de�ne the sequence fb

t

g

t�0

we also need to de�ne on vectors in l-

dimensional hypercube [0;m]

l

two operations corresponding to layers P and N of

(";m)-block.

De�nition20. Let b = (b

1

; b

2

; b

3

; : : :) 2 [0;m]

l

. We de�ne:

P

"

(b) = (f

"

1

(b

1

+ b

2

); f

"

2

(b

1

+ b

2

); f

"

1

(b

3

+ b

4

); f

"

2

(b

3

+ b

4

); f

"

1

(b

5

+ b

6

); : : :)

and

N

"

(b) = (b

1

; f

"

1

(b

2

+ b

3

); f

"

2

(b

2

+ b

3

); f

"

1

(b

4

+ b

5

); f

"

2

(b

4

+ b

5

); f

"

1

(b

6

+ b

7

); : : :) :

The correspondence between P

"

; N

"

and layers P;N of (";m)-block is given by

the following lemma.

Lemma21. Let b be the sequence of numbers of ones in in columns of an (";m)-

block for an arbitrary input x. Let b

P

and b

N

be sequences of numbers of ones in

columns after applying a single layer P or N respectively to x. Then

P

"

(b) � b

P

and N

"

(b) � b

N

:

Proof. Follows from fact 19.2

We need also another technical lemma whose proof we leave to the reader.

Lemma22. If a � b, then

P

"

(a) � P

"

(b) and N

"

(a) � N

"

(b)

To estimate vector a

t

according to relation � we need some starting vector b

0

which is dominated by any vector a

0

representing an input sequence with a given

number s of ones.

De�nition23. Let mjs. Then b

0

= (b

1

; : : : ; b

l

) is the worst vector for s ones, if

b

i

= m for i � s=m, and b

i

= 0, otherwise.

From now on, we consider only inputs to network B

0

that contain 0's and 1's,

only, and contain exactly r �m ones for some �xed but arbitrary odd number r.

De�nition24. For i 2 N , let b

"

i

be de�ned as follows: b

"

0

= b

0

, b

"

i+1

= N

"

(b

"

i

), if

i + 1 is odd, and b

"

i+1

= P

"

(b

"

i

), if i + 1 is even.

Lemma25. b

"

t

� a

t

, for every t.

For " = 0, we get vectors b

0

i

that are closely related to the sequences of 0's and

1's occurring during Odd-Even Transposition Sort. Namely, let

~

b

0

i

be the sequence

obtained from b

0

i

by replacing every m by 1. Then

~

b

0

i

is the sequence obtained after i

steps of Odd-Even Transposition Sort, when started with

~

b

0

. So we can reformulate

well known properties of Odd-Even Transposition Sort in the following way.

Lemma26. For t � l�1, b

0

t

= (0; : : : ; 0;m; : : : ;m). For t < l�1, b

0

t

is a sequence

containing only 0's in positions 1 through (l � r) � (l � 1 � t) and containing only

m's in positions (l � r + 1) + (l � 1� t) through l.

Proof. The lemma follows from the fact that Odd-Even Transposition Sort sorts

~

b

0

0

in exactly l � 1 steps and that at time step t every element must be at a distance

not larger than l � 1� t from its �nal destination. 2

4.3 Convex estimates

Recall that for �

1

; : : : ; �

k

� 0 such that

P

k

i=1

�

i

= 1, the vector �

1

e

1

+ � � �+ �

k

e

k

is a convex combination of e

1

; : : : ; e

k

. First, we prove the following property of the

operators N

"

and P

"

on convex combinations:

Lemma27. Let �

1

; : : : ; �

k

� 0,

P

k

i=1

�

i

= 1 and e

1

; : : : ; e

k

2 [0;m]

l

. Then

k

X

i=1

�

i

N

"

(e

i

) � N

"

(

k

X

i=1

�

i

e

i

) and

k

X

i=1

�

i

P

"

(e

i

) � P

"

(

k

X

i=1

�

i

e

i

)

Proof. The proof of the lemma follows from the claim:

Claim. Let �; � � 0; � + � = 1, and x; y 2 [0; 2m]. Then f

"

1

(�x + �y) � �f

"

1

(x) +

�f

"

1

(y).

Since veri�cation of the claim is elementary and based on the de�nition of the func-

tion f

"

1

, we skip it. 2

Lemma28. Let 0 � i � l � 2. If i is even, then

N

"

(b

0

i

) = N

"

(b

0

i+1

) = "b

0

i

+ (1 � ")b

0

i+1

:

If i is odd, then

P

"

(b

0

i

) = P

"

(b

0

i+1

) = "b

0

i

+ (1� ")b

0

i+1

:

Moreover, P

"

(b

0

0

) = b

0

0

; P

"

(b

0

l�1

) = b

0

l�1

, if l is even; N

"

(b

0

l�1

) = b

0

l�1

, if l is odd.

