

Anna Lauks

ModOnions Onion Routing Modified Onion Routing

Attacks on ModOnions Detour Attack Tagging Attack

Defence Core Idea Improved Construction Routing

Security

Repelling Detour Attack against Onions with Re-Encryption

Marek Klonowski Mirosław Kutyłowski Anna Lauks

Wrocław University of Technology

ACNS 2008

▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline

Anna Lauks

ModOnions Onion Routing Modified Onion Routing

Attacks on ModOnions Detour Attack Tagging Attack

Defence Core Idea Improved Construction Routing

Security

ModOnions

- Onion Routing
- Modified Onion Routing

2 Attacks on ModOnions

- Detour Attack
- Tagging Attack

3 Defence

- Core Idea
- Improved Construction

イロト イポト イヨト イヨト ショー うくや

Routing

4 Security

Outline

Anna Lauks

ModOnions

Onion Routing Modified Onion Routing

Attacks on ModOnions Detour Attack Tagging Attack

Defence Core Idea Improved Construction Routing

Security

ModOnions

- Onion RoutingModified Onion Routing
- Attacks on ModOnions
 - Detour Attack
 - Tagging Attack
- 3 Defence
 - Core Idea
 - Improved Construction

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Routing

4 Security

ModOnions Onion Routing Modified Onion Routing

Attacks on ModOnions Detour Attack Tagging Attack

Defence Core Idea Improved Construction Routing

Security

 $E_{\rho k_1}("2", E_{\rho k_2}("3", E_{\rho k_3}("4", E_{\rho k_4}("\text{receiver"}, E_{\rho k_r}(m)))))$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

 $E_{\rho k_1}("2", E_{\rho k_2}("3", E_{\rho k_3}("4", E_{\rho k_4}("\text{receiver"}, E_{\rho k_r}(m)))))$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

 $E_{pk_2}("3", E_{pk_3}("4", E_{pk_4}("receiver", E_{pk_r}(m))))$

 $E_{pk_2}("3", E_{pk_3}("4", E_{pk_4}("receiver", E_{pk_r}(m))))$

Receiver decrypts and gets message m

Onion Routing - Anonymity

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

- 2 Onions entering and leaving the same node are indistinguishable – conflict
- problem: replay attack

ModOnions Protocol – [1]

Anna Lauks

ModOnions Onion Routing Modified Onion Routing

Attacks on ModOnions Detour Attack Tagging Attack

Defence Core Idea Improved Construction Routing

Security

Basic Properties

- utilizes extended version of Universal Re-encryption (from [2])
- each Onion consists of λ ciphertexts (called ,,blocks")
- additional phase while routing re-encryption of all blocks of the Onion – immunity against replay attack

 M. Gomułkiewicz, M. Kutyłowski: "Onions Based on Universal Re-encryption – Anonymous Communication Against Repetitive Attack"

(ロ) (目) (日) (日) (日) (日) (日)

[2] P. Golle, M. Jakobsson, A. Juels, P.F. Syverson: "Universal Re-encryption for Mixnets"

ModOnions Protocol – Building Blocks

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

Extended Version of Universal Re-encryption

Keys: x_i , $y_i = g^{x_i}$ – private and public key of the *i*th server

Encryptio

on:
$$E_{x_1+x_2+\dots+x_{\lambda}}(m) = (\alpha_0, \beta_0; \alpha_1, \beta_1) :=$$

:= $(m \cdot (y_1y_2 \dots y_{\lambda})^{k_0}, g^{k_0}; (y_1y_2 \dots y_{\lambda})^{k_1}, g^{k_1}),$
for some random values k_0 and k_1

ModOnions Protocol – Building Blocks

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

Extended Version of Universal Re-encryption

Keys: x_i , $y_i = g^{x_i}$ – private and public key of the *i*th server

Encryption: $E_{x_1+x_2+\cdots+x_\lambda}(m) = (\alpha_0, \beta_0; \alpha_1, \beta_1) :=$:= $(m \cdot (y_1y_2 \dots y_\lambda)^{k_0}, g^{k_0}; (y_1y_2 \dots y_\lambda)^{k_1}, g^{k_1}),$ for some random values k_0 and k_1

Re-encryption: $(\alpha_0 \cdot \alpha_1^{k'_0}, \beta_0 \cdot \beta_1^{k'_0}; \alpha_1^{k'_1}, \beta_1^{k'_1})$ for some random values k'_0 and k'_1

ModOnions Protocol – Building Blocks

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

Extended Version of Universal Re-encryption

- Keys: x_i , $y_i = g^{x_i}$ private and public key of the *i*th server
- Encryption: $E_{x_1+x_2+\cdots+x_\lambda}(m) = (\alpha_0, \beta_0; \alpha_1, \beta_1) :=$:= $(m \cdot (y_1y_2 \dots y_\lambda)^{k_0}, g^{k_0}; (y_1y_2 \dots y_\lambda)^{k_1}, g^{k_1}),$ for some random values k_0 and k_1

Re-encryption: $(\alpha_0 \cdot \alpha_1^{k'_0}, \beta_0 \cdot \beta_1^{k'_0}; \alpha_1^{k'_1}, \beta_1^{k'_1})$ for some random values k'_0 and k'_1

Partial decryption: *i*th server can compute:

$$E_{x_1+x_2+\cdots+x_{i-1}+x_{i+1}+\cdots+x_{\lambda}}(m) = \left(\frac{\alpha_0}{\beta_0^{x_i}}, \beta_0; \frac{\alpha_1}{\beta_1^{x_i}}, \beta_1\right)$$

ModOnions Protocol

Anna Lauks

ModOnions Onion Routing Modified Onion Routing

Attacks on ModOnions Detour Attack Tagging Attack

Defence Core Idea Improved Construction Routing

Security

The Goal – to send a message *m* to server s_{λ}

Construction of ModOnion – \mathcal{O}

- intermediate servers s₁, s₂,..., s_{λ-1} are chosen at random
- the *i*th block of \mathcal{O} (for $1 \le i < \lambda$) is a ciphertext: $E_{x_{s_1}+\dots+x_{s_i}}$ (send to s_{i+1})
- the last block of \mathcal{O} has the form: $E_{x_{s_1}+\cdots+x_{s_\lambda}}(m)$
- all blocks are permuted at random and \mathcal{O} is sent to s_1

ModOnions Protocol

Anna Lauk

ModOnions Onion Routing Modified Onion Routing

Attacks on ModOnions Detour Attack Tagging Attack

Defence Core Idea Improved Construction Routing

Security

Routing of ModOnion – \mathcal{O} by server s_i

All blocks of O are:

 partially decrypted – only one block should contain plaintext – address of the next server on the path s_{i+1} (it is replaced with random strings)

(ロ) (目) (日) (日) (日) (日) (日)

- 2 re-encrypted
- 3 permuted at random
- ModOnion \mathcal{O} is sent to s_{i+1}

ModOnions Protocol

Anna Lauks

ModOnions Onion Routing Modified Onion Routing

Attacks on ModOnions Detour Attack Tagging Attack

Defence Core Idea Improved Construction Routing

Security

Routing of ModOnion – \mathcal{O} by server s_i

All blocks of O are:

- partially decrypted only one block should contain plaintext – address of the next server on the path s_{i+1} (it is replaced with random strings)
- 2 re-encrypted
- 3 permuted at random
- ModOnion \mathcal{O} is sent to s_{i+1}

If any misbehaviour is detected (i.e. **none** or **more then one** decrypted block represents the name of the server) an **investigation procedure** is executed.

Outline

Anna Lauks

ModOnions Onion Routing Modified Onion Routing

Attacks on ModOnions

- Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

ModOnions

- Onion Routing
- Modified Onion Routing

2 Attacks on ModOnions

- Detour Attack
- Tagging Attack

B Defence

- Core Idea
- Improved Construction

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Routing

4 Security

Attacks on ModOnions from [1]

Anna Lauks

ModOnions Onion Routing Modified Onion Routing

Attacks on ModOnions

Detour Attack Tagging Attack

Defence Core Idea Improved Construction Routing

Security

Observations

Given $E_x(m)$:

It is easy to create *E_{x+x'}(m)* for an arbitrary value *x'*
 one can add an additional cryptographic layer to an arbitrary block of ModOnion

[1] G. Danezis: "Breaking Four Mix-Related Schemes Based on Universal Re-encryption"

▲□▶▲□▶▲□▶▲□▶ □ のQで

Attacks on ModOnions from [1]

Anna Lauks

ModOnions Onion Routing Modified Onion Routing

Attacks on ModOnions

Detour Attack Tagging Attack

Defence Core Idea Improved Construction Routing

Security

Observations

- Given $E_x(m)$:
 - 1 It is easy to create $E_{x+x'}(m)$ for an arbitrary value x'– one can add an additional cryptographic layer to an arbitrary block of ModOnion
 - **2** It is easy to obtain $E_x(m')$
 - one can obtain a ciphertext of an arbitrary message
 m' for the same secret key