The proof of Lemma 28 is easy and we leave it to the reader.

We may apply Lemma 28 as follows. Assume that b � �

0

b

0

0

+ � � �+ �

l�1

b

0

l�1

.

Then we get:

N

"

(b) � N

"

(�

0

b

0

0

+ � � �+ �

l�1

b

0

l�1

) � �

0

N

"

(b

0

0

) + � � �+ �

l�1

N

"

(b

0

l�1

) =

"(�

0

+ �

1

)b

0

0

+ (1 � ")(�

0

+ �

1

)b

0

1

+ "(�

2

+ �

3

)b

0

2

+ (1 � ")(�

2

+ �

3

)b

0

3

+ � � � :

Similarly,

P

"

(b) � �

0

b

0

0

+ "(�

1

+ �

2

)b

0

1

+ (1� ")(�

1

+ �

2

)b

0

2

+"(�

3

+ �

4

)b

0

3

+ (1� ")(�

3

+ �

4

)b

0

4

+ � � � :

De�nition29.

Convex estimate �

t

0

b

0

0

+ � � �+ �

t

l�1

b

0

l�1

of b

"

t

is de�ned as follows:

{ for t = 0, the convex estimate equals b

0

0

(i.e. �

0

0

= 1 and �

0

i

= 0 for i 6= 0),

{ if t is even, then the convex estimate of b

"

t+1

equals �

t

0

N

"

(b

0

0

)+� � �+�

t

l�1

N

"

(b

0

l�1

),

that is,

�

t+1

i

=

8

<

:

"(�

t

i

+ �

t

i+1

) if i is even, 0 � i < l � 1;

(1� ")(�

t

i�1

+ �

t

i

) if i is odd, 0 � i � l � 1;

�

t

l�1

if i = l � 1; l � 1 is even,

{ if t is odd, then the convex estimate of b

"

t+1

equals �

t

0

P

"

(b

0

0

)+� � �+�

t

l�1

P

"

(b

0

l�1

),

that is,

�

t+1

i

=

8

>

>

<

>

>

:

�

t

0

if i = 0;

"(�

t

i

+ �

t

i+1

) if i is odd, 0 � i < l � 1;

(1� ")(�

t

i�1

+ �

t

i

) if i is even, 0 � i � l � 1;

�

t

l�1

if i = l � 1; l � 1 is odd.

By Lemma 27, for every t, b

"

t

dominates its convex estimate. The coe�cients �

t

j

are relatively easy to compute. Moreover, one can see that the coe�cients of b

0

i

, for

a small i, quite fast begin to decrease exponentially when t grows. If they become

very small, then we shall see that b

"

t

is \almost sorted".

4.4 Flow of coe�cients

It would be tiresome to estimate the coe�cients �

t

i

directly. Instead, we use a method

based on the concept of ow of coe�cients:

De�nition30. For i; t 2 N , i � l � 1, let ow

t

(i) = �

t

i

� �

t�1

i

, if t and i have the

same parity, and ow

t

(i) = 0, otherwise.

Intuitively, ow

t

(i) describes increase of �

i

at expense of �

i�1

at step t. Indeed, if

t and i have the same parity, then �

t

i

= (1�")�(�

t�1

i

+�

t�1

i�1

), �

t

i�1

= "�(�

t�1

i

+�

t�1

i�1

),

hence �

t

i

+ �

t

i�1

= �

t�1

i

+ �

t�1

i�1

. So �

t

i�1

= �

t�1

i�1

� ow

t

(i).

Lemma31. Let i < l and let t+1 and i have the same parity. Then for 1 < i < l�1,

ow

t+1

(i) = (1� ") � ow

t

(i � 1) + " � ow

t

(i + 1):

For i = 1,

ow

t+1

(1) = " � ow

t

(2):

For i = l � 1,

ow

t+1

(l � 1) = (1� ") � ow

t

(l � 2):

Proof. By the construction of convex estimates, �

t�1

i

=�

t�1

i�1

= (1 � ")=". Hence

(1 � ")�

t�1

i�1

= "�

t�1

i

: (1)

Let ow

t

(i � 1) = x and ow

t

(i + 1) = y. So �

t

i�1

= �

t�1

i�1

+ x and �

t

i

= �

t�1

i

� y.

Hence, �

t+1

i

= (1� ")(�

t�1

i�1

+ x+�

t�1

i

� y) = �

t�1

i

+ (1� ")x� (1� ")y (the second

equality follows from (1)). So ow

t+1

(i) = �

t+1

i

� (�

t�1

i

� y) = (1� ")x + "y.

The formulas for ow

t+1

(1) and ow

t+1

(l� 1) can be obtained in a similar way.

2

Fact 32 ow

t

(i) � 0 for every t; i.