(ロ) (目) (日) (日) (日) (日) (日)

[1] G. Danezis: "Breaking Four Mix-Related Schemes Based on Universal Re-encryption"

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

$$\begin{array}{l} E_{x_{s_1}}(s_2), \\ E_{x_{s_1}+x_{s_2}}(s_3), \\ E_{x_{s_1}+x_{s_2}+x_{s_3}}(s_4), \\ E_{x_{s_1}+x_{s_2}+x_{s_3}+x_{s_4}}(s_5), \\ E_{x_{s_1}+x_{s_2}+x_{s_3}+x_{s_4}+x_{s_5}}(m) \end{array}$$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

$$\begin{array}{l} E_0(\mathbf{s_2}), \\ E_{x_{s_2}}(s_3), \\ E_{x_{s_2}+x_{s_3}}(s_4), \\ E_{x_{s_2}+x_{s_3}+x_{s_4}}(s_5), \\ E_{x_{s_2}+x_{s_3}+x_{s_4}+x_{s_5}}(m) \end{array}$$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

$$\begin{array}{l} E_0(\mathbf{s_2}), \\ E_{x_{s_2}+x'}(s_3), \\ E_{x_{s_2}+x_{s_3}+x'}(s_4), \\ E_{x_{s_2}+x_{s_3}+x_{s_4}+x'}(s_5), \\ E_{x_{s_2}+x_{s_3}+x_{s_4}+x_{s_5}+x'}(m) \end{array}$$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

▲ロト ▲周 ト ▲ヨ ト ▲ヨ ト 「ヨ 」 の々で

 $\begin{array}{ll} E_{x_{s_2}}(s_1), & \leftarrow \text{redirectional block} \\ E_{x_{s_2}+x'}(s_3), \\ E_{x_{s_2}+x_{s_3}+x'}(s_4), \\ E_{x_{s_2}+x_{s_3}+x_{s_4}+x'}(s_5), \\ E_{x_{s_2}+x_{s_3}+x_{s_4}+x_{s_5}+x'}(m) \end{array}$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

$$\begin{array}{l} E_{x_{s_2}}(s_1), \\ E_{x_{s_2}+x'}(s_3), \\ E_{x_{s_2}+x_{s_3}+x'}(s_4), \\ E_{x_{s_2}+x_{s_3}+x_{s_4}+x'}(s_5), \\ E_{x_{s_2}+x_{s_3}+x_{s_4}+x_{s_5}+x'}(m) \end{array}$$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

$$\begin{array}{l} E_0(s_1), \\ E_{x'}(s_3), \\ E_{x_{s_3}+x'}(s_4), \\ E_{x_{s_3}+x_{s_4}+x'}(s_5), \\ E_{x_{s_3}+x_{s_4}+x_{s_5}+x'}(m) \end{array}$$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

random strings, $E_{x'}(s_3)$, $E_{x_{s_3}+x'}(s_4)$, $E_{x_{s_3}+x_{s_4}+x'}(s_5)$, $E_{x_{s_3}+x_{s_4}+x_{s_5}+x'}(m)$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

random strings, $E_0(s_3), \quad \leftarrow s_1$ gets the knowledge about s_3 ! $E_{x_{s_3}}(s_4),$ $E_{x_{s_3}+x_{s_4}}(s_5),$ $E_{x_{s_3}+x_{s_4}+x_{s_5}}(m)$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

random strings, random strings, $E_0(s_4), \quad \leftarrow s_1$ gets the knowledge about s_4 ! $E_{x_{s_4}}(s_5),$ $E_{x_{s_4}+x_{s_5}}(m)$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

random strings, random strings, random strings, $E_0(s_5), \quad \leftarrow s_1$ gets the knowledge about $s_5!$ $E_{x_{s_4}+x_{s_5}}(m)$

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

random strings, random strings, random strings, random strings,

 $E_0(m) \leftarrow s_1$ gets the knowledge about the message m!