To get an upper bound on ows we de�ne upow

t

(i) for i 2 Z. Namely, for t = 1

we put upow

1

(1) = 1, and upow

1

(i) = 0 for i 6= 1. (We put upow

1

(1) = 1 instead

of upow

1

(1) = 1 � " in order to simplify some expressions.) To de�ne upow

t+1

from upow

t

, we use a formula based on the formula for ows given in Lemma 31:

upow

t+1

(i) = (1� ") � upow

t

(i � 1) + " � upow

t

(i + 1);

if t+ 1 and i have the same parity, and upow

t+1

(i) = 0 otherwise. It easily follows

from the de�nition that upow

t

(i) � 0 for any t; i, and

P

i2Z

upow

t

(i) = 1.

Lemma33. For every t; i 2 N , i < l � 1,

ow

t

(i) � upow

t

(i):

Lemma34. If t and i have the same parity, �t + 2 � i � t, then

upow

t

(i) =

�

t� 1

t+i

2

� 1

�

"

t�i

2

(1� ")

t+i

2

�1

: (2)

c c

c c c c

c c c c c c

-

- -

- - -

1

" 1� "

"

2

2"(1� ") (1� ")

2

�

0

�

1

�

2

�

3

t

1

2

3

� � � � � �

Fig. 1. Upper bounds for the ows

Lemma 34 follows directly from the formulas de�ning upows (see also Fig. 1).

For the rest of the proof we �x constants d; c

0

2 R such that

{ d >

1

1�2"

and dl is an even natural number,

{ c

0

=

(d+1)"

(d�1)(1�")

.

Corollary 35. If 0 < i < l and i is even, then

upow

dl

(i)

upow

dl

(i + 2)

� c

0

< 1: (3)

Proof. The �rst inequality may be easily obtained using equality (2). The second

one follows from the assumption that d >

1

1�2"

. We leave the details to the reader.

2

Corollary 36. If i is even, 0 < i < l, then upow

dl

(i) � c

d(l�i)=2e

0

. Hence, ow

dl

(i) �

c

d(l�i)=2e

0

.

Proof. By inequality (3), we get upow

dl

(i) � c

j

0

� upow

dl

(i + 2j), for i + 2j �

l + 1. Let s = d(l � i)=2e. Then i + 2s � l + 1. The sum of all upows is 1, so

upow

dl

(i + 2s) � 1. Hence upow

dl

(i) � c

s

0

. The second part of the lemma follows

from Lemma 33. 2

Lemma37. There is a constant c

1

such that for every odd i, 0 < i < l,

�

dl�2

i�1

+ �

dl�2

i

< c

1

� c

(l�i)=2

0

:

The proof requires a bit labour, but is elementary, so we omit it.

We are now looking for an � such that

P

l��

i=0

�

dl�2

i

<

1

ml

, i.e., up to �

dl�2

l��

, the

coe�cients �

dl�2

i

are very small (which means that the vectors b

0

i

contribute very

little to the convex estimation of b

"

dl�2

).

Lemma38. There is a constant c

2

> 0 such that

P

l��

i=0

�

dl�2

i

<

1

ml

for � = c

2

�

log(m � l).

Proof. We consider � such that l � � is odd. Then

l��

X

i=0

�

dl�2

i

=

(l���1)=2

X

j=0

x

dl�2

2j+1

� c

1

� c

�=2

0

�

1

X

s=0

c

s

0

=

c

1

1�c

0

� c

�=2

0

:

For an � = O(log(ml)) appropriately chosen (namely, for � >

2

� log c

0

(log(ml) +

log

c

1

1�c

0

)), the last expression is smaller than

1

ml

. 2

Proof of Main Lemma (Lemma 11). Recall that

a

t

� b

"

t

�

l�1

X

i=0

�

t

i

� b

0

i

:

It follows that for every h � l, head

h

(a

t

) � head

h

(

P

l�1

i=0

�

t

i

�b

0

i

). Let � = c

2

�log(m�l)

and h = l � r � � � 1. Then

head

h

(a

dl�2

) �

l�1

X

i=0

�

dl�2

i

� head

h

(b

0

i

):

By Lemma 26, b

0

i

contains only zeroes up to position (l�r)�(l�1�i). For i > l��,

(l � r)� (l � 1� i) > h, hence head

h

(b

0

i

) = 0. So

head

h

(a

dl�2

) �

l��

X

i=0

�

dl�2

i

� head

h

(b

0

i

) � ml �

l��

X

i=0

�

dl�2

i

:

Hence by Lemma 38, head

h

(a

dl�2

) < 1. Since a

t;i

2 N for every t and i, it follows

that a

dl�2;1

; : : : ; a

dl�2;l�r���1

= 0.

The proof that a

dl�2;h

; : : : ; a

dl�2;l

= m, for h = (l�r+1)+�+1, is similar. (We

change the directions of all comparators and obtain an (";m)-block that works in

opposite direction. Ones in this (";m)-block behave exactly like zeroes in the original

(";m)-block.) It follows that after iteration (dl � 2)=2, the contents of the network

is at most (2� + 2;m)-dirty. Since � = O(log(m � l)), Main Lemma follows. 2

4.5 Analysis of the algorithm

We shall show that the network I

n;k

sorts in �kn

1=k

+ (c logn)

k

iterations, where

the constants �, � are from Main Lemma while c = � + 1 is a parameter from the

de�nition of I

n;k

. By 0-1 Principle, it su�ces to consider inputs consisting of 0's and

1's. We divide the iterations into k + 1 phases. Each of the �rst k phases consists of

�n

1=k

iterations; the last phase consists of the last (c logn)

k

iterations. In order to

analyze phase i, for i � k, we use the fact that I

n;k

is of the form X

1

jF

i

jX

2

, where

X

1

, X

2

are some monotonic networks. Let m

i

denote the size of the columns of F

i

,

that is, m

i

= n

(k�i)=k

� (c logn)

i�1

and m

k+1

= 1.

Claim 39 For i � k, at the beginning of phase i, the network I

n;k

is at most

(n

1=k

;m

i

)-dirty. At the beginning of phase k+ 1, I

n;k

is at most ((c logn)

k

; 1)-dirty.

Proof. The proof is by induction on i. By de�nition, every input sequence is at

most (n

1=k

; n

(k�1)=k

)-dirty. Hence the lemma holds for i = 1. By Main Lemma,

if the input of phase i is at most (n

1=k

;m

i

)-dirty, then the output of phase i is

at most (� log(n

1=k

� m

i

);m

i

)-dirty. Since n

1=k

� m

i

� n, the output is at most

(� logn;m

i

)-dirty, as well. This means that the number of registers from the �rst

register containing a 1 to the last register containing a 0 is at most m

i

� � logn.

For i < k, these registers are contained in at most d

m

i

�� logn

m

i+1

e + 1 = dn

1=k

�

�+1

e + 1

adjacent columns of (";m

i+1

)-block F

i+1

. We may assume that n is su�ciently large

so that dn

1=k

�

�+1

e+1 � n

1=k

. Hence the input of phase i+1 is at most (n

1=k

;m

i+1

)-

dirty. If i = k, then m

i

� � logn � (c logn)

k

, hence the output of stage k is at most

((c logn)

k

; 1)-dirty. 2

The output of phase k is at most ((c logn)

k

; 1)-dirty. I

n;k

= XjF

k+1

, where X

is some monotonic network, so by Lemma ??, after d(c logn)

k

=2e iterations at stage

k + 1 the sequence stored by I

n;k

is sorted.

The total time for sorting a sequence of n elements on I

n;k

is the depth of the

network multiplied by the number of necessary iterations, that is, at most (2�k +

2)(k�n

1=k

+ (c logn)

k

) = O(k

2

� n

1=k

), where � = O(

1

"

� log

1

"

) is the depth of an

"-halver. This completes the proof of Theorem 1. 2

Acknowledgment

We thank Friedhelm Meyer auf der Heide for presenting us the problem of peri-

odic sorting networks of constant depth. Many ideas leading to the solution pre-

sented in the paper have been contributed by Friedhelm Meyer auf der Heide, Juraj

Hromkovi�c, Krzysztof Lory�s and Rolf Wanka.

Added in proof: Very recently, in Wroc law and Paderborn, the results of this paper

have been signi�cantly improved giving more practical solutions.

References

1. M. Ajtai, J. Koml�os and E. Szemer�edi. Sorting in c log n parallel steps. Combinatorica

3 (1983) 1-19.

2. K. E. Batcher. Sorting networks and their applications. In AFIPS Conf. Proc. 32, pp.

307{314, 1968.

3. M. Dowd, Y. Perl, M. Saks, and L. Rudolph. The periodic balanced sorting network.

J. ACM 36 (1989) 738{757.

4. M. Kik, M. Kuty lowski, G, Stachowiak. Periodic constant depth sorting networks. Tech-

nical Report, Heinz{Nixdorf{Institut, Universit�at Paderborn, September 1993.

5. J. G. Krammer. L�osung von Datentransportproblemen in integrierten Schaltungen.

Ph.D. Dissertation, Technical University Munich, 1991.

6. F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,

Hypercubes (Morgan Kaufmann, San Mateo, 1992).

7. F. Meyer auf der Heide. Personal communication, 1991.

8. U. Schwiegelshohn. A shortperiodic two-dimensional systolic sorting algorithm. In IEEE

International Conference on Systolic Arrays, pp. 257-264, 1988.

This article was processed using the L

a

T

E

X macro package with LLNCS style