Tagging Attack

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

Idea

- Corrupted server guesses that the next say 3 hops of ModOnion are s_A, s_B, s_C
- 2 He marks ModOnion by replacing a random block by:

$$E_{x_{s_A}+x_{s_B}+x_{s_C}}(TAG)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

If the path is exactly as he has thought the TAG will be visible

Outline

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack

Defence

- Core Idea Improved Construction Routing
- Security

ModOnions

- Onion Routing
- Modified Onion Routing
- 2 Attacks on ModOnions
 - Detour Attack
 - Tagging Attack

3 Defence

- Core Idea
- Improved Construction

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Routing

4 Security

Modifications of the ModOnion's Protocol

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction
- Security

Core Idea

Each server *s* has two pairs of keys:

- **transport keys**: private x_s and public $y_s = g^{x_s}$
 - used for transporting blocks through intermediate servers

destination keys: private x_s^{\star} and public $y_s^{\star} = g^{x_s^{\star}}$

- used for encrypting and decrypting messages and routing addresses for their recipients

(ロ) (目) (日) (日) (日) (日) (日)

Modifications of the ModOnion's Protocol

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction

Security

New Construction of ModOnion \mathcal{O}

- the 1st block of \mathcal{O} has the form: $E_{x_{s_1}^*}$ (send to s_2)
- the *i*th block of \mathcal{O} (for $2 \le i \le \lambda 1$) is a ciphertext: $E_{x_{s_1}+\dots+x_{s_{i-1}}+x_{s_i}^{\star}}$ (send to s_{i+1})

• the last block of \mathcal{O} has the form: $E_{x_{s_1}+\cdots+x_{s_{\lambda-1}}+x_{s_\lambda}^*}(m, t)$, where *t* is the current time

all blocks are permuted at random and \mathcal{O} is sent to s_1

Each destination key is used only once!

Modifications of the ModOnion's Protocol

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

New Routing of ModOnion ${\cal O}$

Server s_i:

- **1** Copies all blocks of \mathcal{O}
- 2 Decrypts all blocks with his private destination key
 - one should contain the name of the next server
- 3
- if all blocks are meaningless strings → the investigation procedure
- else server s_i decrypts all copies of blocks (except the one with the address) with the private transportation key
- 4 Replaces the block containing s_{i+1} by a random one
- 5 Permutes all blocks
- 6 Sends \mathcal{O} to s_{i+1}

Outline

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

ModOnions

- Onion Routing
- Modified Onion Routing
- 2 Attacks on ModOnions
 - Detour Attack
 - Tagging Attack
- 3 Defence
 - Core Idea
 - Improved Construction

イロト イポト イヨト イヨト ショー うくや

Routing

4 Security

Immunity against Detour Attack

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

Detour Attack

- If s_i wants to find the s_{i+2} he should:
 - 1 Add the redirectional block $E_{X_{S_{i+1}^*}}$
 - to enforce server s_{i+1} to send the ModOnion back

▲□▶▲□▶▲□▶▲□▶ □ のQで

2 Add the additional encryption layer (with some key x') to other blocks

Immunity against Detour Attack

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

Why does it fail?

The attack is succesful $\iff s_{i+1}$ will use his **destination** key to remove the encryption layer from the block that encodes address of s_{i+2} but:

- if server s_{i+1} honest he will use his destination key to decrypt only the redirectional block
- the rest of the blocks will be partialy decrypted with the transportation key

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

Anna Lauks

ModOnions Onion Routing Modified Onion Routing

Attacks on ModOnions Detour Attack Tagging Attack

Defence Core Idea Improved Construction Routing

Security

■ adversary may control a small fraction of them (i.e. $d = \frac{1}{\lambda}$, where λ - the length of the path)

sender and receiver are honest

Attack Model

Adversary Model

The adversary can:

- observe Onions transmitted
- manipulate Onions processed by servers he controls
 - change the routing path
 - manipulating the contents
- inject new Onions

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

Successful Attack

An attack \mathcal{A} succeeds \iff

- adversary can get some information about the contents of the Onion
- and probability that corrupted server will be detected is negligible

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

Offline Attacks

We showed that single ModOnion does not betray any knowledge about:

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

- the message encoded inside it
- the identity of any server from the path

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing

Security

Offline Attacks

We showed that single ModOnion does not betray any knowledge about:

- the message encoded inside it
- the identity of any server from the path

Online Attacks

- any change of the original path of the ModOnion does not lead to the successful attack
- using random blocks for tagging does not lead to the successful attack

Anna Lauks

- ModOnions Onion Routing Modified Onion Routing
- Attacks on ModOnions Detour Attack Tagging Attack
- Defence Core Idea Improved Construction Routing
- Security

Thank you for attention!